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Fuzzy Control for Nonlinear Uncertain
Electrohydraulic Active Suspensions

With Input Constraint
Haiping Du and Nong Zhang

Abstract—This paper presents a Takagi–Sugeno (T–S) model-
based fuzzy control design approach for electrohydraulic active
vehicle suspensions considering nonlinear dynamics of the actua-
tor, sprung mass variation, and constraints on the control input.
The T–S fuzzy model is first applied to represent the nonlinear
uncertain electrohydraulic suspension. Then, a fuzzy state feed-
back controller is designed for the obtained T–S fuzzy model with
optimized H∞ performance for ride comfort by using the parallel-
distributed compensation (PDC) scheme. The sufficient conditions
for the existence of such a controller are derived in terms of linear
matrix inequalities (LMIs). Numerical simulations on a full-car
suspension model are performed to validate the effectiveness of the
proposed approach. The obtained results show that the designed
controller can achieve good suspension performance despite the
existence of nonlinear actuator dynamics, sprung mass variation,
and control input constraints.

Index Terms—Electrohydraulic actuator, input constraint, non-
linear dynamic system, Takagi–Sugeno (T–S) fuzzy modeling, un-
certainty, vehicle active suspension.

I. INTRODUCTION

A
CTIVE suspensions are currently attracting a great deal of

interest in both academia and industry for improving ve-

hicle ride comfort and road holding performance [1], [2]. Since

active suspensions need actuators to provide the required forces,

one practical consideration in real-world applications involves

choosing appropriate actuators that can fit into the suspension

packaging space, and satisfy the practical power and bandwidth

requirements. It has been noted that electrohydraulic actuators

are regarded as one of the most viable choices for an active sus-

pension due to their high power-to-weight ratio and low cost.

Therefore, in recent years, many studies have focused on elec-

trohydraulic active suspensions, and various control algorithms

have been proposed to deal with the involved highly nonlinear

dynamics of electrohydraulic actuators [3]–[10].

It is still a challenge to develop an appropriate control strat-

egy for dealing with the highly nonlinear dynamics of electro-
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hydraulic actuators in active suspensions. Generally speaking,

the currently proposed control algorithms for electrohydraulic

active suspensions can be divided into two main groups: one is

the two-loop control strategy, in which the outer loop is used to

provide the desired forces and the inner loop is used to make

the electrohydraulic actuators track the desired forces; the other

is the sliding-mode-based control strategy. As proved in [11],

pure proportional-integral differential (PID)-like controllers are

not capable of giving satisfactory performance in the actuator

force tracking problem, and more sophisticated control schemes

should be employed. Hence, some attempts have been made to

compensate for this shortcoming through advanced inner loop

force control algorithms, for example [11]–[14]. Nevertheless,

due to their highly nonlinear dynamics, using electrohydraulic

actuators to track the desired forces is fundamentally limited

when interacting with a dynamic environment [11]. On the other

hand, the chattering phenomenon is inevitable in sliding mode

control, and it may excite unmodeled high-frequency dynamics,

which degrades the performance of the system and may even

lead to instability. Techniques such as adaptive fuzzy sliding

control [5] and self-organizing fuzzy sliding control [15] were

then proposed to smooth the chattering phenomenon. However,

these approaches need a complicated learning mechanism or a

specific performance decision table, which is designed by a trial

and error process, and presents certain difficulties in application.

In practice, the vehicle sprung mass varies with the loading

conditions, such as the payload and number of vehicle occu-

pants. The control performance of a vehicle suspension will be

affected if the sprung mass variation is not considered in the

controller design process. In spite of its importance, this prob-

lem has not been explicitly dealt with in any previous studies

on electrohydraulic suspensions. Furthermore, the constraint on

control input voltage sent to the actuator servo-valve has not

yet been considered for controller design, although the input

power provided to an electrohydraulic actuator is, in practice,

limited. Thus, it is surely necessary to develop a new controller

design approach that aims at improving the performance of elec-

trohydraulic active suspensions while considering the actuator

nonlinear dynamics, sprung mass uncertainty, and control input

voltage limitations.

