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Abstract

Techniques based on Soft Computing are useful to
solve real-world problems where decision makers use
subjective knowledge when making decisions. In many
problems in transport and logistics it is necessary to
take into account that the available knowledge about
the problem is imprecise or uncertain. Truck and
Trailer Routing Problem (TTRP) is one of most recent
and interesting problems in transport routing plan-
ning. Most of models used in the literature assume
that the data available are accurate; for this reason it
would be appropriate to focus research toward defin-
ing TTRP models for incorporating the uncertainty
present in their data.

Keywords: Decision making, fuzzy logic, Soft Com-
puting, TTRP

1. Truck and Trailer Routing Problem

Intelligent transport systems are advanced applica-
tions which aim to provide innovative services relating
to different modes of transport and traffic management
and enable various users to be better informed and
make safer, more coordinated, and “smarter” use of
transport networks. Vehicle Routing Problem (VRP)
is a generic name given to a whole class of problems
where it is needed to design a set of routes. In the VRP
a fleet of vehicles has to be routed from one or several
depots to serve a set of geographically dispersed cities
or customers, subject to side constraints. The goal is
to design vehicle routes originating from and termi-
nating at the central depot to fulfill each customer’s
demand so that the total cost is minimized. The total
demand on each route should not exceed the vehicle
capacity and each customer can only be serviced once
by exactly one vehicle [1][2][3][4][5]. There exists a
wide variety of VRPs [6][7][8][9][10]; among them is
distinguished the Truck and Trailer Routing Problem
(TTRP).

The TTRP is a combinatorial optimization problem
and an extension of the well-known VRP. The main
difference between TTRP and VRP consist of the use
of trailers; a commonly neglected feature in the VRP.

In the standard TTRP, the customers are geographi-
cally dispersed and they have an associated demand.
The customers are serviced by a fleet of vehicles (truck
pulling a trailer) with known capacity. However, due
to practical constraints, including government regu-
lations, limited maneuvering space at customer site,
road conditions, etc., some customers may only be ser-
viced by a truck.

The fleet of vehicles in a TTRP consists of trucks
and trailers. Once a trailer is assigned to a truck; it
may not be assigned to another truck. A truck with a
trailer is a complete vehicle, while that a truck without
a trailer is a pure truck. All trucks and all trailers have
identical capacities. However it can be considered as a
heterogeneous fleet capacity due to vehicle types that
can be used: complete vehicle and pure truck. The
TTRP considers two forms of customer types: a cus-
tomer who is accessible with or without a trailer (vehi-
cle customer), and one who is only accessible without
a trailer (truck customer).

All these characteristics generate different types of
routes in a TTRP solution as illustrated in Figure 1.
These routes are originating from and terminating at
a central depot and they are limited by capacity of
vehicle used.

Fig. 1: Routes types in the TTRP (Taken from [15]).

There are three types of routes in a TTRP solution.
The types of routes are:

• Complete Vehicle Route (CVR): Consisting
of a main tour traveled by a complete vehicle, and
at least one sub-tour traveled by the truck alone.

• Pure Truck Route (PTR): This type of route
is traveled by a truck alone and are visited both
customers.
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• Pure Vehicle Route (PVR): It is the tour trav-
eled by a complete vehicle and contains only ve-
hicle customers without any sub-tour.

The growing interest in TTRP is motivated by its
practical relevance in many real world problems. Also,
the broad range of actual applications have caused the
definition of many TTRP variants with real-world con-
straints.

1.0.1. Related problems

The term “Truck and Trailer Routing Problem” was
first used in 2002 by I-Ming Chao [11]. However, pre-
vious works were developed to solve practical situa-
tion present in real-life with similar characteristics to
TTRP. These problems are variants of VRP and can
be viewed as closer approaches to TTRP.

The first work was presented by Semet and Taillard
in [12]. The problem occurred at a regional level of
one of the major chain store in Switzerland. The com-
pany owns a heterogeneous fleet of vehicles consisting
of 21 truck and 7 trailers. This Swiss chain store in-
volves 45 grocery stores located in areas that did not
allow access with trailer. The goal is to determine
a transportation schedule using a heterogeneous fleet
that minimizes the transportation costs. The authors
studied a real-life VRP that deals with new features
such as, the heterogeneous character of the fleet, in
the sense that utilization costs are vehicle-dependent,
time windows and the use of trailers under accessi-
bility restrictions. Also, the customer’s trailer-store
cannot be serviced in a sub-tour. That paper pro-
posed a heuristic method based on clustering methods
and a standard Tabu search method for finding good
solutions.

