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Fuzzy-Clustering-Based Decision Tree Approach for

Large Population Speaker Identification
Yakun Hu, Dapeng Wu, and Antonio Nucci

Abstract—In this paper, we address the problem of large
population speaker identification under noisy conditions. Major
techniques for speaker identification is based on Mel-Frequency
Cepstral Coefficients (MFCC), Gaussian Mixture Model (GMM)
and Universal Background Model (UBM) which we call
MFCC+GMM and MFCC+GMM+UBM. The approaches are
known to perform very well for small population identification
under low-noise conditions. However, the increase of population
size can cause performance degradation of these schemes under
noisy conditions. To mitigate this limitation, we propose a fuzzy-
clustering-based decision tree approach. The key idea of our
approach is to 1) use a decision tree to hierarchically partition
the whole population into groups of small size, and determine
which speaker group at the leaf node a speaker under test
belongs to, and 2) apply MFCC+GMM to the selected speaker
group for speaker identification. The advantage of our approach
is that we use features that are independent from MFCC to
partition speakers into groups and only apply MFCC+GMM
to speaker groups at the leaf level. The key challenge in our
design is how to achieve a low error probability of decision-tree-
based classification. To address this, we adopt fuzzy clustering
in constructing the tree for population partitioning, i.e., at each
level, a speaker may belong to multiple groups. Such redundancy
increases the probability of classifying a speaker under test into
a correct group/node on the tree. Another novelty of this paper
is that we use pitch and five vocal source features to construct a
six-level decision tree. Experimental results demonstrate that our
approach outperforms MFCC+GMM and MFCC+GMM+UBM
with higher accuracy and lower complexity for large population
identification under additive white Gaussian noise (AWGN)
conditions.

Index Terms—Large Population Speaker Identification,
Hierarchical Decision Tree, Fuzzy Clustering, GMM, MFCC

I. INTRODUCTION

Speaker identification [1] is an example of biometric system

that has many useful applications. In speaker identification,

given an input speech, the task is to determine the unknown

speaker’s identity by selecting one from the whole population

of speakers registered in the system. In this paper, we consider

large population speaker identification under noisy conditions.

Specifically, there are a large number of registered speakers

in our system and there is a mismatch between training and

testing caused by noisy conditions (i.e., training samples are

clean but testing samples are corrupted by additive noise).
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The major technique for speaker identification is based

on MFCC (Mel-Frequency Cepstral Coefficients) and GMM

(Gaussian Mixture Model) [1]. Some important GMM-

based approaches including the Universal Background Model

(UBM) approach have been proposed [2], [3]. In this

paper, we call them the MFCC+GMM approach and the

MFCC+GMM+UBM approach. Another emerging technique

which becomes very population is the i-vector approach

(including the joint factor analysis approach) [4], [5].

The i-vector approach has been widely used for speaker

verification. However, it seems not be directly applied to

speaker identification yet. The i-vector approach usually

requires a large number of data to perform well and the

computational complexity can be high when applying i-

vector to speaker identification especially for large population

case. In our paper, we use the MFCC+GMM approach and

the MFCC+GMM+UBM approach as the benchmarks for

performance comparison.

The approaches based on MFCC and GMM are known to

perform very well for small population speaker identification

under low-noise conditions [1], [2]. However, they also have

some drawbacks. The first drawback is that they suffer from

the mismatch between training and testing caused by noisy

conditions. The noisy conditions can severely degrade the

identification performance. The second drawback is actually a

common problem of almost all existing speaker identification

techniques. The success of almost all existing identification

systems (including GMM-based systems) lies in the fact that

they are trained on datasets with only a relatively small

population. However, it is pretty straightforward that when

the population has a significant increase (e.g., thousands

of registered speakers or even more), the probability of

identification errors will significantly increase, accordingly.

Unfortunately, there are not much existing research work

studying this problem. Some papers mainly focused on

reducing the computational complexity in large population

cases at the cost of a very slight accuracy loss [6]–[8]. In

some other papers which claimed to deal with large population

identification, the experiments were actually carried out on

datasets with only hundreds of registered speakers [9], [10].

In [11], Chaudhari et al. attempted to address the truly

large population identification problem and they proposed a

derivative of MFCC+GMM and achieved a good accuracy on

the IBM internal dataset consisting of 10013 speakers. The

experiments in [11] were conducted when training and testing

conditions are matched without additive noise or channel

variations. Nevertheless, the population becomes an extremely

important impact factor of the identification performance
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under noisy conditions. Some existing research have provided

evidences to support this conclusion. One evidence is from

[12] in which Reynolds showed the accuracy of MFCC+GMM

as a function of the population size on NTIMIT database which

contains speech samples degraded by noise and bandlimiting

[12]. Experimental results shown in [12] indicate that the

identification accuracy steadily decreases as the population

size increases and the largest drop in accuracy occurs when

the population size increases to 100. With the full 630 speaker

population, there is about 30% loss in accuracy compared with

10 speaker population case. Another evidence comes from

our own experimental results. Fig.1 shows the accuracy v.s.

population for MFCC+GMM on our own speech dataset (the

specific description will be given in Section V) in the scenario

of additive white Gaussian noise (AWGN) with a 30dB signal-

to-noise ratio (SNR). From the figure, we also can see there is

a steady and significant accuracy loss as the population goes

up. As a conclusion, approaches based on MFCC and GMM

have achieved great success in speaker identification. However,

two factors including the additive noise that is ubiquitous

in the environment and the practical requirements of large

population identification are greatly limiting the approaches

in real applications.
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Fig. 1. Accuracy v.s. Population for MFCC+GMM.

To mitigate the limitations of MFCC+GMM (including

MFCC+GMM+UBM) and improve the performance of large

population speaker identification under noisy conditions, we

proposed a fuzzy-clustering-based hierarchical decision tree

approach. The key idea of our approach is that we use a

decision tree to partition the original large population into

subgroups in a hierarchical way. For a speaker under test,

we first conduct the decision-tree-based classification (i.e.,

determine which speaker group at the leaf node of the tree

the speaker belongs to) and then apply the MFCC+GMM

identification approach to the selected speaker group at the

leaf node to determine the speaker identity. The decision tree

has multiple levels and the population partitioning is conducted

from upper levels of the tree to its lower levels. The root node

of the tree represents the universal set containing all registered

speakers. At each level of the tree, we use a speech feature to

do speaker clustering, i.e., a node (or a speaker group) splits

into several child nodes (or speaker subgroups) at its lower

level. In this process, speakers with similar speech feature are

put into a same child node whereas speakers with dissimilar

speech feature are put into different child nodes. Then, each

child node contains a smaller population size than its parent

node. Thus, at the bottom level, each speaker group at the

leaf node has a very small population size and the population

reduction is achieved. When the hierarchical decision tree is

constructed, for a speaker under test, we conduct the decision-

tree-based classification from the top of the tree to its bottom.