Following the earlier discussion on electrohydraulic active

suspensions, in this paper, a fuzzy state feedback controller

design method is presented to improve the ride comfort per-

formance of vehicles with electrohydraulic active suspensions

through a Takagi–Sugeno (T–S) fuzzy model approach. In recent

decades, fuzzy logic control has been proposed as an alternative

1063-6706/$25.00 © 2009 IEEE
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approach to conventional control techniques for complex

nonlinear systems. It was originally introduced and developed

as a model-free control design approach, and it has been applied

to active suspensions [5], [8], [16] to deal with the nonlinear-

ities associated with the actuator dynamics, shock absorbers,

suspension springs, etc. However, the model-free fuzzy logic

control suffers from a number of criticisms, such as the lack of

systematic stability analysis and controller design. It also faces

a challenge in the development of fuzzy rules. Recent research

on fuzzy logic control has, therefore, been devoted to model-

based fuzzy control systems that guarantee not only stability,

but also performance of closed-loop fuzzy control systems [17].

The T–S fuzzy system is one of the most popular systems in

model-based fuzzy control. It is described by fuzzy IF-THEN

rules that represent local linear input–output relations of a non-

linear system. The overall fuzzy model of the nonlinear system

is obtained by fuzzy “blending” of the linear models. The T–S

model is capable of approximating many real nonlinear systems,

e.g., mechanical systems and chaotic systems. Since it employs

linear models in the consequent part, linear control theory can

be applied for system analysis and synthesis accordingly, based

on the parallel-distributed compensation (PDC) scheme [18].

The T–S fuzzy models are therefore becoming powerful engi-

neering tools for the modeling and control of complex dynamic

systems.

To apply the T–S model-based fuzzy control strategy to elec-

trohydraulic active suspensions, in this study, the nonlinear un-

certain suspension is first represented by a T–S fuzzy model.

Then, a fuzzy state feedback controller is designed for the fuzzy

T–S model to improve the ride comfort performance by opti-

mizing the H∞ performance of the transfer function from the

road disturbance to the sprung mass accelerations. To avoid the

problem of having a large number of inequalities when the in-

put saturation constraint is characterized in terms of the convex

hull of some linear combination of linear functions and satu-

ration functions [19], the norm-bounded approach [20], [21] is

used here to handle the saturation nonlinearity. The sufficient

conditions for the existence of such a controller are derived

as linear matrix inequalities (LMIs) that can be solved very

efficiently by means of the most powerful tools available to

date, e.g., MATLAB LMI Toolbox. The proposed fuzzy state

feedback controller design approach is validated by simula-

tions on a full-car electrohydraulic suspension model. A com-

parison of the results shows that the designed controller can

achieve good suspension performance regardless of the actuator

nonlinear dynamics, sprung mass variation, and control input

constraints.

The rest of this paper is organized as follows. Section II

presents the model of a full-car electrohydraulic suspension.

The T–S fuzzy model of the nonlinear uncertain suspension is

given in Section III. In Section IV, the computational algorithm

for the fuzzy state feedback controller is provided. Section V

presents the design results and simulations. Finally, the study’s

findings are summarized in Section VI.

The notation used throughout the paper is reasonably stan-

dard. For a real symmetric matrix W, the notation of W > 0
(W < 0) is used to denote its positive (negative) definiteness,

‖·‖ refers to either the Euclidean vector norm or the induced ma-

trix 2-norm, I is used to denote the identity matrix of appropriate

dimensions, and to simplify notation, ∗ is used to represent a

block matrix that is readily inferred by symmetry.

II. ELECTROHYDRAULIC SUSPENSION MODEL

A full-car electrohydraulic suspension model, as shown in

Fig. 1, is considered in this paper. This is a 7-DOF model where

the sprung mass is assumed to be a rigid body with freedoms

of motion in the vertical, pitch, and roll directions, and each

unsprung mass has freedom of motion in the vertical direction.