Two years later is modeled the Partial Accessibil-
ity Constrained Vehicle Routing Problem (PACVRP)
[13]. PACVRP is an extension of the VRP. It takes
into account the partial accessibility constraint intro-
duced in previous works [12]. In this case the par-
tial accessibility constraint consists of forbid same cus-
tomers to be served by a truck and its trailer. Al-
though this problem is very similar to TTRP, there
are differences between them such as:

• All available trucks are used.
• The depot can be visited only once in a route.
• The number of trailers must be determined.
• The number of sub-tours assigned to a parking

place is restricted to a maximum of one.

The author provided an integer programming for-
mulation and proposed a two-phase heuristic method.
Also, to solve a combinatorial problem that has some
similarities with the Generalized Assignment Problem
(GAP) he proposes an enumerative procedure using
Lagrangian relaxation.

Another work is the study by Gerdessen in 1996 on
Vehicle Routing Problems with Trailers (VRPT) [14].
In this problem the combination of truck and trailer is
called vehicle or complete vehicle. However, the use of
a complete vehicle may cause problem when serving
customer with constraints. Time and trouble could
be saved if these customers were served by the truck
only. Also, an additional advantage will be the saving
of fuel and drives faster. The VRPT is very similar to
the classic TTRP, but the author simplified the model
with a set of assumptions. The VRPT differs from
TTRP mainly in:

• All customers have unit demand.
• Each trailer is parked exactly once.
• Each customer site can be used as a parking place.
• Each customer is assigned a maneuvering cost in-

stead of customer types.

Summarizing, before the formal definition of TTRP
there were real-life applications with similar charac-
teristics to this kind of problem. Although, all they
present differences with respect to the classic TTRP.

1.0.2. Formal Definition

The TTRP can be formally defined on an undirected
graph G = (V, A), where V = {v0, v1, . . . , vn} is a
vertex set and A = {(vi, vj) : vi, vj ∈ V, i �= j} is the
set of edges. The vertices represent customer, except
the vertex v0 that be corresponds to central depot.
There is a vector of the customer demands di and each
customer i ∈ V \v0 has a non-negative demand di > 0.

The access constraints create a partition of V into
two subsets: the subset of truck customer Vc ⊆ V

accessible only by truck and the subset of vehicle cus-
tomer Vv ⊆ V accessible either by truck or by truck
with trailer.

C is a matrix of non-negative cost. Each edge (i, j)
∈ V is associated with a cost cij that represents the
travel time required on the edge or the travel distance
between vertex vi and vertex vj . A heterogeneous fleet
consist of mc trucks and mr trailers, where mr ≤ mc.
The capacities of the trucks and the trailers are qc and
qr respectively. Each vehicle k is assigned to a route
Rk.

A route in the TTRP is composed of a partition of
V : R1, . . . , Rk and a permutation δk of Rk specifying
the order of the customers on route. Each route is
originating from and terminating at a central depot:
Rk = {v0, v1, . . . , vn+1}, where v0 = vn+1 denotes the
depot. Each route is classified as route of complete
vehicle (Rcv) or route of pure truck (Rpt).

Thus, the goal of the TTRP is to find a set of least
cost vehicle routes that start and end at the central
depot such that each customer is serviced exactly once
and the total demand of any vehicle route does not
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exceed the total capacity of the allocated vehicles used
in that route; and the number of required trucks and
trailers is not greater than mc and mr, respectively.