At each level, we determine which speaker group or node the

speaker belongs to. At the bottom level, we select one and only

one speaker group at the leaf node that the speaker belongs

to and apply MFCC+GMM to the selected speaker group for

speaker identification. The advantage of our approach is that 1)

we only apply MFCC+GMM to the speaker group at the leaf

node with a very small population size instead of applying it to

the original large population, and 2) since we only use speech

features that are independent from MFCC to cluster speakers

into groups, speakers with similar MFCC may not be put into

a same speaker group and the probability of speakers having

similar MFCC is much lower in the speaker group at the leaf

node than at the root node containing the whole population.

Hence MFCC+GMM can perform well in the speaker group

at the leaf node with a much higher correct identification rate

as well as a much lower computational complexity.

In the process of decision-tree-based classification, a

speaker may be classified into an incorrect node or speaker

group. What is worse, a classification error at any level will

propagate through the tree and finally accumulates at the

bottom level, i.e., if a speaker under test is classified into an

incorrect node (or speaker group) at a level, the speaker will

finally be classified into an incorrect speaker group at the leaf

node. Then, there is no chance for us to correctly identify the

speaker. Therefore, the key challenge in our design is how to

achieve a low probability of classification error in the process

of decision-tree-based classification for a speaker under test.

We can use the conventional hard clustering in constructing

the decision tree, i.e., a speaker only belongs to one node (or

speaker group) at each level of the decision tree. However,

it seems that the classification accuracy in the process of

decision-tree-based classification could not be satisfactory in

this case. For example, for those speakers on the boundaries

between different groups, an inevitable feature deviation in the

testing phase, even very small, will almost guarantee an error

of classification. Also, for speakers whose feature values have

relatively large deviation from sample to sample, it is difficult

to prevent from classifying them into the incorrect speaker

groups. To achieve a satisfactory performance of decision-tree-

based classification, we proposed to adopt fuzzy clustering in

constructing the decision tree, i.e., a speaker may belong to

multiple nodes (or speaker groups) at each level of the decision

tree. For a speaker under test, such redundancy introduced

by fuzzy clustering can greatly increase the probability of the

speaker being “captured” by a correct node (or speaker group)

at each level of the tree. Thus, the probability of classifying

a speaker under test into a correct speaker group at the leaf

node can greatly increase, accordingly.

Another novelty of this paper is that we derived six

features (including pitch and five vocal source characteristics)

to construct a six-level decision tree. The six features are

believed to 1) be able to discriminate different groups of
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speakers, 2) be independent from MFCC, 3) be independent

from each other, and 4) be robust to additive noise (e.g.,

AWGN). We evaluate the performance of the six-level

decision tree and compare the identification performance

with the MFCC+GM approach and the MFCC+GMM+UBM

approach on our own dataset in the scenario of AWGN.

Experimental results indicate that our approach outperforms

the MFCC+GMM approach and the MFCC+GMM+UBM

approach with higher correct identification rate (e.g., 8%

increase compared with MFCC+GMM+UBM for 30dB SNR

and 30s testing length) and lower computational complexity

which meets the requirement of real-time applications.

The remainder of this paper is organized as follows. In

Section II, we propose the fuzzy-clustering-based hierarchical

decision tree. Section III specifically describes the speech

features used in the decision tree for speaker clustering. In

Section IV, we present the fuzzy clustering algorithm adopted

in the decision tree. Section V shows the experimental results

and Section VI concludes the paper.

II. FUZZY-CLUSTERING-BASED HIERARCHICAL DECISION

TREE

In this section, we specifically describe our fuzzy-clustering-

based hierarchical decision tree for speaker identification.

In Section II-A, the system diagrams using the hierarchical

decision tree are shown. Section II-B explains the design of

the decision tree approach.

A. Diagrams of Fuzzy-Clustering-Based Hierarchical

Decision Tree

There are two units in our identification system using fuzzy-

clustering-based hierarchical decision tree: decision-tree-based

classification and speaker identification at leaf nodes of

the tree. Decision-tree-based classification has two phases:

training phase (i.e., speaker clustering for the construction

of the hierarchical decision tree) and testing phase (i.e., the

process of determining which speaker group at the leaf node

a speaker under test belongs to). Speaker identification at leaf

nodes also consists of training phase and testing phase.

Fig.2 shows the construction of the hierarchical decision

tree. In the figure, Cn1,n2,··· ,nL,nL+1
denotes the nL+1th node

representing a speaker group at level L, where L = 0, 1, · · · .

Every node is a set of speakers. The root node C1 at level

0 represents a single speaker group containing a total of N
speakers, where N has a large value (e.g., >1000) in our

problem. The parent node of Cn1,n2,··· ,nL,nL+1
at level L

is Cn1,n2,··· ,nL
at level L − 1. At each level, the speaker

clustering is conducted, i.e., a parent node at an upper level

is split into several child nodes at its lower level. The speaker

clustering is carried out hierarchically from upper levels to

lower levels and is completed until each leaf node of the

tree can be labeled by a particular speaker group which

contains a sufficiently small number of speakers (e.g., <50).

As mentioned in Section I, we adopt fuzzy clustering at each

level of the tree. Specifically, a speaker in a parent node at a

level may belong to more than one child nodes at its lower

level. The fuzzy clustering will be specified in Section IV.
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Fig. 2. Construction of Hierarchical Decision Tree.
(Fuzzy Clustering:

∪
nL+1

Cn1,n2,··· ,nL,nL+1
= Cn1,n2,··· ,nL

and

|Cn1,n2,··· ,nL,p

∩
Cn1,n2,··· ,nL,q | ≥ 0, where p ̸= q, L = 1, 2 · · · and

| · | denotes the cardinality of a set)

Fig.3 illustrates the classification based on hierarchical

decision tree, where Fig.3(a) gives the overall structure of

the hierarchical decision tree for classification and Fig.3(b)

specifies the input and output of a node at each level of the

tree for classification. As indicated from Fig.3(a), for a speaker

under test, the decision-tree-based classification proceeds from

the top of the tree to its bottom. At each level of the tree,

Fig.3(b) shows that the input of a node is an input speech for

testing. After feature extraction and classification procedure,

the node outputs the classification decision, i.e., which speaker

group at the child node at the lower level a speaker under test

is determined to belong to. At each level, one and only one

node is enabled and thus, for an input testing speech, an unique

path from the root node of the tree to one leaf node is enabled.
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(a) Overall Structure of Hierarchical Decision Tree for Classification
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(b) Input and Output of a Node at Level L

Fig. 3. Classification based on Hierarchical Decision Tree.