In Fig. 1, zs is the vertical displacement at the center of gravity, θ
and φ are the pitch and roll angles of the sprung mass, ms , muf ,

and mur denote the sprung and unsprung masses, respectively,

and Iθ and Iφ are pitch and roll moments of inertia. The front

and rear displacements of the sprung mass on the left and right

sides are denoted by z1f l , z1rl , z1f r , and z1rr . The front and

rear displacements of the unsprung masses on the left and right

sides are denoted by z2f l , z2rl , z2f r , and z2rr . The disturbances,

which are caused by road irregularities, are denoted by wf l , wrl ,
wf r , and wrr . The front and rear suspension stiffnesses and the

front and rear tyre stiffnesses are denoted by ksf , ksr , and

ktf , ktr , respectively. The front and rear suspension damping

coefficients are csf and csr . Four electrohydraulic actuators are

placed between the sprung mass and the unsprung masses to

generate pushing forces, denoted by Ff l , Frl , Ff r , and Frr .

Assuming that the pitch angle θ and the roll angle φ are small

enough, the following linear approximations are applied

z1f l(t) = zs(t) + lf θ(t) + tf φ(t)

z1f r (t) = zs(t) + lf θ(t) − tf φ(t)

z1rl(t) = zs(t) − lrθ(t) + trφ(t)

z1rr (t) = zs(t) − lrθ(t) − trφ(t) (1)

and a kinematic relationship between xs(t) and q(t) can be

established as

xs(t) = LT q(t) (2)

where q(t) = [ zs(t) θ(t) φ(t) ]T, xs(t) = [z1f l(t) z1f r (t)
z1rl(t) z1rr (t)]

T , and

L =







1 1 1 1

lf lf −lr −lr

tf −tf tr −tr






.

In terms of mass, damping, and stiffness matrices, the motion

equations of the full-car suspension model can be formalized as

Ms q̈(t) = LBs(ẋu (t) − ẋs(t))

+ LKs(xu (t) − xs(t)) − LF (t)

Mu ẍu (t) = Bs(ẋs(t) − ẋu (t)) + Ks(xs(t) − xu (t))

+ Kt(w(t) − xu (t)) + F (t) (3)

where xu (t) = [ z2f l(t) z2f r (t) z2rl(t) z2rr (t) ]T, w(t) =
[wf l(t) wf r (t) wrl(t) wrr (t) ]T, F (t) = [Ff l(t) Ff r (t)
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Fig. 1. Full-car suspension model.

Frl(t) Frr (t)]
T , and the matrices are given as

Ms =







ms 0 0

0 Iθ 0

0 0 Iφ






Mu =











muf 0 0 0

0 muf 0 0

0 0 mur 0

0 0 0 mur











Bs =











csf 0 0 0

0 csf 0 0

0 0 csr 0

0 0 0 csr











Ks =











ksf 0 0 0

0 ksf 0 0

0 0 ksr 0

0 0 0 ksr











Kt =











ktf 0 0 0

0 ktf 0 0

0 0 ktr 0

0 0 0 ktr











.

Substituting (2) into (3), we obtain

Mm z̈m (t) + Bm żm (t) + Km zm (t) = Kmtw(t) + Lm F (t)
(4)

where zm (t) = [ qT (t) xT
u (t) ]T and

Mm =

[

Ms 0

0 Mu

]

Bm =

[

LBsL
T −LBs

−BsL
T Bs

]

Km =

[

LKsL
T −LKs

−KsL
T Ks + Kt

]

Kmt =

[

0

Kt

]

Lm =

[

−L

I

]

.

The state-space form of (4) can be expressed as

ẋg (t) = Âxg (t) + B̂1w(t) + B̂2F (t) (5)

where

xg (t) =[zT
m (t) żT

m (t)]T Â =

[

0 I

−M−1
m Km −M−1

m Bm

]

,

B̂1 =

[

0

M−1
m Kmt

]

B̂2 =

[

0

M−1
m Lm

]

.

