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ABSTRACT 
Data clustering techniques have been applied to ex- 
tract information from gene expression data for two 
decades. A large volume of novel clustering algo- 
rithms have been developed and achieved great suc- 
cess. However, due to the diverse structures and in- 
tensive noise, there is no reliable clustering approach 
can be applied to all gene expression data. In this pa- 
per, we aim to the feature of high noise and propose a 
cubic smoothing spline fitted for the time course ex- 
pression profile, by which noise can be filtered and 
then groups genes into clusters by applying fuzzy c- 
means clustering on the resulting splines (FCMS). 
The discrete values of radius of curvature are used to 
compute the similarity between spline curves. Results 
on gene expression data show that the FCMS has 
better performance than the original fuzzy c-means 
on reliability and noise robustness. 
 
Keywords: Fuzzy c-Means; Cubic Spline; Noise; Radius 
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1. INTRODUCTION 
With the development of DNA sequencing techniques 
and microarray technology, genomic research has achi- 
eved a great success. A wealth of biological data has 
been extracted from microarrays. Analysis of these data 
on the molecular level is revolutionary in medicine be- 
cause they are highly informative. Innovative models are 
needed instead of straightforward adaptations of existing 
methodologies. Clustering of gene expression data pro- 
vides an efficient way to extract information from these 
large-scale datasets [1]. The underlying assumption in 
clustering gene expression data is that co-expression in- 
dicates co-regulation, thus clustering should identify 
genes that share similar functions.  

Generally, there are two categories of gene expression 
data: static and time series [2,3]. In static expression ex- 
periments, a snapshot of the expression of genes in dif- 

ferent samples is measured, while in time series expres- 
sion experiments, a temporal process is measured. An- 
other important difference between these two types of 
data is that while static data from a sample population 
are assumed to be independent identically distributed, 
while time series data exhibit a strong autocorrelation 
between successive points. Most previous works analyz- 
ing time series expression used methods developed orig- 
inally for static data by neglecting the time series cha- 
racteristics [1]. More recently several new algorithms 
specifically targeting time series expression data were 
presented. A very popular procedure in time-series anal- 
ysis is smoothing the data, which removes random varia- 
tion and shows trends and cyclic components [4]. Bar- 
Joseph et al. [5] used statistical spline estimation to 
represent time-series gene expression profiles, however, 
the method requires data that has been sampled at a suf- 
ficiently high rate. In addition, cubic splines are used for 
gene expression time-series, however no appropriate 
similarity metric is adopted [6]. Later, Luan and Li [7] 
proposed a mixed-effects model using cubic B-splines 
for gene expression time-series. However, it is not al- 
ways possible to define equally spaced knots if the series 
are unevenly sampled.  

In this paper, we focus on the time series characteris- 
tics and proposed an integrate approach for clustering 
time series microarray data. The approach was composed 
of two steps: the first one is modeling gene expression 
profiles by cubic spline curves. By tuning the smoothing 
parameter, gene expression data can be smoothed with 
statistical consideration. The second step is fuzzy c- 
means on the radius of curvature of the smoothed curves 
after discretization. 

2. BACKGROUND 
2.1. Fuzzy c-Means Algorithm 
Large volumes of clustering algorithms have been ap- 
plied to the analysis of gene expression data, such as 
k-means [8], hierarchical clustering [9] and SOM [10]. 
However, most of these algorithms are restricted to a one 
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to one mapping strategy: one gene belongs to exactly one 
cluster. In biology, genes can participate in more than 
one genetic network and are frequently coordinated by a 
variety of regulatory mechanisms. To address this feature, 
fuzzy clustering is applied for gene expression data 
analysis [11]. 

The fuzzy c-means clustering algorithm (FCM) is ac- 
tually a variation of the k-means clustering algorithm, 
which allows one object belong to more than one cluster 
[12]. The FCM assigns a membership degree to each 
object in the data [13]. The centroids are computed based 
on the degree of memberships of data points. The algo- 
rithm is an iterative optimization that minimizes the cost 
function defined as follows: 
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where C and N denote the number of clusters and data 
points respectively, iju  represent the membership of 
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ijd  is the dis- 

tance between feature vector jx  and prototypes iv . 
The original formulation of FCM uses prototypes and 
inner-product induced norm metric for 2

ijd  given by: 
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The parameter m controls the fuzziness of the resulting 
partition. If 1m → , the fuzzy clustering will turn into 
hard clustering. The prototypes are simply the means of 
the clusters. If m →∞ , the partition approaches max- 
imal fuzziness, and a gene will be assigned to all clusters 
equally. 