1.0.3. Variants and Extensions

Few research efforts have been devoted to study the
TTRP. However, there are some papers on several
TTRP variants. Some important variants of TTRP
are Truck and Trailer Routing Problem with Time
Windows (TTRPTW) and Relaxed Truck and Trailer
Routing Problem (RTTRP). Also, there are others
such as Multi-Depot Truck and Trailer Routing Prob-
lem (MDTTRP), Single Truck and Trailer Routing
Problem with Satellite Depots (STTRPSD), Periodic
Truck and Trailer Routing Problem (PTTRP), etc.
The following section describes some of these variants:

Relaxed Truck and Trailer Routing Problem (RT-
TRP): This variant relaxes the fleet size constraint for
the TTRP [16]. In the TTRP there are not fix costs
associated with the vehicles although there are limita-
tions on the number of available trucks and available
trailers. Thus, it is possible to construct better vehicle
routes by utilizing more vehicles or allowing vehicles
to take on multiple trips. Further, if the reduction
in costs resulting from such relaxation is significant,
it may be worthwhile to acquire or lease extra vehi-
cles provided that the acquisition or lease costs can be
justified. The resulting RTTRP can be also used to
determine a better fleet mix. Therefore, it is reason-
able to relax the fleet size constraint with the goal to
further reduce the total routing cost.

Truck and Trailer Routing Problem with Time Win-
dows (TTRPTW): In many real-world routing appli-
cations the time windows constraints are present. The
TTRPTW can be regarded as a variant of the Vehi-
cle Routing Problem with Time Windows (VRPTW).
This model is an variant of the TTRP [17]. The prob-
lem definition is similar, it only add in each vertex vi

a time window (eti, lti) and a service time sti. The
parameter eti and lti denote the earliest time and lat-
est time that the service to customer i can start, re-
spectively and sti denotes the time required to service
customer i. In this problem must be fulfilled that each
customer is serviced within their specific time windows
.

Single Truck and Trailer Routing Problem with
Satellite Depots (STTRPSD): The STTRPSD is a gen-
eralization of the VRP. In the STTRPSD a vehicle
composed of truck with a detachable trailer serves the
demand of a set of customers reachable only by the
truck without the trailer. There is a set of parking lo-
cations called trailer points or satellite depots, where
it is possible to detach the trailer and to transfer prod-
ucts between the truck and the trailer. Each customer
is assigned to one trailer point in a feasible solution

of the STTRPSD. Consequently, trailer points with
assigned customers are said to be open [18][19].

Fig. 2: STTRPSD solution (Taken from [18]).

The tour is traveled in two levels (see Figure 2).
The first level trip departing from the main depot is
performed by the truck with the trailer and visits the
subset of open trailer points. The second level trip
serves the demand of those customers reachable only
by the truck without the trailer. The second level trip
starts and ends at the allocated trailer point and the
total load should not exceed the truck capacity. The
goal of the STTRPSD is to minimize the total length
of the trips.

Furthermore, several authors have defined TTRP
extensions such as:

Generalized Truck and Trailer Routing Problem
(GTTRP): In [20] the author presented GTTRP which
is a rather complex generalization motivated by a real-
world scenario. Here trucks and trailers can be either
collection vehicles or support vehicles. Collection vehi-
cles are used to collect the supplies of customers, while
support vehicles are used as “mobile depots” that can-
not visit customers. A trailer may be pulled by differ-
ent trucks during the course of its tour, and the load
of the truck may be transferred from any vehicle to
any other vehicle during a tour. Also, any intermedi-
ate locations en-route can be used either for parking
or for load transfer.

Extended Truck and Trailer Routing Problem (ET-
TRP): ETTRP is an extended version of the TTRP,
in which the main objective is to minimize the to-
tal length of all constructed routes. This thesis ex-
pands on the model initially defined by Chao by in-
troducing several additional constraints, which mimic
problems that could arise in a real-world application.
Thus, both time window constraints as well as load
constraints are considered [21].

1.0.4. Strategies applied to TTRP

Since TTRP itself is a very difficult combinatorial opti-
mization problem it is usually tackled by approximate
algorithms because no exact algorithm can be guaran-
teed to find optimal tours within reasonable comput-
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ing time when the number of customers is large. This
is due to the NP-Hardness of the problem [22].

The only exact approach for the TTRP is due to
Drexl [23]. The author developed a branch and price
algorithm for the TTRP, where the algorithm had only
been tested on relatively small instances of the TTRP.
Otherwise, approximate algorithms are very popular
to solve this type of problem. There exists a wide va-
riety of metaheuristics proposed to solve TTRP. Each
one have achieved satisfactory results for routing prob-
lems, between them are:

Both Chao [11] and Scheuerer [24] solved the TTRP
by a 2-phase approach. In the first phase, construc-
tion heuristics were used to obtain an initial TTRP
solution. The initial solution was then improved by a
Tabu Search (TS) algorithm in the second phase.