The electrohydraulic actuator dynamics can be expressed as

[4], [9], [11]–[13]

Ḟi(t) = −βFi(t) − αA2
s (ż1i(t) − ż2i(t))

+ γaAs

√

Ps −
sgn(xvi(t))Fi(t)

As
xvi(t),

ẋvi(t) =
1

τ
(−xvi(t) + Kvui(t)) (6)

where xvi(t) is the spool valve displacement, ui(t) is the control

input voltage to the servo valve, i denotes fl, fr, rl, and rr, re-

spectively, As is the actuator ram area, Ps is the hydraulic supply

pressure, α = 4βe/Vt , β = αCtm , and γa = αCdωa

√

1/ρa ,
where βe is the effective bulk modulus, Vt is the total actuator

volume, Ctm is the coefficient of total leakage due to pressure,

Cd is the discharge coefficient, ωa is the spool valve area gradi-

ent, and ρa is the hydraulic fluid density. τ is the time constant

of the spool valve dynamics and Kv is the conversion gain.
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The dynamics equation (6) of the electrohydraulic actuator

can be further modeled with the state-space form as

ẋai(t) = Aai(t)xai(t) + Âaixg (t) + Baiui(t),

Fi(t) = Caixai(t) (7)

where

xai(t) = [Fi(t) xvi(t) ]T Aai(t) =





−β γaAsfi(t)

0 −
1

τ





fi(t) =

√

Ps −
sgn(xvi(t))Fi(t)

As
Bai =





0

Kv

τ





Cai = [ 1 0 ]

and Âaixg (t) describes the term of −αA2
s (ż1i(t) − ż2i(t)).

Combining the actuator dynamics equation (7) with the sus-

pension model (5), we obtain the electrohydraulic suspension

model in state-space form as

ẋ(t) = A(t)x(t) + B1w(t) + B2 ū(t) (8)

where x(t) = [xT
g (t) xaf l(t) xaf r (t) xarl(t) xarr (t) ]T

is the state vector and ū(t) is the bounded input voltage to the

actuator servo valve. In real applications, the input voltage

to the servo valve can be bounded as ū(t) =sat(u(t)), where

sat(u(t)) is a saturation function of control input u(t), defined

as

sat(u(t)) =











−ulim , if u(t) < −ulim

u(t), if − ulim ≤ u(t) ≤ ulim

ulim , if u(t) > ulim

(9)

where ulim is the control input limit. The matrices are

A(t) =

[

Â B̂2Ca

Âa Aa(t)

]

B1 =

[

B̂1

0

]

B2 =

[

0

Ba

]

.

It is noted that the system matrix A(t) is a nonlinear and

time-varying matrix due to the nonlinear time-varying behavior

of the actuator dynamics and the variation of the sprung mass.

III. T–S FUZZY MODELING

The full-car electrohydraulic suspension model (8) incorpo-

rates well-characterized and essential actuator nonlinearities,

and the controller design is required to consider both the param-

eter uncertainty and the control input constraint, which leads to

a challenging control problem. In order to design a controller for

the model through the fuzzy approach, the T–S fuzzy modeling

technique will be applied, and the idea of “sector nonlinear-

ity” [18] is employed to construct an exact T–S fuzzy model for

the nonlinear uncertain suspension system (8).

Suppose that the actuator force Fi(t) (where i denotes fl, fr,
rl, and rr, respectively) is bounded in practice by its minimum

value Fimin and its maximum value Fimax ; the nonlinear func-

tion fi(t) is then bounded by its minimum value fmin and its

maximum value fmax . Thus, using the idea of “sector nonlin-

Fig. 2. Membership functions.

earity” [18], fi(t) can be represented by

fi(t) = M1i(ξi(t))fmax + M2i(ξi(t))fmin (10)

where ξi(t) = fi(t) is a premise variable, M1i(ξi(t)) and

M2i(ξi(t)) are membership functions, and

M1i(ξi(t)) =
fi(t) − fmin

fmax − fmin
M2i(ξi(t)) =

fmax − fi(t)

fmax − fmin
.