When a leaf node is enabled, the decision-tree-based

classification will be terminated and MFCC+GMM will be

applied to the speaker group at the enabled leaf node for

speaker identification. Since we only use those speech features

that are independent from MFCC to conduct speaker clustering

via decision tree, the probability of having speakers with

similar MFCC is significantly reduced in the speaker group at

the leaf node. Thus, MFCC+GMM can perform well. Notice

that the speaker group at the enabled leaf node contains a small

population, we do not need a GMM with a large number of
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mixtures to complete the identification task and this further

ensures the computational complexity to be low.

B. Why Hierarchical Decision Tree?

In large population speaker identification, why it’s feasible

to use hierarchical decision tree for population reduction? This

is because human speech does contain many useful features

that can be used to cluster speakers into groups. Speaker

groups do exist that speakers sharing with a similar speech

feature are in a same group whereas speakers having different

speech features are from different groups. For example,

speakers with different genders can be distinguished by using

pitch feature [13]; based on different movement patterns of the

vocal cords during utterances, different speaker groups could

be obtained; Many emerging features which are independent

from MFCC may indicate different speaker groups [14]. In

summary, human speech has many different attributes and it’s

feasible to cluster speaker into groups by using various speech

features. At each level of our hierarchical decision tree, we

try to find different speaker groups by examining a certain

attribute of speech.

In our hierarchical decision tree, the speaker clustering is

carried out orderly and independently from the upper levels

to the lower levels. There is another alternative way that

we can jointly use all features to complete the clustering

at one time. Why we adopt the hierarchical way? There are

basically two reasons. On one hand, to classify a speaker under

test into a cluster (or speaker group) where MFCC+GMM is

used for speaker identification, our approach requires lower

computational complexity. Our approach uses low-dimensional

feature data (e.g., one-dimensional) and the classification is

much less complicated than the one using high-dimensional

feature data. Moreover, let us do a complexity analysis of the

classification. Suppose eight clusters are created by using each

feature, then jointly using M features will result in 8M clusters

and need a computational complexity of O(8M ) during the

testing phase. In contrast, a hierarchical tree constructed by M

features will also result in 8M clusters at the leaf level but only

incurs a computation complexity of O(M) during the testing

phase. On the other hand, as will be shown in Section III, since

features used at different levels of the tree are required to be

independent from each other, the classification performance

of our approach and the one jointly using multiple features

should be close to each other.

Some researchers proposed to combine MFCC and the

features that are complementary to MFCC for speaker

identification. Ezzaidi et al. put forward to combine pitch

and MFCC for speaker identification [15]. In [16], Wang

and Zheng integrated wavelet octave coefficients of residues

(WOCOR) into MFCC for speaker identification. In [17],

Hosseinzadeh et al. derived a set of spectral features from

the excitation component of speech and combined them with

MFCC for speaker identification by using GMM. Nakagawa

et al. proposed to combine MFCC and phase information for

speaker identification [18]. Those approaches use different

fusion techniques to combine likelihood scores based on

different features for speaker identification. Although fusion

techniques are fairly mature in speaker recognition, some

additional training is required to obtain the optimal weights

or parameters for the feature combination [19]. For large

population speaker identification, the key drawback of those

approaches is that they require high computational complexity

and they are not sufficiently scalable. From one aspect,

all those approaches need to combine scores for different

features (including MFCC) against all speaker models and

thus are not applicable to large population identification

due to the unacceptably high complexity. From another

aspect, when a new feature is available, the fusion approach

may need to be redeveloped in order to accommodate the

new feature and this greatly reduces the scalability of the

approaches. Comparatively, in our approach, we believe that

those complementary features to MFCC only can provide a

certain profile of the speech and thus are more suitable for

grouping speakers rather than identifying speakers directly.

We derived some complementary features and used them

to construct a decision tree for classifying speakers into

subgroups before using MFCC for identification. In this

way, the complexity can be significantly reduced for large

population identification since GMM likelihood scores are

only calculated against a small number of speaker models.

In our decision tree, the classification at each level and the

identification at the leaf node are independently conducted.

Therefore, it’s not difficult to accommodate a new feature by

just adding one more level to the existing tree without having

any effect on the original design.

III. SPEECH FEATURES FOR SPEAKER CLUSTERING

To achieve good performance, features used in our approach

for clustering should meet the following requirements: 1) a

good feature should be very capable of discriminating different

groups of speakers; 2) features used at different levels of the

tree should be independent from each other; 3) all features

should be independent from MFCC used at the leaf node for

identification; 4) all features should be robust to additive noise.

This section will describe the six features we derived.

A. Feature Description

All features we used fall into the category of vocal source

feature. The source-filter model of speech production [20]

tells us that speech is generated by a sound source (i.e., the

vibration of vocal cords) going through a linear acoustic filter

(i.e., the combination of the vocal tract and the lip). MFCC

mainly represents the vocal tract information. The vocal source

is believed to be an independent component from the vocal

tract and is able to provide some speaker-specific information.

This is why we are interested in extracting vocal source

features for speaker clustering.

The first feature we derived is pitch or fundamental

frequency. The pitch period is the period of the vocal source

vibration and can be estimated from the period of a voiced

sound. The rest of five features are all related to the vocal

source excitation of voiced sounds. We extract them from the

linear predictive (LP) residual signal [21] which is a good,

though not exact, representative of the vocal source excitation.
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It is well known that a LP residual signal of a voiced sound is

virtually periodic and in each cycle, there are both a positive

pulse and a negative pulse. For different speakers, the shape of

the pulses are very different. The five vocal source features we

use are width of the positive pulse, skewness of the positive

pulse, skewness of the negative pulse, PAR of the positive

pulse within one cycle and PAR of the negative pulse within

one cycle. Notice that we do not use the width of the negative

pulse as a feature since experimental results indicate that

it does not perform as well as the other five. The related

discussion will be given in Section V-A2.

B. Feature Extraction

In this section, we will specify how the six features are

extracted from the speech signal.

1) Pitch Extraction: In our work, YIN algorithm [22] is

used for pitch feature extraction. Fig.4 shows the input and the

output of the pitch extraction module using YIN algorithm.

As indicated from the figure, given a continuous speech as

the input, the module first decomposed it into NF frames.

The frame length is 25ms and the frame shift length is

10ms. For the i-th frame (i = 1, 2, · · · , NF ), we obtain the

pitch estimation pi and the probability of the frame being

voiced denoted as Pri. Since the reasonable pitch range of

human speech is from 50Hz to 550Hz [23], we drop all pitch

estimations which are lower than 50Hz or higher than 550Hz.

We also discard all pitch estimations that are extracted from

frames whose probability of being voiced are below 0.8. By

doing so, we can remove all potential outliers and obtain a set

of reliable pitch estimations.