In the FCM, we solve the optimization problem using 
Lagrange multipliers [12]: 
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The problem is solved by iteratively updating degrees 
of membership with fixed centers and updating centers 
with fixed degrees of membership. The closed-form for- 
mulas for updates are derived by taking the partial deriv- 
atives with respect to both and setting them to zero. The 
partition matrix and the cluster center of FCM are esti- 
mated by (4) and (5). 
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2.2. Cubic Spline 
In numerical analysis, Cubic-spine has been widely used 
in image processing and computer graphics. A cubic 
spline is a piecewise third-order polynomial which is 
smooth in the first derivative and continuous in the 
second derivative. It is further called natural if the se- 
cond derivatives at its boundaries are enforced to be both 
zero. Given a set of coordinates 0 0( , ),....., ( , )n nx y x y , we 
seek a natural cubic spline function f(x) that. 

( ) 0i iy f x i n= ≤ ≤          (6) 

Let us define 1( , )i ix x + is one interval, the second de- 
rivatives of the function f(x) at ix  and 1ix +  are ( )if x′′  
and 1( )if x +′′  respectively. The cubic spline on the in- 
terval can be rewrite as a cubic polynomial, 
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3. FUZZY c-MEANS WITH CUBIC 
SPLINE (FCMS) 

This integrated clustering algorithm includes two steps: 
the first one is modeling gene expression data by cubic 
spline, by which noise and variation can be filtered and 
the clustering algorithm can be more effective. The se- 
cond step is to partition the data based on the spline, due 
to the continuity of the curve, we introduce a geometry 
term, radius of curvature, to extract the feature of the 
curve. 

3.1. Modeling Gene Expression with Cubic 
Spline 

Due to biological and experimental factors, noises are 
intensive in gene expression measurements [14,15]. 
However, the FCM is sensitive to the noise, which caus- 
es improper positioning of the prototypes as the noise 
“attract” the prototypes. Therefore, the effective way is 
denoising and recovering the original values of the data. 
Many denoising methods are borrowed from signal sys- 
tem and image processing to deal with noise, such as low 
pass filtering [16], wavelet denoising [17], etc. these me- 
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thods only focus on the signal characteristic of the noise 
without consideration of time series attributes, therefore 
no significant results are reported so far. According to 
Dejean et al. [18], cubic spline can represent time series 
gene expression appropriately. However, interpolating 
cubic splines to time series expression data may inadver- 
tently attribute significance to measurements dominated 
by noise due to over-fitting. 

To infer meaningful gene expression trends over time, 
we wish to fit natural cubic splines to expression data in 
a smooth fashion. Define each gene expression. 

( )j
i j ijy f t ε= +                (8) 

where j
iy  denotes the observation for the i th gene at 

time jt , f is a continuous and differentiable function, 
and ijε  are independent and identically distributed ran-
dom variables satisfying classical assumptions 

2( ) 0, ( )ij ijE Varε ε σ= =           (9) 

A standard curve fitting process is to minimize the resi-
dual sum of squares (RSS) in Figure 1: 
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Simultaneously, in order to avoid over-fitting (the 
curve passes through all the data points), parameterizing 
f(t) by a set of pre-specified basis functions. A more 
flexible strategy is to impose a smoothness condition, 
which is also scientifically desirable here. Here, we 
adopt a standard constraint used in the statistics litera- 
ture, i.e. 

