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Abstract 

A primary challenge to implementing structural health monitoring techniques on civil 

infrastructure is the differentiation of effects of environmental variables on the behaviour 

of structures from other causes of structural change. Data from the Z24 Bridge recorded 

over the course of nearly a year are analysed in this paper. Covariance-driven Stochastic 

Subspace Identification is applied to the data and a Fuzzy Clustering Algorithm is used to 

extract parameters indicative of the bridge’s state. The main benefit of this approach is 

the lack of need for mode shape information and thus it’s applicability to structures 

monitored with spatially sparse sensor grids. The method is shown to provide very 

encouraging results in separating the response data from the Z24 Bridge in normal and 

damaged states in varying environmental conditions, and the procedure is then applied to 

a second data set obtained from monitoring a tall building over several years of its early 

life in order to identify gradual or sudden structural changes. 

 

1 Introduction 

Throughout the civil, mechanical and aerospace engineering communities there is great 

interest and benefit to be gained in monitoring a structure to detect damage or monitor 

inevitable degradation. The development of such techniques allows a shift from schedule-

based to condition-based maintenance strategies with consequent economic benefits. This 

paper is focused on applications to civil infrastructure and in particular to the extraction 

of characteristic parameters of a structure’s behaviour from ambient response histories 



and to the detection of an extraordinary change in a structure’s behaviour. This is 

commonly referred to as level 1 Structural Health Monitoring (SHM). Level 1 is limited 

to the indication of a change in a structure’s behaviour and does not provide information 

on the location and severity of change or a prognosis for the structure. 

 

There have been many methods published in the literature which attempt to identify 

damage in a structure, see Doebling et al. (1996), Sohn et al. (2003) and Carden et al. 

(2004) for reviews of these. When remotely monitoring structures for long periods of 

time it is economically beneficial to use as small a number of sensors as possible. 

However, when using a limited number of sensors (as few as one or two), only natural 

frequencies and damping estimates may be extracted from the response data. Mode 

shapes cannot be extracted reliably from spatially sparse information and therefore 

algorithms, which utilise mode shapes and derivatives of mode shapes, may not be used. 

This paper focuses on extraction of parameters indicative of a structure’s state when 

mode shape information is not available. 

 

A major problem encountered when transferring SHM paradigms from the laboratory to 

full scale civil structures in the field is the effects of environmental variables, in 

particular temperature, on the modal parameters of the structures. This is a difficulty not 

encountered with rotating machinery (Farrar and Doebling, 1999), which is probably the 

most mature and successful application area of SHM. 

 

For example, Cornwall et al. (1999) examined two days of data from the single span 

Alamosa Canyon Bridge. They found up to 6 % variability in the measured modal 

parameters over a 24 hour period which they found to be correlated with temperature 

measurements. They concluded that a required prerequisite for a remote bridge health 



monitoring system is a thorough understanding of the variability of dynamic properties 

caused by the changing environmental and operational conditions. 

 

An excellent dataset that can be used to examine the feasibility of separating the effects 

of environmental variables from the effects of structural changes is that obtained using 

the Swiss Z24 Bridge (Peeters and De Roeck, 2001). The Z24 Bridge was a post 

tensioned concrete box girder bridge with a main span of 30 m and two side spans of 14 

m. It was monitored from 11 November 1997 until 11 September 1998 as part of the 

European SIMCES project and the dataset maybe downloaded from the SAMCO 

database (www.samco.org). Several damage scenarios were inflicted at the end of the 

monitoring period including settlement of a pier, rotation of a foundation, and induced 

failure of a concrete hinge, anchor heads and post tensioning wires. Details of these 

damage tests may be found in Kramer et al. (1999). 