(11)

Similarly, the uncertain sprung mass ms(t) is bounded by its

minimum value msmin and its maximum value msmax , and can

thus be represented by

1

ms(t)
= N1(ξm (t))mmax + N2(ξm (t))mmin (12)

where ξm (t) = 1/ms(t) is also a premise variable, mmax =
1/msmin , mmin = 1/msmax , and N1(ξm (t)) and N2(ξm (t))
are membership functions that are defined as

N1(ξm (t)) =
1/ms(t) − mmin

mmax − mmin

N2(ξm (t)) =
mmax − 1/ms(t)

mmax − mmin
. (13)

For description brevity, we name the aforementioned mem-

bership functions M1i(ξi(t)), M2i(ξi(t)), N1(ξm (t)), and

N2(ξm (t)), shown in Fig. 2, as ‘big,” “small,” ‘light,” and

‘heavy,” respectively. The nonlinear uncertain suspension model

(8) can then be represented by a T–S fuzzy model composed of

32 (25) fuzzy rules, as listed in Table I, where B, S, L, and H

represent ‘big,” ‘small,” ‘light,” and ‘heavy,” respectively. To

describe the T–S fuzzy model more clearly, several examples of

the fuzzy IF-THEN rules corresponding to Table I are explained

as follows.

Model Rule 1:

IF ξi(t) (i denotes fl, fr, rl, and rr, respectively)

are small and ξm (t) is light,
THEN ẋ(t) = A1x(t) + B1w(t) + B2 ū(t)

where matrix A1 is obtained from matrix A(t) in (8) by replacing

fi with fmin and 1/ms with mmax .
...
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TABLE I
LIST OF FUZZY RULES

Model Rule 16:

IF ξi(t) (i denotes fl, fr, rl, and rr, respectively)

are big and ξm (t) is light,
THEN ẋ(t) = A16x(t) + B1w(t) + B2 ū(t)

where matrix A16 is obtained from matrix A(t) in (8) by replac-

ing fi with fmax and 1/ms with mmax .

Model Rule 17:

IF ξi(t) (i denotes fl, fr, rl, and rr, respectively)

are small and ξm (t) is heavy,
THEN ẋ(t) = A17x(t) + B1w(t) + B2 ū(t)

where matrix A17 is obtained from matrix A(t) in (8) by replac-

ing fi with fmin and 1/ms with mmin .
...

Model Rule 32:

IF ξi(t) (i denotes fl, fr, rl, and rr, respectively)

are big and ξm (t) is heavy,
THEN ẋ(t) = A32x(t) + B1w(t) + B2 ū(t)

where matrix A32 is obtained from matrix A(t) in (8) by replac-

ing fi with fmax and 1/ms with mmin .
Thus, the T–S fuzzy model that represents exactly the non-

linear uncertain suspension model (8) under the assumption

of bounds on actuator forces Fi(t) ∈ [Fmin , Fmax ] and sprung

mass ms(t) ∈ [msmin ,msmax ] is obtained as

ẋ(t) =

32
∑

i=1

hi(ξ(t))Aix(t) + B1w(t) + B2 ū(t) (14)

where

h1(ξ(t)) = M2f l(ξf l(t))M2f r (ξf r (t))M2rl(ξrl(t))

× M2rr (ξrr (t))N1(ξm (t))

h2(ξ(t)) = M1f l(ξf l(t))M2f r (ξf r (t))M2rl(ξrl(t))

× M2rr (ξrr (t))N1(ξm (t))

...

h32(ξ(t)) = M1f l(ξf l(t))M1f r (ξf r (t))M1rl(ξrl(t))

× M1rr (ξrr (t))N2(ξm (t)),

hi(ξ(t)) ≥ 0, i = 1, 2, . . . , 32, and

32
∑

i=1

hi(ξ(t)) = 1.

In practice, the actuator force Fi(t), the spool valve position

xvi(t), and the sprung mass ms(t) can be measured; thus, the

T–S fuzzy model (14) can be realized.