2
( ) df t t η′′ <∫               (11) 

where η  is a specific constant. We seek a cubic 
smoothing spline ( )jf t  for each gene (18), which shall 
be both reasonably smooth and also reasonably close to 
its observation value j

iy . As a standard practice for 
spline smoothing, a cubic smoothing spline (Figure 1) 
can be found by minimizing the following combined 
function 
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The first term of Eq.12 is residual sum of squares, 
which quantifies the closeness to gene expression data 
points, and the second term, is the integrated squared 
second derivative, which quantifies the smoothness of 
the fitted spline. The smoothing parameter, [0,1]λ ∈ , is 
used to control the trade-off between the above two con- 
tradictory criteria. If setting λ  = 0, a straight line is 
generated from an ordinary linear least-squares regres- 
sion. If setting λ  = 1, it leads to a cubic interpolating 
spline by passing through all values. The selection of λ  
can be found in [18]. 

 
Figure 1. Cubic spline modeling gene expression profiles. 

 
3.2. Similarity Metric 
The similarity metric is generally required in every clus- 
tering method, which has a crucial influence on the clus- 
tering result. Conventional choices are Euclidean dis- 
tance, Pearson correlation [19]. However, both of the two 
metrics cannot be applied in continuous vectors. Moreo- 
ver, Euclidean computed the magnitude change by neg- 
lecting the meaningful shape information. Pearson cor- 
relation coefficient is not capable of uncover nonlinear 
pattern. In this paper, we propose a new similarity metric 
to calculate the similarity between gene profiles. After 
cubic spline smoothing, gene expression profiles are 
transformed from discrete values to continuous curves. 
Following [15], the discrete values of radius of curvature 
can be considered as one important feature vector for the 
curve. Similarity between two curves is calculated by 
normalizing the dot product of the vectors. 

For curves, the radius of curvature at a given point is 
the radius of a circle that mathematically best fits the 
curve at that point. It can be seen from Figure 2 that the 
radiuses of the two cycles represent the radius of curva- 
ture at the two different points in the curve. However, a 
cubic spline curve sometimes contains inflection points. 
At these points, curvature value becomes zero and the 
radius of curvature value becomes infinity. Therefore, 
curvature is used for computation instead of the radius of 
curvature 

In geometry, the radius of curvature is the inverse of 
the curvature. In the case of a plane curve, the radius of 
curvature can be computed by [20], 
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To adjust the various sizes of the curves, the total  



Y. Wang et al. / Journal of Biosciences and Medicines 1 (2013) 16-21 

Copyright © 2013 SciRes.                                                                       OPEN ACCESS 

19 

 
Figure 2. Radius of curvature of a curve. 

 
length of radius of curvature is rescaled to 1. The radius 
of curvature must be calculated according to the knot 
sequence of the knot vector. Similarity between curve A 
and curve B is evaluated by normalizing the dot product 
of the vectors. 

a bS
a b

=


                 (14) 

By definition, the curvature of a curve is nonnegative, 
which limits its application to gene expression similarity 
metric. Figure 3(a) shows an example of two curves 
having the same radius of curvature and the same coun- 
ter-clockwise direction while Figure 3(b) shows that two 
curves have the same radius of curvature and the same 
clockwise direction. However, the two curves have to- 
tally different expression trend. In many cases it is useful 
to ascribe a sign to the curve. The choice of the sign is 
usually connected with the tangent rotation the curvature 
of the curve is positive when its tangent rotates counter- 
clockwise. The curvature of the curve is negative when 
its tangent rotates clockwise. However, this simple use of 
the direction cannot capture the gene profiles similarity. 
We modify the radius of curvature by adding a sign func- 
tion of the first derivative of the curve. 

2 3 2(1 )sgn( ) yR y
y
′+′=
′′

           (15) 

The Algorithm for the simulations is given below 
 

Step 1: construct the cubic spline to modeling the time series gene 
expression data according to Eq.12. 
Step 2: select N points of the cubic spline and calculate the radius 
of curvature in these points by Eq.13. 
Step 3: Compute the similarity according to equation Eq.14.  
Step 4: Run Fuzzy c-means Clustering algorithms based on the new 
similarity metric. 
Step 5: Evaluate the result by validity measures. 