 

Peeters and De Roeck (2001) examined the data recorded from Z24 Bridge in detail. An 

automated modal analysis procedure was implemented based on analysing the stability 

diagrams produced from applying stochastic subspace identification (SSI) to each hourly 

recorded 10 minute data set. Natural frequencies, damping and mode shapes were 

extracted. Subsequently, Autoregressive eXogeneous (ARX) models were fitted to the 

natural frequencies of the first four modes. Damage events inflicted on the bridge at the 

end of the year were successfully distinguished from changes due to environmental 

variables during the year. Of note is that data recorded when the asphalt layer froze and 

the modal parameters displayed signs of significant stiffening of the bridge were 

excluded from the training and testing datasets. 

 

This paper also utilises SSI for automatic modal parameter extraction but differs from 

Peeters and De Roeck (2001) in that the sensor grid is assumed to be too sparse to 

http://www.samco.org/


provide meaningful mode shape estimates. This is attempted so as to assess the 

possibility of using a limited number of sensors for continuous remote monitoring of civil 

structures. 

 

In the next section a short review of SSI theory is provided to give the necessary 

background for the discussion of extracting modal parameters automatically from 

stability diagrams. Difficulties are encountered when mode shape information is not 

available and this leads the authors to utilise fuzzy clustering techniques to extract 

indicative measures of natural frequencies and damping. The theory behind fuzzy 

clustering is briefly described and its application to the data from the Z24 Bridge is 

demonstrated. The technique is shown to identify successfully damage inflicted on the 

Z24 Bridge. The paradigm is then applied to the Republic Plaza Office Building in 

Singapore. The shifts in several modes of the building over a seven year period are 

clearly captured. The main contribution of this approach is that mode shape estimates are 

not needed, enabling its use with low-cost monitoring systems using only a few sensors. 

 

2 Stochastic Subspace Identification 

Mathematically, structural systems may be recast from continuous second order 

differential equations governing their behaviour into discrete state space equations. SSI is 

an efficient method for identifying the state space matrices from measured response data. 

The natural frequencies, damping parameters and mode shapes may then be extracted 

from these state space matrices. Major advantages of taking this approach are that it is 

quick and non-iterative and therefore does not suffer from convergence problems. 

Fundamental proofs and discussions of numerical stability are described in Van 

Overschee and De Moor (1996), while a succinct, though thorough, step-by-step 

procedure with an example application is provided in Peeters and De Roeck (1999). 

 



There are various flavours of SSI available and here we use reference-based covariance-

driven stochastic realisation as described in detail in Peeters and De Roeck (1999) and 

utilised in Peeters and De Roeck (2001). The advantage of using covariance-driven 

realisation as opposed to data-driven subspace projection is that the data reduction (which 

is effectively a major noise filtering step) is far less memory intensive. The data-driven 

subspace projection utilises a QR decomposition of the data Hankel matrix and for large 

data sets this becomes very demanding on computer memory. The covariance-driven 

realisation requires the formation of the Toeplitz matrix (Eq. 1) of the covariance of the 

measured output and is far less demanding on memory.  
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The subscript on the Toeplitz matrix of covariances, T, refers to the subscripts of the first 

and last entries of the first row of the matrix. The subscript on the covariance matrix Λ 

between all measured outputs and the analyst-chosen reference outputs refers to the 

covariance lag. T1|i is singular value decomposed according to Eq. 2 and this implicitly 

implies the choosing of the order of the system, n. 
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In theory the number of non-zero singular values will equal the order of the system, n. In 

Eq.2 the singular value matrix is broken into S1 and S2. With perfect numerical accuracy 

and absolutely clean data, S1 would comprise a diagonal of n non-zero entries and S2 

would be null matrix. In such a case, T1|i would decompose to U1S1V1
T
. However, in 

practice this will not happen. On rare occasions, with very good quality data and with 

some luck, there is a dramatic drop in the singular values which marks the order of the 



system. All too often this step down in magnitude of value is replaced by a gradual 

reduction and it is up to the analyst’s skill and experience to choose the correct cut off 

order. Once an order is chosen, the dynamic state space matrix may be calculated, by 

utilising the singular values. The eigenvalues of this dynamic matrix are the poles of the 

system and thus yield the natural frequencies and damping estimates while the 

eigenvectors may be converted to the mode shape vectors. Details may be found in 

Peeters and De Roeck (1999).  