Pitch Extraction Module using YIN Algorithm

Continuous 

Speech

Pitch Freq: p1

Prob. of 

Voicing: Pr1

�������

Pitch Freq: p2

Prob. of 

Voicing: Pr2

�������

Pitch Freq: 

Prob. of 

Voicing:

������	�

{pi | 50 ≤ pi ≤ 550 ∩ Pri ≥ 0.8}

Outlier 

Detection

FNp

NF
Pr

Fig. 4. Pitch Feature Extraction.

2) Vocal Source Features Extraction: We developed our

own algorithm to extract all five vocal source features. As

similar as pitch extraction, the vocal source features are only

derived from voiced speech frames. Fig.5 shows the process

of vocal source feature extraction. Given a continuous speech

as the input, it is decomposed into short-time frames as

similarly as shown in Section III-B1. For each speech frame,

we determine whether it’s voiced or not based on the energy

and the zero crossing rate of the frame. If it is voiced,

we apply the well-known Levinson-Durbin algorithm to the

frame to estimate the LP coefficients. As the sampling rate is

11.025kHz, the LP order is set to be 14. This is reasonable

because a rule of thumb to choose the LP order is to use 1

complex pole per kHz plus 2-4 poles to model the radiation

and glottal effects [20]. By using those LP coefficients, we

obtain the LP residual signal and extract all five vocal source

features from the LP residual signal.Continuous SpeechFrame SegmentationInitialize Frame Index i = 1Calculate Energy Ei and Zero Crossing Rate ZiVoiced Speech Frame? NoYes i = i + 1Finish Processing all Frames?TerminateYes NoLinear Prediction AnalysisPre-emphasis and WindowingResidual SignalPositive & *egative Pulse DetectionVocal Source Feature Extraction (Width, Skewness and PAR)Outlier Removal
Fig. 5. Vocal Source Features Extraction.

The vocal source feature extraction is not specified here

since it is not the focus of this paper. The last step of the

vocal source features extraction is the outlier removal just like

the pitch feature extraction. Since there is no solid knowledge

about the reasonable range of the vocal source feature values,

we can not set lower and upper limits as we did for pitch

feature but we can do it by statistical analysis. It is observed

that, for each of five vocal source features, feature estimations

roughly have a normal distribution. A certain percentage

of the feature estimations with highest values and a same

percentage of the feature estimations with lowest values are

treated as outliers and should be removed. The selection of the

percentage for different vocal source features will be shown

in Section V.

C. Feature Evaluation

We evaluate our features to see whether they meet the

requirements mentioned at the beginning of this section.

• All six features fall into the category of vocal source

features which characterize some attributes of the

movement of the vocal cords. As the movement of the

vocal cords is related with the glottis structure and the

speaking habit of a speaker during utterances, it should be

pretty stable for a specific speaker and be quite different

from different speakers. Thus, all six features are capable

of discriminating different groups of speakers.

• All six features characterize totally different attributes

of the movement of the vocal source. Pitch represents

the period of the vocal cords movement; width features
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measure how long time the vocal cords are in open

state within one movement cycle; skewness features

provide information about the rate of vocal cords opening

and closing; PAR features characterize how the energy

distributes in the process of vocal cords movement.

Therefore, the six features should be independent from

each other and can be used at different levels of the tree

to give a significant population reduction in total.

• All six features are vocal source features and are

independent from MFCC which characterizes the vocal

tract during utterances. Therefore, they should be

independent from MFCC used at leaf nodes of the tree.

• All six features are robust to additive noise (e.g., AWGN).

There are mainly two reasons. On one hand, all features

are only extracted from voiced speech frames which

usually have relatively high SNR. On the other hand, all

features do not learn details of speech waveforms but are

some quantities that characterize some attributes of the

vocal source in a generalized way and accordingly, are

more robust to additive noise. For example, in the pulse

portion of the LP residual signal extracted from a voiced

frame, SNR is relatively high and all the five vocal source

features can be very insusceptible to additive noise;

additive noise can distort the specific speech waveform

but the periodicity of the speech signal can probably be

preserved and pitch can still be well extracted.

The analysis above indicates that all six features meet the

requirements and can be used to construct our hierarchical

decision tree for speaker clustering.

IV. FUZZY CLUSTERING

In this section, we will present the fuzzy clustering

algorithm used in our decision tree.

A. Why Fuzzy Clustering?

The decision-tree-based classification performance is crucial

to the success of our approach for large population speaker

identification under noisy conditions. The target is that

we want to achieve a high accuracy of decision-tree-based

classification with a significant population reduction in the

speaker groups at leaf nodes. In terms of classification

accuracy, suppose we have a total of LT speech features

for speaker clustering and we can construct an LT -level

tree by using one feature at one level. Denote the correct

classification rate achieved by one-level decision tree using

feature l (l = 1, 2, · · · , LT ) for speaker clustering as Accl
and Accl is defined as the probability of classifying a speaker

under test into a correct speaker group at the leaf node of

the one-level tree. When we construct an LT -level tree by

using feature l at level l, we denote the overall accuracy of

decision-tree-based classification as Acc and Acc is defined

as the probability of classifying a speaker under test into a

correct speaker group at the leaf node of the LT -level tree.

Then, it’s straightforward to obtain

Acc ≈ Acc1Acc2 · · ·AccLT
(1)

If we have six features and each feature can achieve a

97% correct classification rate, then we can do a simple

calculation that for the six-level tree, the overall accuracy is

only (97%)6 = 83.3%. The degradation of the classification

accuracy is remarkable when the number of levels increases.

Hence, at each level of the tree, we must ensure a sufficiently

low probability of classification error so that the overall

accuracy of a multi-level decision tree can be satisfactory.

In respect of population reduction, for a hierarchical

decision tree, we can define its population reduction rate as

100% minus the ratio of the population averaged over all

leaf nodes of the tree to the original whole population. The

population reduction rate tells you how many percent the

population is reduced after speaker clustering via the decision

tree and a higher rate means a more population reduction

achieved. Suppose we construct an LT -level decision tree and

let PRLT
denote the population reduction rate achieved by

the tree. If the total number of registered speakers is N , then

the population averaged over all leaf nodes denoted as Nleaf

can be obtained by

Nleaf = N(1− PRLT
) (2)

If we only use speech features that are independent from

MFCC to construct the decision tree for speaker clustering,

then the overall correct identification rate achieved by our

speaker identification system using the LT -level decision tree

can be approximated as

CIR ≈ Acc×AG(Nleaf ) (3)

where AG is the correct identification rate achieved by

MFCC+GMM and it’s a function of the population size.