It is noted that the T–S fuzzy model (14) is obtained via

the “sector nonlinearity” approach based on the analysis of

the nonlinear function fi(t) and the variation of sprung mass

ms , the bounds of which can be estimated in a real operat-

ing situation. The construction of a T–S fuzzy model from

a given nonlinear dynamic model can also utilize the idea

of “local approximation” or a combination of “sector non-

linearity” and “local approximation” [18]. In general, these

are analytic transformation techniques, which can be applied

only to models described analytically. Since analytic techniques

need problem-dependent human intuition and cannot be easily

solved in some cases, recently, a higher order-singular-value-

decomposition (HOSVD)-based tensor product (TP) model

transformation approach was proposed to automatically and nu-

merically transform a general dynamic system model into a TP

model form, including polytopic and T–S model forms [22].

The TP model representation has shown various advantages

for LMI-based controller design [23], [24], and relaxed LMI

conditions can be further obtained for closed-loop fuzzy sys-

tems with TP structure [25]. There is also a MATLAB Tool-

box for TP model transformation (available for download to-

gether with documentation and examples at http://tptool.sztaki.

hu/tpde).

For our problem, in fact, using the convex normalized (CNO)

type of TP model transformation can obtain the same member-

ship functions as those described before when fi(t) and 1/ms(t)
are used as time-varying parameter variables. However, if ms(t)
is used as a time-varying parameter variable instead of 1/ms(t),
different membership functions can be generated with the TP

model transformation, as shown in Fig. 3. It can be seen from

Fig. 3 that the membership functions are nonlinear, and they

are different from those shown in Fig. 2. Nevertheless, using

this new type of membership function does not alter the LMI-

based controller design process or the design results obtained

with the membership functions defined in (13). Generally, Fi(t)
and xvi(t) can be directly used as the time-varying parameter

variables to obtain the T–S model using the TP model transfor-

mation. However, the TP model transformation should consider

the tradeoff between approximation accuracy and complexity.

For the studied problem, when using the derived membership

functions (11) and (13), only 32 fuzzy rules need to be applied.

Therefore, in this paper, the derived membership functions (11)

and (13) are used. And, despite the authors’ effort, no other

types of membership functions are found to yield better perfor-

mance than the derived membership functions (11) and (13),
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Fig. 3. Membership functions for sprung mass obtained from TP model
transformation.

although there may exist methods to automatically generate

affine decompositions.

IV. FUZZY CONTROLLER DESIGN

In order to avoid the problem associated with having a large

number of inequalities involved in the controller design, the

norm-bounded approach [20], [21] is used to handle the satu-

ration nonlinearity defined in (9). Hence, (14) will be written

as

ẋ(t) =
32
∑

i=1

hi(ξ(t))Aix(t) + B1w(t) + B2 ū(t)

=

32
∑

i=1

hi(ξ(t))Aix(t) + B1w(t) + B2
1 + ε

2
u(t)

+ B2

(

ū(t) −
1 + ε

2
u(t)

)

= Ahx(t) + B1w(t) + B2
1 + ε

2
u(t) + B2v(t) (15)

where Ah =
∑32

i=1hi(ξ(t))Ai and v(t) = ū(t) − 1+ε
2 u(t), 0 <

ε < 1. And for designing the controller, the following lemma

will be used.

Lemma 1 [20]: For the saturation constraint defined by (9),

as long as |u(t)| ≤ u l im

ε , we have
∥

∥

∥

∥

ū(t) −
1 + ε

2
u(t)

∥

∥

∥

∥

≤
1 − ε

2
‖u(t)‖ (16)

and hence
[

ū(t)−
1+ ε

2
u(t)

]T [

ū(t)−
1+ ε

2
u(t)

]

≤

(

1− ε

2

)2

uT (t)u(t)

(17)

where 0 < ε < 1.
The fuzzy controller design for the T–S fuzzy model (15) is

carried out based on the so-called PDC scheme [18]. For the

T–S fuzzy model (15), we construct the fuzzy state feedback

controller via the PDC as

u(t) =

32
∑

i=1

hi(ξ(t))Kix(t) = Khx(t) (18)

where Kh =
∑32

i=1hi(ξ(t))Ki and Ki is the state feedback gain

matrix to be designed.