Lin et al. in [15] developed a very effective Sim-
ulated Annealing (SA) based heuristic to the TTRP
and obtained results that are competitive with those
obtained by Scheuerer. Also, it applied a route com-
bination procedure to reduce the number of required
trucks and trailers.

In [25] the authors designed a mathematical pro-
gramming based heuristic that also employs the
cluster-first route-second approach. Their method
solves two subproblems sequentially. The first, called
customer-route assignment problem (CAP) and the
second, the route definition problem (RDP). The au-
thors embedded these two models within an iter-
ative mechanism that adds new constraints to the
CAP based on the information of the RDP solution.
This restarting mechanism is intended to diversify the
search, and includes a Tabu search mechanism that
forbids (in the CAP) customers route assignments al-
ready explored in previous iterations of the algorithm.

Villegas et al. proposed in [26] solved the TTRP
using a route-first, cluster-second procedure embedded
within a hybrid metaheuristic based on a Greedy Ran-
domized Adaptive Search Procedures (GRASP), Vari-
able Neighborhood Search (VNS), and Path Relinking.
Likewise, the same authors solved the STTRPSD with
a multi start evolutionary local search and a hybrid
GRASP/VND [18]. These metaheuristics use a route-
first cluster-second procedure and a VND as building
blocks.

Lastly, in [27] it is applied a heuristic approach
to the TTRP which combines local search and large
neighborhood search as well as standard metaheuris-
tics control strategies. According to [28] this approach
can be applied to several variants of VRPs. The au-
thor has developed a VRP-software framework based
on this heuristic concept and he shown how solvers for
different VRPs in a rather simple and flexible manner.

2. A Soft Computing - based approach

Different sources of uncertainty in transport problems
are present in real world contexts, and only approxi-
mate, vague and imprecise values are known. There-
fore, often the decision maker cannot formulate all the
data precisely. In general, users and decision makers
diligently establish measurements based on observa-
tions and perceptions which determine the problem
parameters and in the same way affect the evaluation
of objectives and obtained solutions.

The TTRP is a problem which by its nature favors
the presence of vagueness, imprecision and uncertainty
in the information handled. Nevertheless, the models
used in the literature assume that the data available
are accurate; consideration does not correspond with
reality. For this reason it would be appropriate to
focus research toward defining TTRP models for in-
corporating the uncertainty present in the data.

The first case of optimization problems with fuzzy
approach appeared in the literature more four decades
ago [29], in an article which put forward the now clas-
sical key concepts of constraint, objective and fuzzy
optimal decision. Later, in 1974 Tanaka et al. in [30]
and Zimmermann in [31], are the pioneers on Fuzzy
Linear Programming (FLP) based on the concept of
Bellman and Zadeh, for decision making under fuzzy
conditions.

Fuzzy optimization models and methods has been
one of the most and well studied topics inside broad
area SC. Particularly relevant is the field of FLP that
constitutes the basis for solving Fuzzy Optimization
Problems. FLP and related problems have been ex-
tensively analyzed and many papers have been pub-
lished displaying a variety of formulations and ap-
proaches, such as transportation, production planning,
water supply planning and resource management, for-
est management, bank management, portfolio selec-
tion, pattern classification, and others [32][33].

The classic problem of LP is to find the maximum
or minimum values of a linear function subject to con-
straints that are represented by linear equations or in-
equalities. The most general formulation of the LP
problem is:

Max z = cx

Ax ≤ b (1)

x ≥ 0

The vector x = (x1, x2, . . . , xn) ∈ R
n represents

the decision variables. The objective function is de-
noted by z, the numbers cj are coefficients and the
vector c = (c1, c2, . . . , cn) ∈ R

n is known as the cost
vector. The matrix A = [aij ] ∈ R

n×m is called
the constraint or technological matrix and the vector
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b = (b1, b2, . . . , bm) ∈ R
m represents the independent

terms or right-hand-side of the constraints.