From Equation (3), we know that in order to achieve better

identification performance, we not only want the accuracy of

decision-tree-based classification Acc to be higher but also

want the leaf nodes to contain a population size as small as

possible because we have shown that AG will decrease as

population increases in Section I. However, generally, a higher

population reduction rate results in a lower classification

accuracy. This is because when the clustering algorithm tries

to load a smaller population into each speaker group or node

at a certain level, the dynamic range of feature values of

speakers in each group becomes smaller and the “distance”

between neighbouring speaker groups also become smaller. In

the process of decision-tree-based classification, an inevitable

feature inconsistency between training and testing will cause

an incorrect classification with a higher probability.

To achieve a low error probability of decision-tree-based

classification, we propose to use fuzzy clustering at each level

of our decision tree. Fuzzy clustering, which is different from

the conventional hard clustering, is a class of algorithms for

cluster analysis that allow the objects to belong to several

clusters simultaneously, with different degrees of membership

[24]. Different from the common fuzzy clustering algorithms,

at each level of the tree, our fuzzy clustering algorithm allows

one speaker to belong to multiple speaker groups or nodes,

simultaneously. That is to say, our algorithm does not assign

degrees of membership or alternatively, for each speaker group
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at a level of the tree, the degree of membership is either

0 or 1 but there may be multiple speaker groups whose

degrees of membership are 1. At each level of the tree, the

classification error mainly comes from those speakers on the

boundaries between different speaker groups or those speakers

who have relatively low feature stability. When conducting

speaker clustering, if we put those speakers into all speaker

groups that they may belong to, then in the process of decision-

tree-based classification, those speakers can be “captured” with

a much higher probability by correct speaker groups in which

they can be found. The probability of classification error can be

significantly reduced, accordingly. A performance comparison

between hard clustering and fuzzy clustering will be made in

Section V-A2. One thing needs to be pointed out that fuzzy

clustering results in a less population reduction at leaf nodes

due to the redundancy introduced among speaker groups at

each level. More redundancy leads to a higher classification

accuracy but a less population reduction so there is a trade-

off. Our fuzzy clustering algorithm aims at introducing the

most appropriate redundancy and achieving a satisfactory

classification accuracy with a population reduction as much

as possible.

B. Fuzzy Clustering Algorithm

Fig.6 shows the flow chart of the fuzzy clustering algorithm

used at level L of the decision tree. The algorithm applies

to every feature we derived so that the flow chart does not

specify the feature. As shown in the figure, we cluster all

speakers belonging to Cn1,n2,··· ,nL
at level L− 1 into several

child nodes at level L. To ensure that there is a sufficient

number of speakers for clustering, before conducting any

clustering operation, we first count the number of speakers

contained in Cn1,n2,··· ,nL
at level L − 1. If the number

of speakers is less than a pre-determined number (e.g.,

20), no clustering operation will be carried out. Since the

population contained in Cn1,n2,··· ,nL
is small enough for

MFCC+GMM to yield a satisfactory performance of speaker

identification, Cn1,n2,··· ,nL
will be treated as a leaf node to

which MFCC+GMM will be applied for speaker identification.

If there is a sufficient number of speakers in Cn1,n2,··· ,nL
at

level L− 1, the fuzzy clustering at level L will be conducted.

We first do feature extraction and obtain the feature denoted

as Fi,j . Here, i (i ∈ Cn1,n2,··· ,nL
) is the speaker index and

j (j = 1, 2, · · · , Ni) is the feature index, where Ni denotes

the total number of feature estimations of speaker i. Notice

that for each of the six features we derived, the feature data is

one-dimensional. Then, instead of using the raw feature data,

we use the statistics of feature data for clustering. Specifically,

for speaker i ∈ Cn1,n2,··· ,nL
, we first calculate the mean and

the standard deviation of the feature data as follows:

µi =

∑Ni

j=1
Fi,j

Ni

(4)

σi =

√

∑Ni

j=1
(Fi,j − µi)2

Ni − 1
(5)

Then, a confidence interval [µi−λσi µi+λσi] is constructed

for speaker i, where λ is a pre-determined coefficient. For

speaker i, the two new statistical data µi ± λσi can be a

good statistical representation of the raw feature data. Next,

let D = {µi−λσi, µi+λσi} which is a data set containing the

two statistical data of all speakers belonging to Cn1,n2,··· ,nL
.

D is fed into Lloyd’s algorithm and a partition vector

[P0, P1, · · · , PM ] is output, where M is the total number

of clusters adopted by Lloyd’s algorithm. Finally, based on

the partition vector, we create all M clusters (i.e., speaker

groups). For speaker i and cluster m (m = 1, 2, · · · ,M ),

if [µi − λσi µi + λσi]
∩

[Pm−1 Pm] ̸= ∅, we let i ∈
Cn1,n2,··· ,nL,m. By doing so, we select all those clusters which

there is a probability that a speaker belongs to and replicate

the speaker into all these selected clusters.
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Fig. 6. Flow Chart of Fuzzy Clustering Algorithm at Level L of the Decision
Tree.

From the description above, we know that our algorithm

consists of two parts: partition vector determination and

replication. In the aspect of partition vector determination,

some statistical data rather than the raw feature data are used

to determine the cluster boundaries. There are at least two

benefits to do so. One is that the computational complexity of

using statistical data is much lower, compared with the case

of using all raw feature data, especially for large population

identification. The other one, also more important, is that it

prevents from using those feature estimations that are out of

the confidence interval for analysis since those “abnormal”

feature estimations may give rise to an inaccurate clustering

result. In this sense, it acts like a further outlier removal that

we use statistical data. In the aspect of replication, for each

speaker, we only use those reliable feature estimations that fall

into the confidence interval to determine the replication and it

can make the replication reasonable. On one side, those feature

data that are out of the confidence interval only occur with a

very low probability. If we use those data for replication, then

it will induce an over-replication and thus a less population

reduction will be achieved. On the other side, the feature

data that are out of the confidence interval may not well

“represent” the speaker. The replications based on these feature

data are probably useless because in the decision-tree-based



8

classification, the probability of a speaker being classified into

a cluster is very low if the speaker is replicated into this cluster

based on those unreliable feature data.

In our fuzzy clustering algorithm, λ is an important

parameter in constructing the confidence interval and

conducting the replication. λ can tradeoff between the

accuracy of decision-tree-based classification and the

population reduction achieved by the decision tree. A higher

value of λ gives rise to more replication which results in a

higher classification accuracy but a less population reduction.

Contrarily, a smaller value of λ brings about more population

reduction but a lower classification accuracy. The selection of

λ for different features will be shown in Section V-A2.

When the hierarchical decision tree is constructed by using

the fuzzy clustering algorithm, for a speaker under test, we first

determine which speaker group at the leaf node the speaker

belongs to. Fig.7 shows the decision-tree-based classification

conducted at level L. As shown in the figure, when the

decision-tree-based classification is completed at level L − 1
of the tree and Cn1,n2,··· ,nL

at level L − 1 is enabled, we

first determine whether Cn1,n2,··· ,nL
is a leaf node of the tree.