4. DATA, EXPERIMENTS AND RESULT 
4.1. Data 
The complete yeast gene expression profiles include 
6200 genes measured every 10 min during two cell 
cycles in 17 hybridization experiments. Cho et al. [14]  

 
(a) 

 
(b) 

Figure 3. Comparison of the directions of curves. 
 
selected 384 genes whose expression levels peak at dif- 
ferent time points corresponding to the five phases (G1, 
S, G2/M, M/G1 and S/G2) of cell cycle. Further, Yeung 
et al. [21] extract 237 genes from the yeast cell cycle 
data which correspond to four categories: DNA synthesis 
and replication, organization of centrosome, nitrogen and 
sulphur metabolism, and ribosomal proteins 

4.2. Results 
Adjusted Rand index (ARI) is a measure of agreement 
between two partitions: one is the clustering result and 
the other is the standard partition. The value of ARI va- 
ries from 0 to 1 and higher value means that the cluster- 
ing result is more similar to the standard partitions. Sup- 
pose T is the true clustering of a gene expression data set 
based on domain knowledge and C a clustering result 
given by some clustering algorithm. Let a denote the 
number of gene pairs belonging to the same cluster in 
both T and C, b is the number of pairs belonging to the 
same cluster in T but to different clusters in C, c is the 
number of pairs belonging to different clusters in T but to 
the same cluster in C and d is the number of pairs be- 
longing to different clusters in both T and C. 

2( - )ARI( , )
( + )( + )+( + )( + ) 

ad bcT C
a b b d a c c d

=      (16) 

Silhouette width index (SWI) is a measure of tightness 
and separation of clusters, which is used to assess the 
level of statistical significance of clusters. The Silhouette 
width for the thi  sample in cluster jX  is defined as, 
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where ( )a i  is the average distance between the thi  
sample and all of the samples included in jX , and ( )b i  
is the minimum average distance between the thi  sam- 
ple and all of the sample and all of the samples clustered 
in kX  ( 1,...., ;k c k j= ≠ ). When ( )s i  is close to 1, 
one may infer that the thi sample has been well clustered. 
Thus, for a given cluster jX ( 1,....,j c= ), it is possible 
to calculate a cluster Silhouette jS , which characterizes 
the heterogeneity and isolation properties of such a clus- 
ter, 

1

1 ( )
m

j
i

S s i
m =

= ∑                  (18) 

Before experiments, the data was log2 transformed to 
make symmetry between negative and positive fold 
change and normalized to obtain a mean expression val- 
ue of one for each gene. This ensures that genes which 
share the same expression pattern have similar gene ex- 
pression vectors. λ  = 0.8. Each algorithm run 10 times 
with randomly initialization, results are obtained by the 
averages value. 

It can be seen from Table 1 that the clustering results 
by FCMS outperforms FCM on ARI and SWI. This not 
only indicates that clusters generated by FCMS are better 
in intra compactness and inter separateness, but also illu- 
strates that clusters include more biological significance. 

Heatmap [22] is used to graphically represent multi- 
dimensional gene expression data which have been sub- 
jected to clustering algorithms. Figure 4 shows the qual- 
ity of clusters of Yeast 2945 [23]. It can be seen in Fig- 
ure 4 that the FCMS shows better separated and homo- 
geneous clusters than FCM. 

5. CONCLUSION 
Conventional partition clustering methods are frequently 
used for gene expression analysis without consideration 
of the noise and variations in expression that do not fit 
into any global pattern. In this paper, we present an inte- 
grated fuzzy clustering approach, FCMS, uses spline 
estimation to represent gene time-series expression pro- 
files as continuous curves, by which noise can be filtered 
and meaningful data will be preserved. Similarity is an 
crucial factor for clustering, we introduce a new geome- 
try term of radius of curvature, which can capture the 
similarity between curves. Results demonstrate that our 
 
Table 1. Comparison of FCM and FCMS. 

  Clusters 
number ARI SWI 

Yeast 384 
FCM 5 0.5563 0.3545 

FCMS 5 0.5681 0.4012 

Yeast 237 
FCM 4 0.4658 0.3242 

FCMS 4 0.4821 0.3869 

 
(a)                    (b) 

Figure 4. Cluster structure plot generated by 
GEDAS [22]. (a) Cluster structure of FCM; (b) 
Cluster structure of FCMS. 

 
clustering method has substantial advantages over FCM 
for time-series gene expression data. 
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