Since ride comfort is an important performance requirement

for a vehicle suspension and it can usually be quantified by

the sprung mass acceleration, the sprung mass acceleration is

chosen as the control output, i.e.

z(t) = z̈s(t) =

32
∑

i=1

hi(ξ(t))Cix(t) = Chx(t) (19)

where Ch =
∑32

i=1hi(ξ(t))Ci and Ci is extracted from the

eighth to the tenth row of matrix Ai , i = 1, 2, . . . , 32.
In order to design an active suspension to perform adequately

in a wide range of shock and vibration environments, the L2

gain of the system (15) with (19) is chosen as the performance

measure, which is defined as

‖Tzw‖∞ = sup
‖w‖2 �=0

‖z‖2

‖w‖2

(20)

where ‖z‖2
2 =

∫ ∞

0 zT (t)z(t)dt and ‖w‖2
2 =

∫ ∞

0 wT (t)w(t)dt,
and the supermum is taken over all nonzero trajectories of the

system (15) with x(0) = 0. Our goal is to design a fuzzy con-

troller (18) such that the fuzzy system (15) with controller (18)

is quadratically stable and the L2 gain (20) is minimized.

To design the controller, the following lemma will be used.

Lemma 2: For any matrices (or vectors) X and Y with appro-

priate dimensions, we have

XT Y + Y T X ≤ ǫXT X + ǫ−1Y T Y

where ǫ > 0 is any scalar.

Theorem 3: For a given number γ > 0, 0 < ε < 1, the T–S

fuzzy system (15) with controller (18) is quadratically stable and

the L2 gain defined by (20) is less than γ if there exist matrices

Q > 0, Yi , i = 1, 2, . . . , 32, and scalar ǫ > 0, such that, (21)

and (22), as shown at the bottom of the next page.

Moreover, the fuzzy state feedback gains can be obtained as

Ki = YiQ
−1 , i = 1, 2, . . . , 32.

Proof: Let us define a Lyapunov function for the system (15)

as

V (x(t)) = xT (t)Px(t) (23)

where P is a positive definite matrix. By differentiating (23),

we obtain

V̇ (x(t)) = ẋT (t)Px(t) + xT (t)P ẋ(t)

=

[

Ahx(t)+ B1w(t)+ B2
1+ε

2
u(t)+B2v(t)

]T

Px(t)

+ xT (t)P

[

Ahx(t) + B1w(t) + B2
1 + ε

2
u(t)

+ B2v(t)

]

. (24)
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By Lemma 1, Lemma 2, and definition (18), we have

V̇ (x(t)) ≤ xT (t)

[

AT
h P + PAh +

(

B2
1 + ε

2
Kh

)T

P

+ PB2
1 + ε

2
Kh

]

x(t)

+ wT (t)BT
1 Px(t) + xT (t)PB1w(t) + ǫvT (t)v(t)

+ ǫ−1xT (t)PB2B
T
2 Px(t)

≤ xT (t)Θx(t) + wT (t)BT
1 Px(t) + xT (t)PB1w(t)

(25)

where

Θ =

[

AT
h P + PAh +

(

B2
1 + ε

2
Kh

)T

P + PB2
1 + ε

2
Kh

+ ǫ

(

1 − ε

2

)2

KT
h Kh + ǫ−1PB2B

T
2 P

]

(26)

and ǫ is any positive scalar.
Adding zT (t)z(t) − γ2wT (t)w(t) on both sides of (25)

yields

V̇ (x(t)) + zT (t)z(t) − γ2wT (t)w(t)

≤ [xT (t) wT (t) ]

[

Θ + CT
h Ch PB1

BT
1 P −γ2I

][

x(t)

w(t)

]

. (27)

Let us consider

Π =

[

Θ + CT
h Ch PB1

BT
1 P −γ2I

]