 

The construction of a stability diagram has proven invaluable in helping the analyst to 

choose the correct order of the system and distinguish between true modal parameters 

and mathematical chimera. The stability diagram is formed by choosing a range of values 

for n and extracting the modal parameters from the dynamic matrix for each of these 

values. The analyst defines rules by which modal parameters may be considered stable 

between two different assumed orders. Figure 1 is an example of a stability diagram from 

data recorded on the Z24 Bridge. The rules used in this case to define a pole as being 

stable were: 

• variation in the natural frequency of less than 1% 

• variation in damping of less than 5%  

• Modal Assurance Criterion (MAC) value of at least 0.98.  

 

Figure 1 shows four clear columns with identified stable poles from a low order 

consistently up to the highest order. These columns are at about 3.8 Hz, 4.6 Hz, 9.8 Hz 

and 10.4 Hz and are the first four modes of the bridge. This diagram is quite easy to 

interpret but Figure 2 shows another stability diagram from the Z24 Bridge Dataset 

recorded at a different time. This diagram is not so easy to interpret and without access to 

further recorded data it is unlikely that an analyst would be able to pick out the correct 

four modes with confidence.   



 

Peeters and De Roeck (2001) described a procedure for automatic selection of the modal 

parameters by choosing only those poles that were five times stable. They stated that this 

criterion filtered out accidentally stable poles from stable poles of physical modes. Using 

this method they were able to extract the first four modes automatically with great 

success. In this paper, concentration is made on not utilising information of the mode 

shapes. In doing so, only the first two rules in choosing stable poles stated above are 

applicable.  

 

The results of applying these two rules and using a ‘k times stable’ criterion of k=15 is 

shown in Figure 3 for the complete dataset recorded from eight accelerometers. A high 

value of k was used as the results with a lower k were poor. The real modes can be seen 

to stand out as thick bands. There are two modes visible in Figure 3a beginning at about 

4.0 Hz and 5.1 Hz, and two modes visible in Figure 3b beginning at about 10.2 Hz and 

10.7 Hz. There are clear increases in value of the natural frequencies with the most 

prolonged increase from approximately hour 1800 to hour 2300. These increases are due 

to freezing of the asphalt and are investigated more fully in Peeters and De Roeck (2001). 

The gaps in Figure 3 correspond to periods when the monitoring system was not 

operating. 

 

The number of mathematical poles in Figure 3 is large and makes automatic picking of 

the real mode estimates difficult. Clearly the automatic selection has not been as 

successful as when including the mode shape information in Peeters and De Roeck 

(2001). Requiring a higher times stable criterion results in a less cluttered diagram but 

also in erroneously rejecting real stable poles and therefore not identifying the modes.  

 



The authors attempted to track the modes across Figures 3a & 3b using a criterion that the 

next pole in time would be the closest pole in a Euclidean sense (a nearest neighbour 

approach). Each pole contained information on frequency and damping. The mode shape 

information was purposefully neglected. This criterion was augmented by a maximum 

allowable Euclidean distance to avoid choosing a mathematical pole when a real mode 

was weakly excited and not identified. This approach had limited success. The trends of 

the first two modes were reasonably extracted though there was uncertainty that each 

pole selected was a real pole as opposed to a mathematical pole that happened to be 

closest to the previously selected pole. The trends of the second two poles could not be 

extracted successfully. The trends extracted deviated substantially from the thick bands 

seen in Figure 3a. Their closeness and the greater number of mathematical poles in this 

frequency region led to the failure. With mode shape information it would be possible to 

use a criterion such as the MAC value to track modes across time in Figure 3 and be far 

more successful. 