If it is a leaf node, the decision-tree-based classification will

be terminated and the MFCC+GMM identification approach

will be applied to Cn1,n2,··· ,nL
. If not, the decision-tree-based

classification will be continuously conducted at level L. After

feature extraction and outlier removal, a set of feature data is

first obtained for the speaker under test. We then take the mean

value of the feature data and make the classification decision at

level L by comparing the mean value with the partition vector

obtained by the Lloyd’s algorithm in the fuzzy clustering. At

last, based on the comparison, one and only one node at level

L is enabled and the decision-tree-based classification at level

L terminates. The classification will proceed from the enabled

node at level L in the same way until one leaf node is finally

enabled.

V. EXPERIMENTAL RESULTS

In this section, we implement the fuzzy-clustering-based

hierarchical decision tree for large population speaker

identification under noisy conditions and compare the

performance with the MFCC+GMM+UBM approach and

the MFCC+GMM approach used as the baseline systems.

In Section V-A, we use the six features we derived for

speaker clustering to construct a six-level hierarchical decision

tree and evaluate its performance. Section V-B compares

the performance of our fuzzy-clustering-based hierarchical

decision tree approach, the MFCC+GMM approach and the

MFCC+GMM+UBM approach for large population speaker

identification under noisy conditions.

A. Performance Evaluation of Six-level Decision Tree

In this section, we use six features including pitch and five

vocal source characteristics to construct a six-level hierarchical

decision tree with appropriate parameters and evaluate the

performance of the six-level decision tree including the

classification accuracy and the population reduction rate.

Section V-A1 describes the dataset used for experiments
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Fig. 7. Flow Chart of Decision-Tree-based Classification at level L.

and the basic experimental settings. In section V-A2, we

show the parameters used to construct the six-level tree and

demonstrates the performance achieved by the six-level tree.

We also compare the classification performance of the hard-

clustering-based decision tree and the fuzzy-clustering-based

decision tree.

1) Experimental Settings for Performance Evaluation of

Six-level Tree: The dataset we use for the experiments

is collected from the websites of online audiobooks such

as www.audible.com, www.theaudiobookstore.com, etc. The

online audiobooks cover a variety of topics such as business,

history, science, etc. and each audiobook was recorded by a

narrator. There are a large number of high-quality and clean

audio samples recorded in English. For each narrator, minutes-

long audio samples in mp3 format can be downloaded and all

mp3 samples were converted into a 1-channel wav. format

with a sampling rate of 11.025kHz. In this way, we create

our own dataset which consists of totally 3805 speakers for

the experiments. The dataset meets the requirement of large

population speaker identification.

In the experiments, for each speaker, the training sample

and the testing sample were recorded by a same microphone

and the type of speech is read utterances. The amount of

both training sample and testing sample are 30 seconds. Our

experiments are conducted in the AWGN scenario. AWGN is

commonly encountered in voice over IP (VoIP) environments

and it’s difficult to be perfectly eliminated from the desired

speech signal. The white Gaussian noise with pre-determined

energy is generated and is added to the clean testing samples

by computer to meet the different requirements of SNR values.
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2) Performance of Six-level Tree: In this section,

experiments are conducted to determine the optimal

parameters in constructing the six-level tree and to evaluate

the performance of the tree. All experiments are conducted on

the dataset described in Section V-A1.

For our decision tree approach, we know that adding a

feature to an existing tree will bring in more population

reduction as well as some loss of the classification accuracy.

Therefore, we must make sure that the more population

reduction brought by adding a feature will give us benefit

even with some degradation of the classification accuracy.

Usually, if the leaf node of an existing tree still contains a

relatively large population (e.g., hundreds of speakers), then

we believe that there is still some space for us to add more

good features to the tree for further performance improvement.

However, when the leaf node contains a relatively small

population (e.g., dozens of speakers), then the population is

too small to be further clustered and adding more features may

not bring much performance improvement. What is worse,

it may even give rise to performance degradation since it

does not make any sense to cluster a small population and

the performance is unpredictable. In a word, the number of

levels of the tree depends on 1) the original population of

identification problem and 2) the performance of the features

used to construct the decision tree. If the original population

is large, then we probably should construct a tree with more

levels. If a good feature is available, then it should be able

to bring more benefits by adding it to an existing tree. In

our experiments, we consider a feature to be good if it can

achieve a sufficiently high classification accuracy (e.g., >99%)

as well as a good amount of population reduction (e.g., >40%

reduction). By this criterion, the six features we developed

are all good features. Since the population size we deal with

is large (about 4000 speakers), therefore we use them all to

construct a six-level tree. In Section III-A, we mentioned that

the width of the negative pulse is also a candidate of vocal

source features. However, it does not perform sufficiently well

so that it may not give us benefit by adding it to the tree.

Therefore, we discard it in stead of using it to construct a

seven-level tree. If there are other good features available,

we should add them to the existing six-level tree for further

performance improvement.

In our decision tree approach, the parameters of pitch

feature include the value of λ to construct the confidence

interval and the number of clusters adopted by the Lloyd’s

algorithm; for the other five vocal source features, besides the

two parameters listed above, there is one additional percentage

parameter regarding the outlier removal. Table I gives an

example of our decision tree used in AWGN scenario with

25dB SNR. It shows the parameters of the six features used

at different levels of the tree.

From the table, we can see that from the first level to

the sixth level, the features used are pitch feature, PAR

of the positive pulse, skewness of the positive pulse, PAR

of the negative pulse, skewness of the negative pulse and

width of the positive pulse, successively. Since all features

are almost independent from each other, ideally, there should

only be a little effect on the performance if the tree is

constructed by using features in a different order. However,

we do have a criterion that the features which are able to yield

a better classification performance (i.e., a higher classification

accuracy as well as more population reduction) are used in

the upper levels. For example, pitch feature has the best

classification performance among the six features so that it is

used in the first level of the tree. The reason is that we always

want to use a better feature to partition the population when

the population is relatively large. If the population of a node

is relatively small, then the performance of clustering a small

population into groups is not predictable since subgroups may

not exist in the population. In our fuzzy clustering algorithm,

a speaker will probably be replicated into every subgroup

no matter how good the feature is. Therefore, to make full

use of every feature and to achieve the best classification

performance, we always use better features in the upper levels

and avoid applying good features to cluster small population

into groups. In practice, when constructing our decision tree,

we first use our dataset described in Section V-A1 to evaluate

the classification performance of the six features and determine

the order of the six features used in the tree, accordingly.