The formulation of a linear programming problem
under fuzzy environment depends on what and where
the fuzziness is introduced. In the last past years sev-
eral kinds of FLP problems have appeared in the lit-
erature [34], but the three main are:

• Linear programming problems with a fuzzy objec-
tive, i.e. with fuzzy numbers defining the costs of
the objective function.

• Linear programming problems with a fuzzy con-
straint set, i.e. with a feasible set defined by fuzzy
constraints.

• Linear programming problems with fuzzy num-
bers defining the coefficients of the technological
matrix.

In this work, we will focus on a general parametric
idea in order to transform fuzzy problems into many
classical problems [35][36][37]. This fuzzy approach
to dealing with a type of imprecision associated with
vague and imprecise nature of linguistic terms used in
the problem, in addition to tolerance in the evaluation
of objectives and constraints.

Fig. 3: Parametric idea.

This parametric approach is divided into two parts
(see Figure 3): transforming a fuzzy problem into a
classical parametric problem with a parameter α repre-
senting the makerï¿ 1

2 s satisfaction level (which belongs
to the interval [0, 1]); a mathematical formulation of
the classical parametric problem that is equivalent to
the original fuzzy problem. It is solved each different
α values using conventional linear programming tech-
niques. Since 1990, Delgado et al. [38] showed that
the set of solutions achieved by this approach contains
the solutions reached by other different approaches
[30][31], which solve fuzzy linear programming prob-
lems too.

An idea of application of this approach is the case in
which a decision maker assumes that he can tolerate
violations in the accomplishment of the constraints;
i.e. he permits the constraints to be satisfied “as well
as possible”. The associated problem is represented as
follows

Max z = cx

Ax ≤f b (2)

x ≥ 0

where the symbol ≤f indicates the imprecision of
the constraints and where each fuzzy constraint aix ≤f

bi is modeled by means of a membership function μi :
R → [0, 1]:

μi(x) =
{

1 if aix ≤ bi
fi(aix) if bi ≤ aix ≤ bi + τi
0 if bi + τi ≤ aix

These functions express that the decision maker is
tolerating violations in each constraint up to a value of
bi + τi (τ is referred to as a violation tolerance level).
Functions fi are assumed to be non decreasing and
continuous for these constraints. Function μi is defined
for each x and it gives for x its accomplishment degree
on the i-th constraint. Graphically we obtain a picture
as shown in Figure 4.

Fig. 4: Examples of fuzzy membership functions
(Taken from [36]).

Lastly, making use of the Decomposition Theorem
for fuzzy sets to represent a fuzzy set by means of its
α − cuts, and to work, then, on these classical sets in-
stead of the fuzzy ones. The problem (2) can be easily
transformed into a parametric programming problem
as follows:

Max z = cx

Ax ≤ b + τ(1 − α) (3)

x ≥ 0, α ∈ [0, 1]

where τ(τ1, τ2, . . . , τm) ∈ R
m is the tolerance level

vector.

The alternative presented proposes the application
of the fuzzy logic is a way to describe this vague-
ness mathematically. Thus, one could obtain models
that tolerate the uncertainty and tries to satisfy be-
fore to optimize. This proposal has been exploited in
VRP variants [39][40][41][42]; however the complexity
of TTRP, as well as for the recent of topic has not
been applied in this problem.

For example, in the case of TTRP the constraints
associated to the capacity of the vehicles can be rep-
resented by:
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∑

dix
k
i ≤ qc k = 1, . . . , mc

′ (4)
∑

dix
k
i ≤ qc + qr k = 1, . . . , mr (5)

where mc
′ is the number of trucks available after

serving the routes of complete vehicle (Rcv). Our
model considers constraints as fuzzy and admits the
violation of these constraints according with a value
of tolerance τ .

∑

dix
k
i ≤f qc ⇐⇒

∑

dix
k
i ≤ qc + τi(1 − α) (6)

∑

dix
k
i ≤f qc + qr ⇐⇒

∑

dix
k
i ≤ (qc + qr) + τi(1 − α) (7)

The results obtained for each α value generate a
set of solutions and then the Representation Theorem
can be used to integrate all these specific α solutions.
This fuzzy solution is found from the solution of the
parametric LP problem.