 

After trial and error with various combinations of values of number of covariance 

estimates (parameter i in Eq. 1), reference channels and stability criteria, it was concluded 

by the authors that this approach was failing. Without mode shape information it was 

found to be impossible to track the progression of the modes across Figure 3 with 

reliability. It was especially error prone for modes 3 and 4 during the freezing periods. 

 

Due to these difficulties, fuzzy clustering of the identified poles was investigated and is 

described and demonstrated in the next section. 

 

3 Fuzzy Clustering of the Identified Poles 

Since about 1950 a vast array of literature examining statistical clustering algorithms has 

developed. This is largely due to the wide spread of areas to which clustering has been 



applied, including the natural sciences (alpha taxonomy being an obvious example), 

through the social sciences, economics and engineering (Hartigan 1975). In this paper we 

will focus on the use of Fuzzy C-Means clustering (FCM) which was originally 

developed by Bezdek (1981). 

 

FCM is essentially concerned with the separation of a dataset into overlapping subsets. 

The number of subsets is specified by the analyst a priori and is typically denoted by C 

(which gives rise to its name). A brief review of the ideas behind FCM is given below; 

further mathematical and implementation details are available in Bezdek (1981). The 

implementation of FCM used throughout this paper is that provided in the Matlab Fuzzy 

Logic Toolbox (The Mathworks, Inc., 2004). 

 

Essential to the understanding of fuzzy clustering is the concept of the membership 

matrix U. Each element of U, uik, denotes the membership of element xk of a dataset to 

cluster i. Each data point xk has memberships that sum to exactly 1. The algorithm begins 

by assuming a set of cluster centres denoted by vi and minimising the objective function 

in Eq. 3. 

( ) (∑∑
= =

−−=
C

i

N

k
ik

T

ik
m

ik vxvxuJ
1 1

)( )     (3) 

N is the number of members of the dataset. The exponent m determines the fuzziness of 

the clusters or to what extent data points may belong to multiple clusters. A typical value 

chosen is two and this value is used throughout this paper. The algorithm proceeds by 

iteratively updating the cluster centres and the membership function to find a minimum. 

 

Scionti and Lanslots (2005) used FCM techniques to process automatically stability 

diagrams and choose real modes. They first plotted frequency against damping of each 

identified pole and noticed a clear grouping of poles associated with real modes. The 

groupings were elongated in the vertical axis due to the greater variability of the 



estimated damping parameter. Figure 4 shows the stable poles from Figure 1 in the 

frequency bands of 3.5 Hz to 6 Hz and 9.3 Hz to 12.2 Hz plotted in such a way. The 

elongated groupings are clearly seen. Traditional FCM (as described with Eq. 3) forms 

hyperspherical clusters. The clusters in Figure 4 are clearly not spherical in form, and so 

one is proverbially attempting to fit a square peg into a round hole. Scionti and Lanslots 

(2005) found greater success by using the more advanced Gustafson-Kessel FCM 

algorithm which allows the formation of hyperellipsoidal clusters. This is achieved by 

using the covariance matrix of the data points to modify Eq. 3. Data points that have an 

equal distance metric in the Gustafson-Kessel FCM algorithm form an ellipsoid when 

measured by the Euclidean metric. 

 

In this paper we propose not to use the clusters formed by the frequency and damping 

parameter estimates but rather those formed by the real and imaginary parts of the 

discrete poles as plotted on the Z-plane. Eq. 4 shows the relationship between the pair of 

complex conjugate poles, λ, and the undamped natural frequency, ωn, and damping 

parameter, ζ.  
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Δ is the time difference between measurements. The same identified poles as seen in 

Figure 4 are shown in Figure 5 on the Z-plane. The clusters seen are clearly far less 

ellipsoidal and this allows the use of the simpler FCM algorithm. It also removes the 

computational effort which is required to calculate the frequency and damping estimates 

from the poles, though this is minor. 