This is how we figure out the order shown in Table I and

this order will be adopted to construct our decision tree in

all experiments. One thing needs to be pointed out that in

the ideal case when each node of the tree always contain a

sufficient number of speakers to be clustered, we believe the

order should not make a difference because they are almost

independent from each other.

The parameters shown in the table are selected by trying

different combinations and are able to achieve a sufficiently

high classification accuracy as well as a high population

reduction rate. The classification accuracy and the population

reduction rate achieved at different levels of the six-level

decision tree are shown in the table. All 3805 speakers are

used to do the classification test through the decision tree and

the classification accuracy achieved at a level is calculated

as the percentage of speakers being classified into a correct

node at that level. The calculation of the population reduction

rate is based on the definition in Section IV-A but we use a

weighted average over all nodes at different levels of the tree.

Specifically, to calculate the population reduction rate achieved

at a level, we assign a weight to a node at that level and

the weight is determined as the percentage of speakers being

correctly classified into the node at that level. For instance, a

total of 1000 speakers are correctly classified at a level of the

tree. Among all, 100 speakers are correctly classified into a

node at that level with a population size of 200. Then, when

we calculate the weighted average population over all nodes at

that level, the weight assigned to that node is 100/1000 = 10%
because 10% of all speakers are classified into a speaker

group with a population size of 200. The weighted average

population is reasonable for the calculation of population

reduction rate achieved at different levels.

As indicated from the table, from upper levels of the tree to

lower levels, the classification accuracy steadily decreases and

the population reduction rate (PR Rate in the table) steadily

increases. In 25dB case, our six-level decision tree is able

to achieve a 97.06% classification accuracy and a 94.33%
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TABLE I
PARAMETERS USED TO CONSTRUCT SIX-LEVEL HIERARCHICAL DECISION TREE AND PERFORMANCE ACHIEVED (25DB SNR)

Level Feature λ No. of Clusters Outlier Percentage PR Rate(%) Accuracy(%)

1 Pitch 0.8 16 / 51.24 99.03

2 PAR of the Positive Pulse 1.1 32 7.5% 76.61 98.50

3 Skewness of the Positive Pulse 0.55 16 2.5% 86.33 97.90

4 PAR of the Negative Pulse 0.8 16 2.5% 90.93 97.45

5 Skewness of the Negative Pulse 0.85 8 7.5% 93.01 97.27

6 Width of the Positive Pulse 0.7 16 2.5% 94.50 97.06

TABLE II
PERFORMANCE COMPARISON OF FUZZY-CLUSTERING-BASED DECISION

TREE AND HARD-CLUSTERING-BASED DECISION TREE (30DB SNR)

Level
Hard-Clustering Fuzzy-Clustering

PR Rate(%) Acc.(%) PR Rate(%) Acc.(%)

1 85.80 96.93 89.24 99.40

2 92.29 90.51 94.95 98.74

3 94.36 82.79 97.13 98.16

4 97.50 80.37 98.10 98.06

5 98.61 67.20 98.53 97.35

6 99.20 61.00 98.83 97.16

population reduction rate at the bottom level (i.e., each leaf

node contains 216 speakers on average). The performance

looks quite impressive.

To validate that the fuzzy-clustering is essential for the

construction of our decision tree and it outperforms the

conventional hard clustering. We compare the classification

performance of the fuzzy-clustering-based decision tree and

the hard-clustering-based decision tree in the AWGN scenario

with 30dB SNR. We use the same six features shown in Table I

to construct the two trees. The comparison is summarized in

Table II. The PR rate and the accuracy are calculated as same

as described above for Table I. From the table, we know

that the fuzzy-clustering-based decision tree can achieve a

much higher classification accuracy (Acc. in the table) than

the hard-clustering-based decision tree while the population

reduction achieved by the two trees are pretty much the same.

For the fuzzy-clustering-based decision tree, at the bottom

level, the classification accuracy is 97.16% and the population

reduction rate is 98.83% (i.e., each leaf node contains 45

speakers on average). The hard-clustering-based decision tree

is not applicable since a 61% classification accuracy is not

acceptable.

B. Comparison with MFCC+GMM+UBM and MFCC+GMM

In this section, the performance of our fuzzy-clustering-

based hierarchical decision tree approach are compared with

the MFCC+GMM+UBM approach and the MFCC+GMM

approach for large population speaker identification. The

experiments are conducted in AWGN scenario with different

SNRs and are tested with different amount of testing

samples. Section V-B1 introduces the experimental settings

TABLE III
PARAMETERS USED IN CALCULATIONS OF MFCC AND GMM

Window Type Hamming

Window Length 0.0232s

Frame Rate 100 Frames/s

NFFT 256

No. of Filter Banks 31

Lowest/Highest Freq. of Filter Bank 200Hz/3500Hz

Dim. of MFCC 26

Dither yes

Cov. Matrix of GMM Nodal&Diagonal

Min. VAR Allowed in GMM 0.01

and Section V-B2 shows the comparison in aspects of correct

identification rate and computational complexity.

1) Experimental Settings for Performance Comparison:

The experiments are carried out on the same dataset which has

been described in Section V-A1. For the MFCC+GMM+UBM

approach, we estimate the UBM with 2048 GMM mixtures

by using one-hour speech of 120 male speakers (each has

one 30s training sample) and one-hour speech of 120 female

speakers (each has one 30s training sample). The speakers

used to estimate the UBM are not used for the evaluation. In

the adaptation, each speaker model is derived by adapting the

parameters of UBM using the speaker’s 30s training samples.

We use a single adaptation coefficient for all parameters with

a relevance factor of 16. In the testing phase, we use the dot-

scoring technique [25] to score a testing sample against all

speaker models and find the best match. For the MFCC+GMM

approach and the MFCC+GMM approach invoked at leaf

nodes of our hierarchical decision tree, we adopt 32-mixture

GMM and for each speaker, a 30s training sample is used to

estimate the 32-mixture GMM. Table III shows all parameters

adopted for MFCC calculation and GMM classification in the

experiments. The parameter applies to all three approaches.

In our decision tree approach, the decision tree is constructed

in the same way as shown in Section V-A by using the same

dataset.

In VoIP, the typical SNR is at least 25dB [26]. In order to

make our work realistic and applicable, our experiments are

mainly carried out in the AWGN scenario with 25dB SNR

and 30dB SNR. However, to validate the performance of our

approach in low SNR cases, experiments are also conducted

for 15dB SNR and 20dB SNR. Additionally, experiments are
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carried out with shorter testing samples (3s and 10s).