2.1. Computational results

In order to illustrate the above described approach,
we are going to focus on a problem with fuzzy con-
straints. The proposal was coded in Java and com-
piled using Eclipse 4.2.1. It was then applied to one
TTRP benchmark instances created by Chao [11] (see
Table 1) on a Core Duo 1.80 GHz PC with 4GB RAM
under Microsoft Windows 7 operating system.

Problem # 1
Features V alues

Number of Customers 50
Vehicle Customers 38
Truck Customers 12

Total Request 777
Number Trucks 5
Capacity Truck 100
Number Trailer 3
Capacity Trailer 100

Table 1: Dimension of problem 1. Reported by [11].

In the initial experiments, the following combina-
tions of parameters were tested:

• Algorithm = HillClimbing

• Executions = 30
• Iterations = 100000
• P enalty = 125
• τ = 10
• α = {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9,

1.0}

The results obtained are presented in Table 2 and
Table 3. The best value of the objective function
(Min) and the average behavior (Avg) of the solu-
tions obtained is shown for each value of α. Values
contained in brackets are associated with the routes
number of each type (Rvc, Rcp) obtained in the so-
lution. Results in Table 3 were obtained applying a
strategy of penalty; which involves to add a penalty
cost to the objective function for each extra vehicle
requiring the solution.

τ = 10
α Min Avg

0.0 631.05(4,2) 714.37
0.1 613.36(3,3) 719.26
0.2 630.42(4,1) 720.29
0.3 654.19(3,2) 712.32
0.4 627.06(4,2) 706.99
0.5 643.98(2,4) 725.69
0.6 619.82(3,3) 714.38
0.7 642.66(3,3) 721.21
0.8 617.83(4,1) 706.28
0.9 631.23(3,3) 737.98
1.0 616.77(4,2) 729.38

Table 2: Results obtained by the fuzzy approach.

Also, results show that the trend is to obtain better
solutions when the level of tolerance increases in the
constraint. Similarly, the results worsen for higher α−
cuts values, in other words, when the compliance is less
flexible constraints. It is noteworthy that most of the
results in Table 2 correspond to infeasible solutions, in
a different way to the results in Table 3. In this case
the best solutions are feasible and all of the available
vehicles are used.

τ = 10
α Min Avg

0.0 612.06(3,2) 748.48
0.1 650.89(3,2) 750.33
0.2 661.43(3,2) 748.86
0.3 672.91(3,2) 756.03
0.4 641.61(3,2) 762.38
0.5 623.59(3,2) 770.55
0.6 648.37(3,2) 783.61
0.7 678.23(3,2) 791.91
0.8 675.87(3,2) 789.76
0.9 625.57(3,2) 803.69
1.0 706.85(3,2) 824.72

Table 3: Results obtained by the fuzzy approach with
penalty strategy.

The most significant aspect of the parametric
method is that it allows obtaining a set of fuzzy so-
lutions to the original problem. Thus, the decision

76



maker has a set of solutions, not just a single solution.
This will allow the decision maker to select the most
appropriate solution according to their actual needs, to
the knowledge of the information available, and their
way of making decision.

3. Conclusion

Truck and Trailer Routing Problem, a variant of the
Vehicle Routing Problem in which a subset of the ve-
hicles is allowed to pull trailers because of the benefit
of increased capacity. It is one of the most interest-
ing problems at this time in transport routing plan-
ning. Unfortunately to date, not much research has
been done about this problem. Some of their most
known variants and solutions applied to solve it were
described here. All these models assume that the data
available are accurate. This consideration does not
correspond with reality where the vagueness appears
in a natural way. For this reason it would be appro-
priate to focus research toward defining TTRP models
for incorporating the uncertainty present in the data,
and hence it makes perfect sense to think of Soft Com-
puting techniques. This paper is only the beginning of
future works about of how to solve the TTRP apply-
ing these techniques. Thus, a known fuzzy parametric
approach is proposed as a general method to solve this
problem when its elements are vague, imprecise and in-
exact. The authors aim to extend the line of research
involving Fuzzy Programming problems in order to try
to solve practical real-life problems by facilitating the
building of Decision Support Systems.
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