 

Figure 5 depicts results from analysing just one recorded dataset of 10 minute duration. It 

is not clear just which groupings represent real modes and which do not. Figure 6 depicts 

the results of analysing a day of recordings (that is 24 datasets of 10 minute duration) and 



is zoomed in on the cluster formed by the first mode, with an X marking the centre of the 

cluster as determined by the FCM algorithm. Dense clusters form around all the real 

modes and the FCM algorithm is successfully able to pick these out from the surrounding 

less dense cloud of mathematical poles. 

 

The purpose of this paper is not automatic pole selection but rather the condensation and 

extraction of parameters from datasets which are indicative of the state of the structure. If 

the structure were to change its state, then its modes would also shift. If the modes shift 

then the centres of the clusters would also shift. Therefore the tracking of the centres of 

the clusters formed would provide an indicator of changes in the structure’s state as 

reflected in its dynamic characteristics. The centres of the clusters are found 

automatically by using the FCM algorithm described above. 

 

This approach to extracting parameters indicative of the structure’s state is demonstrated 

on the Z24 Bridge in the next section. 

 

4 Application to Structural Health Monitoring 

4.1 The Z24 Bridge 

Data were recorded every hour from eight accelerometers mounted on the Z24 Bridge 

over the course of nearly a year with intermittent gaps. Covariance driven SSI was 

applied to each of these datasets. All stable poles identified using the criteria previously 

stated for natural frequency and damping estimates were recorded. The mode shape 

information was purposefully neglected. This results in more mathematical poles passing 

the k times stable criteria described earlier and also makes the tracking of modes through 

time more difficult. The stable poles identified over the course of each day, i.e. 24 sets of 

poles, were fed to the FCM algorithm in two batches. The first batch contained all poles 

in the frequency band of 3.5 Hz to 6 Hz. This band contained two modes of the bridge 



and two cluster centres were identified. The second batch contained all poles in the 

frequency band of 9.3 Hz to 12.2 Hz. This band also contained two modes of the bridge 

but included far more mathematical poles than the first band. Three cluster centres were 

identified. Two of these clusters were related to the two modes of the bridge. The third 

cluster was used to capture the large number of mathematical poles in this frequency 

band. 

 

The cluster centres identified over the entire monitoring period of the bridge are shown in 

Figure 7. Figure 7b depicts the cluster centres formed from the poles in the frequency 

band of 3.5 Hz to 6 Hz. Figure 7a depicts the cluster centres formed from the poles in the 

frequency band of 9.3 Hz to 12.2 Hz. The grey dots cluster centres identified before 

damage was inflicted and the black dots are centres identified after damage was inflicted. 

The upper left clusters of grey and black in Figure 7a are dominated by mathematical 

poles. Four other pairs of grey and black clusters are clearly distinguishable in Figures 

7a&b and relate to the first four modes of the bridge. The tail of grey dots coming anti-

clockwise from the grey dot clusters are related to the periods when the asphalt on the 

bridge was frozen and apparently contributed significant stiffness to the bridge. This shift 

in behaviour is also visible in Figure 3 as previously stated. 

 

The clear separation in the groups of grey (healthy state) and black dots (unhealthy state) 

in Figure 7 is very encouraging towards using this technique as a structural health 

monitoring paradigm. Of note is that no information regarding the environmental 

conditions was used, which of course varied over the course of the year of monitoring. 

This information is available for the Z24 Bridge and further development work is being 

undertaken by the authors to include this information to enhance the separation of states 

of the structure. Additionally, robust statistical inference techniques to interpret the 

groupings seen in Figure 7 in a reliable manner are under investigation. 



 

4.2 Republic Plaza Office Tower 

As a proof of concept, the paradigm is applied to data recorded from the 280 m 66 storey 

Republic Plaza Office Tower in Singapore. A full description of Republic Plaza is given 

in Teh and Lai (1995). Figure 8 shows a perspective view of the building and Figure 9 

shows a typical cross section at lower levels. The tower has a frame-tube structural 

system with an internal core wall connected to a ring of external columns by horizontal 

steel-framing system at every floor.  