2) Comparison of Accuracy and Complexity: The

performance comparison in correct identification rate and

computational complexity is summarized in Table IV,

Table V and Table VI. The correct identification rate (CIR

in the tables) is measured by the percentage of correct

identification averaged across all 3805 speakers in our

dataset. The computational complexity is measured by the

average execution time of testing a speaker. Table IV shows

the performance comparison for 25dB and 30dB SNRs when

the testing sample is 30s long. As indicated from the table,

we know that our fuzzy-clustering-based hierarchical decision

tree approach can achieve higher correct identification rate

than both MFCC+GMM+UBM approach and MFCC+GMM

approach. The MFCC+GMM approach is the worst of the

three approaches. For 30dB and 25dB, compared with the

MFCC+GMM+UBM approach, our approach can achieve 8%

and 2% increase in correct identification rate, respectively.

The performance comparison is shown in Table V for

15dB and 20dB SNRs when the testing sample is 30s long.

Although the performance of all approaches in low SNR

cases are not satisfactory, the table indicates that our approach

can achieve much higher correct identification rate than the

other two GMM approaches. For 15dB and 20dB, compared

with the MFCC+GMM+UBM approach, our approach can

achieve 17% and 21% increase in correct identification rate,

respectively. Table VI shows the performance comparison

for 30dB SNR when the testing sample is 3s long and 10s

long. As shown in the table, shorter testing length leads to

performance reduction of all three approaches. Our approach

is still the best among the three approaches. Compared with

the MFCC+GMM+UBM approach, our approach can achieve

about 3.5% increase in correct identification rate in both

cases of 3s and 10s testing length. The great performance

improvement brought by our approach comes from the

significant population reduction with only a little loss of

decision-tree-based classification accuracy under AWGN

conditions.

In addition to the accuracy, our approach also has the

big advantage in computational complexity. For speaker

identification problem especially large population case, both

MFCC+GMM approach and MFCC+GMM+UBM approach

are very expensive. Each MFCC feature vector needs to be

scored against all GMM components of all speaker models.

Even the dot-scoring technique helps MFCC+GMM+UBM

approach achieve lower computational complexity, there is still

a large amount of likelihood computations against a great

number of speaker models. Compared with the two other

approaches, our approach has a much lower computational

complexity because MFCC+GMM is only applied to speaker

groups at leaf nodes with much smaller population size and the

number of GMM mixtures is not large. Thus, the total amount

of likelihood computations is greatly reduced. Our hierarchical

decision tree has some additional computation including the

feature extraction and the decision-tree-based classification.

However, both the feature extraction and the threshold-based

classification require only a very small amount of computation.

Therefore, the additional computation is negligible, compared

TABLE IV
COMPARISON FOR 25DB AND 30DB SNRS (30S TESTING SAMPLE)

Approach
Avg. time per speaker(s) CIR(%)

25dB 30dB 25dB 30dB

GMM 373 371 51.93 71.56

GMM+UBM 74 73 65.88 80.93

Decision Tree 30 12 67.91 88.8

TABLE V
COMPARISON FOR 15DB AND 20DB SNRS (30S TESTING SAMPLE)

Approach
Avg. time per speaker(s) CIR(%)

15dB 20dB 15dB 20dB

GMM 559 520 6 20.5

GMM+UBM 103 97 5.7 33.9

Decision Tree 13 13 22.1 54.91

with GMM likelihood computation. Table IV, Table V and

Table VI compare the average execution time of finishing

testing one speaker for three approaches. As shown in the

tables, although the MFCC+GMM+UBM approach is much

faster than the MFCC+GMM approach, our approach required

much less time than the MFCC+GMM+UBM approach.

Thus, it’s another good benefit of our approach. Notice that

some approaches were proposed to reduce the computational

complexity of the MFCC+GMM+UBM approach with only

a very slight degradation of the identification performance

[3], [6], [8]. Here, we do not compare the complexity of our

approach with those approaches. However, we can see that the

execution time of our approach to finish testing a speaker is

less than or approximates the length of the testing speech, it is

promising that our approach can be implemented fast enough

for the real-time applications.

As a conclusion, the above comparison in both correct

identification rate and computational complexity shows the

superiority of our fuzzy-clustering-based hierarchical decision

tree approach for large population speaker identification in

AWGN scenarios.

VI. CONCLUSIONS

As the major technique for speaker identification,

approaches based on MFCC and GMM can achieve superior

performance for small population identification under low-

noise conditions. However, for large population identification

TABLE VI
COMPARISON FOR 3S AND 10S TESTING SAMPLE (30DB SNR)

Approach
Avg. time per speaker(s) CIR(%)

3s 10s 3s 10s

GMM 75 150 53.98 66.31

GMM+UBM 51 64 56.33 75.16

Decision Tree 3 9 59.78 78.65
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under noisy conditions, the performance of approaches based

on MFCC and GMM suffers from severe degradation. As

the population increases, the accuracy will steadily decrease

and the computational complexity will proportionally increase.

To improve the performance of large population speaker

identification under noisy conditions, we proposed the fuzzy-

clustering-based hierarchical decision tree approach. Our

approach aims at using a hierarchical decision tree to

partition the large population of all registered speakers into

subgroups of very small population size and determining the

speaker group at the leaf node to which a speaker under

test belongs. Since we only use those speech features that

are independent from MFCC to do speaker clustering for

population partitioning, the probability of having speakers with

similar MFCC is greatly reduced in speaker groups at the

leaf nodes. We only apply the MFCC+GMM identification

approach to the selected speaker group at the leaf node which

has a small population size and hence MFCC+GMM can

perform well for speaker identification with a much lower

computational complexity. To achieve a low error probability

of decision-tree-based classification, we proposed to adopt the

fuzzy clustering rather than the conventional hard clustering

in constructing the decision tree. Specifically, at each level of

the tree, a speaker may belong to multiple speaker groups

or nodes. Replicas of a speaker in multiple groups/nodes

can greatly increase the probability of classifying the speaker

(if under test) into a correct group/node in the process of

decision-tree-based classification. Moreover, we developed a

total of six features (including pitch and five vocal source

characteristics) and constructed a six-level tree, accordingly.

Experimental results have shown the excellent performance of

our approach for large population identification under AWGN

conditions. It is promising that our approach is applied in real-

time applications of large population speaker identification

under noisy conditions.

To further validate the superiority of our decision tree

approach, more experiments should be conducted to test

our approach on datasets with larger population in different

scenarios of additive noise such as interfering speakers’

voice, background music, etc. In order to accommodate larger

population, more useful speech features need to be derived and

more levels need to be added into the existing tree for more

population reduction. Moreover, as we all know, in automatic

speech recognition, it is a common practice to automatically

determine the order of the features in decision tree (e.g.,

decision tree for context dependent acoustic modeling). For

our decision tree, a feasible way to achieve the same goal,

though sub-optimal, may be that we always select a feature

and add it to an existing tree if a new decision tree constructed

by adding one more level with this feature can achieve better

classification performance than using other available features.

This can be another future work for our decision tree approach.
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