 

The building symmetry suggests a pair of axes, labelled A and B as shown in Figure 9, 

for measurement of building vibration. The arrangement of lift shafts and core wall 

openings up to the highest level suggests that B will be the stiffer direction. 

 

As part of a project to characterize wind loading and dynamic response of tall buildings 

in Singapore, an instrumentation system was installed on Republic Plaza. Details of the 

system are given in Brownjohn & Pan (2001). For the majority of operational time the 

system recorded data only when triggered by a pre-set level of response. However, for 

shorter periods the system acquired data continuously. Two of these continuously 

recorded datasets are examined here.  

 

The first dataset was recorded from 10 January 1997 until 28 January 1997 and shall be 

referred to as RP1. A total of 3632 frames with 4096 data points each were recorded with 

a sampling rate of 9.375 Hz. The second dataset was recorded from 30 December 2003 

until 8 January 2004 and shall be referred to as RP2. A total of 1490 frames with 4096 

data points each were recorded with a sampling rate of 8 Hz. In both sets, responses from 

two orthogonal accelerometers located near the top of the building are used. 

 



Covariance driven SSI was applied to all of the frames with both available accelerometer 

channels used as reference channels. Eighty lines of the estimated covariance were used 

to build the Hankel matrix of covariances (Eq. 1). Systems with orders of 1 to 80 were 

extracted. The same criteria used with the Z24 dataset for determining stable poles were 

also applied to both RP1 and RP2. In this paper, concentration is focused on the first five 

modes of the building which are all below 0.8 Hz.  

 

The frequencies of the stable poles under 0.8 Hz determined for each frame are shown in 

Figure 10a. Frames 1 to 3632 are from RP1 and frames 3633 to 5122 are from RP2. They 

are plotted together to show the shifts in the first five modes. Figure 10b shows a zoom in 

on the first two modes just below 0.2 Hz, which are indistinguishable from each other in 

Figure 10a. It is noticeable that there is little shift in the frequencies of these modes 

between the RP1 and RP2. The third mode is just above 0.5 Hz and there is a clear shift 

in its value between RP1 and RP2. Figure 10c shows a zoom in on the fourth and fifth 

modes which are hidden by spurious modes in Figure 10a. There is a noticeable shift in 

both modes’ frequencies between RP1 and RP2 due to ageing of the structure over the 

intervening seven year period between measurements. 

 

Figure 10a exhibits a ripple of vertical bands. These are composed of spurious stable 

poles and coincide with night time and weekends. The excitation of the building is 

greater during weekday daytime than at night and at weekends due to occupation by 

workers and operation of machinery such as the lifts. The greater excitation provides a 

clearer stabilisation diagram and hence the decrease of spurious poles in Figure 10a 

during the day time periods. This shift in quality of stabilisation diagram provides a 

challenge to automatic modal analysis and structural health parameter monitoring. The 

fuzzy clustering based paradigm is tested with this challenging dataset as a proof of 

concept.   



 

The poles from periods of four hours were grouped together and fed to the fuzzy 

clustering algorithm. Due to the different sampling rates, poles from sets of 33 frames in 

RP1 and from sets of 28 frames in RP2 formed four hour groups. The results from RP1 

are examined in detail first before comparison with results from RP2. 

 

The first two modes are very close in frequency value. This represented a real difficulty 

to the clustering algorithm. The two modes are closely spaced clusters while the other 

modes are relatively distant clusters. The algorithm consistently grouped the first two 

modes together in one cluster because of this ill-conditioning in cluster spacing. If 

desired, two approaches could be used to identify separate clusters for these two modes. 

Firstly, the responses from two accelerometers could be analysed separately. Due to their 

orthogonal orientation in line with the axes of the building, only one mode would appear 

in each analysis. Secondly, the frequency band that the clustering is applied to could be 

narrowed. This would leave just two clusters and remove the ill-conditioning of very 

different between cluster spaces. However, the grouping of the first two modes together 

is not a critical problem for the purposes of this paper and neither method is employed. 

Rather extracting parameters suitable for long term structural monitoring, which is the 

main thrust of the paper, is focused on. 

 

The fuzzy algorithm was employed with a range of preset number of clusters. Using five 

clusters gave best results. One cluster represented the first two modes, three of the 

clusters represented the remaining three modes and one cluster represented the spurious 

poles in frequency band between the first two modes and the third mode. Figure 11 shows 

all the cluster centres extracted from the four hour groups from RP1 plotted on the Z-

plane. To help with visualisation, a segment of the unit circle and radii at frequencies of 

0.2, 0.4, 0.6 and 0.8 Hz are also drawn in Figure 11. 



 

Six clusters are visually distinguishable in Figure 11 and the fuzzy clustering algorithm 

was applied to this dataset. The centres of the clusters found are marked by stars in 

Figure 11 and numbered from one to six. Six clusters were fitted, and not five as were 

fitted to generate the data, because the fourth and fifth modes were weakly excited at 

night time and during weekends. This led to the frequency range around these modes 

being surrounded by many spurious mathematical poles and the fuzzy clustering 

algorithm identified a cluster nearer to 0.8 Hz (marked as cluster 6 in Figure 11) based on 

these spurious poles and not the real poles. A sixth cluster is therefore employed to 

account for this spurious group. 

 

It is naturally desirable to be able to filter and reject those data in clusters 2 and 6 in 

Figure 11. This may be achieved by examining the membership and compactness of each 

cluster, which are reported in Table 1. In this paper, a data point is considered a member 

of a cluster if its membership factor (uik in Eq. 3) is greater than 0.5. If a cluster has a 

relatively large percentage of the data as members, then there can be confidence that it is 

a significant cluster. The compactness of a cluster is the mean Euclidean distance 

between the centre of the cluster and those points which are deemed to be members of 

that cluster using the criterion for membership just stated. If the compactness of a cluster 

is relatively low compared to other clusters then it is likely that this cluster is collecting a 

larger number of outliers or noise. Both clusters 2 and 6 have the lowest values of 

membership and the highest values of compactness and can therefore be rejected. For the 

purposes of structural monitoring, clusters 1, 3, 4, and 5 can therefore be used to track the 

performance of the structure and identify shifts and anomalies in the structure’s 

behaviour. 

 



Figure 12 shows the centres of the clusters extracted from RP2 marked as ‘+’ compared 

with those from RP1 marked as ‘.’. The centres have been rotationally transformed on the 

Z-plane to account for the difference in sampling frequency between the two data sets. 

The centres from RP1 and RP2 overlap substantially in cluster 1. This cluster is related to 

modes 1 and 2 and the overlap is consistent with the very small shift in these modes seen 

in Figure 10b. There is a clear shift in the centres in clusters 3, 4 and 5. The centres from 

RP2 are shifted clockwise compared to those from RP1 and this is consistent with the 

shifts in modes 3, 4 and 5 seen in Figures 10a & 10b.   

 

The paradigm has been able to reduce these two large datasets to sets of four parameters 

(cluster centres) which are indicative of the structural behaviour. The change in the 

building’s dynamic characteristics occurring over a period of seven years was captured 

by shifts in three of the parameters. Again, a well founded statistical test of significance 

of the cluster centres is being investigated by the authors. The separation of effects on a 

structure caused by long term trends from sudden damage is still an outstanding issue.   

 

5 Conclusion 

This paper focused on the condensation of monitoring data and the extraction of 

indicators of a structure’s state. The use of automatic pole selection worked well for 

previous authors when mode shape information was available. When a very limited grid 

of sensors is installed on a structure, mode shapes may not be extracted from the data. 

Poles were identified in data recorded over the course of a year from the Swiss Z24 

Bridge. The automatic filtering of real poles, related to the state of the structure, from 

mathematical poles was made more difficult with the lack of mode shape information. 

Due to this difficulty, a fuzzy clustering algorithm was applied to the identified poles. 

The centres of the clusters identified were then used as indicators of the state of the Z24 

Bridge. Shifts in these indicators were clearly seen when damage was inflicted. The 



paradigm was also applied to the Republic Plaza Office Tower in Singapore. The change 

in dynamic characteristics of the building over a period of seven years was captured by 

shifts in the centres of the clusters identified. The results are encouraging but more 

development is needed to develop robust statistical tests for these indicators and to 

include information of the environmental conditions under which the data was recorded. 

The use of modal identification methods that give clearer stability diagrams such as 

Polymax may also help, although care must be taken with such a method as weakly 

excited modes will be forced outside the unit circle on the Z-plane and therefore deemed 

not stable. The investigation of alternative clustering algorithms may also prove fruitful. 
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Figure 1. A clear stabilisation diagram from the Z24 Bridge Dataset. ‘x’ is an identified 

unstable pole. ‘o’ is an identified stable pole. 

 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. An unclear stabilisation diagram from the Z24 Bridge Dataset. ‘x’ is an 

identified unstable pole. ‘o’ is an identified stable pole 



 
Figure 3a 

 

 
 

Figure 3b 

 

Figure 3. The thick bands across (a) and (b) are the first four modes of the bridge. The 

random cloud of Xs between these bands is composed of mathematical poles.   



 
 

 

 

 

 

 

 

 

Figure 4 Elongated clusters formed from frequency and damping estimates 



 
 

 

 

 

 

 

 

 

Figure 5. Clustering of poles on the Z-plane. The solid line is the circumference of the 

unit circle for reference. 



 

 
 

 

 

 

 

 

 

 

Figure 6. Zoom in of cluster formed by the first mode of the Z24 Bridge data recorded  

over one day. Gray dots are the Poles. The white ‘X’ is the centre of the cluster found by 

FCM.  
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Figure 7. Clusters formed from analysis of Z24 Bridge data. The gray dots are cluster 

centres extracted from data prior to damage and the black dots are the cluster centres 

extracted after damage. (a) Frequency band of 9.3 Hz to 12.2 Hz. This band contained 

two modes of the bridge. (b) Frequency band of 3.5 Hz to 6 Hz. This band also contains 

two modes of the bridge. 



 
 

 

 

 

 

 

 

Figure 8. Republic Plaza Office Tower 
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Figure 9. Section of Republic Plaza with axes A and B marked. 



 
 

Figure 10a  

 

 
 

Figure 10b 

 

 

 



 
 

 

Figure 10c 

 

 

 

Figure 10. (a) The stable poles extracted using SSI from two sets of response data from 

the Republic Plaza. (b) a zoom in on (a) to show the first two modes. (c) a zoom in on (a) 

to show the fourth and fifth modes. 



 
 

 

 

 

 

 

 

Figure 11. Clusters of centres formed in the Z-plane by clustering stable poles extracted 

from dataset RP1. Grey dots mark the cluster centres formed from the stable poles. Black 

stars mark the centres of the clusters formed by the dots.  



 
 

 

 

 

 

 

 

 

Figure 12. A comparison of the cluster centres extracted from RP1 (grey ‘.’) and RP2 

(black ‘+’) 



 

Cluster Cluster Centre (Hz) Membership (%) Compactness 

1     0.19     27     0.0031 

2     0.32     6     0.0197 

3     0.53     22     0.0008 

4     0.68     22     0.0014 

5     0.73     20     0.0009 

6     0.77     3     0.0048 

 

 

 

 

 

Table 1. A comparison of membership and compaction of the six clusters seen in Figure 

9. 

 