< 0 (28)

then, V̇ (x(t)) + zT (t)z(t) − γ2wT (t)w(t) ≤ 0 and the L2 gain

defined in (20) is less than γ > 0 with the initial condition

x(0) = 0 [26]. When the disturbance is zero, i.e., w(t) = 0, it

can be inferred from (27) that if Π < 0, then V̇ (x(t)) < 0, and

the fuzzy system (15) with the controller (18) is quadratically

stable.
Pre- and postmultiplying (28) by diag( P−1 I ) and its trans-

pose, respectively, and defining Q = P−1 and Yh = KhQ, the
condition Π < 0 is equivalent to

Σ =











QAT
h + AhQ +

1 + ε

2
Y T

h BT
2 +

1 + ε

2
B2Yh

+ǫ
(

1 − ε

2

)2

Y T
h Yh+ ǫ−1B2BT

2 + QCT
h ChQ

B1

BT
1 −γ2I











< 0.

(29)

By the Schur complement, Σ < 0 is equivalent to (Ψ), as shown

at the bottom of this page.

By the definitions Ah =
∑32

i=1hi(ξ(t))Ai , Ch =
∑32

i=1hi(ξ(t))Ci , Yh =
∑32

i=1hi(ξ(t))Yi , and the fact

that hi(ξ(t)) ≥ 0 and
∑32

i=1hi(ξ(t)) = 1, Ψ < 0 is equivalent

to (21).

On the other hand, from (18), the constraint |u(t)| ≤ u l im

ε can

be expressed as

∣

∣

∣

∣

∣

32
∑

i=1

hi(ξ(t))Kix(t)

∣

∣

∣

∣

∣

≤
ulim

ε
. (31)

It is obvious that if |Kix(t)| ≤ u l im

ε , then (31) holds. Let

Ω(K) = {x(t)| |xT (t)KT
i Kix(t)| ≤ (u l im

ε )2}; then the equiv-

alent condition for an ellipsoid Ω(P, ρ) = {x(t)| xT (t)Px(t) ≤
ρ} being a subset of Ω(K), i.e., Ω(P, ρ) ⊂ Ω(K), is [19]

Ki

(

P

ρ

)−1

KT
i ≤

(ulim

ε

)2

. (32)





















QAT
i + AiQ +

1 + ε

2

[

Y T
i BT

2 + B2Yi

]

+ ǫ−1B2B
T
2 Y T

i QCT
i B1

∗ −ǫ−1

(

2

1 − ε

)2

I 0 0

∗ ∗ −I 0

∗ ∗ ∗ −γ2I





















< 0 (21)





(ulim

ε

)2

I Yi

Y T
i ρ−1Q



 ≥ 0. (22)

Ψ =





















QAT
h + AhQ +

1 + ε

2

[

Y T
h BT

2 + B2Yh

]

+ ǫ−1B2B
T
2 Y T

h QCT
h B1

∗ −ǫ−1

(

2

1 − ε

)2

I 0 0

∗ ∗ −I 0

∗ ∗ ∗ −γ2I





















< 0. (30)
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By the Schur complement, inequality (32) can be written as











(ulim

ε

)2

I Ki

(

P

ρ

)−1

(

P

ρ

)−1

KT
i

(

P

ρ

)−1











≥ 0. (33)

Using the definitions Q = P−1 and Yi = KiQ, inequality (33)

is equivalent to (22). This completes the proof. �

The minimization of γ can be realized as

min γ subject to LMIs (21) and (22). (34)

This problem can be solved very efficiently by means of the

MATLAB LMI Toolbox software.

Remark 1: It is noted that once the solution of problem (34)

is feasible, then the value of γ can be obtained using the LMI

Toolbox software and the designed controller can guarantee the

L2 gain (20) to be less than γ in terms of the LMI condition (21).

When the designed controller is applied to the system (14), the

real value of the L2 gain (20) for the system (14) under a given

disturbance can be evaluated by measuring the control output

response (19) and calculating the value using equation (20).

Remark 2: In the paper, the common quadratic Lyapunov

function approach, where the Lyapunov function candidate is

defined as in (23), is utilized to derive the controller synthesis

conditions. It has been noted that common quadratic Lyapunov

functions tend to be conservative and, even worse, might not ex-

ist for some complex highly nonlinear systems [17] . This is one

of the main limitations of this kind of approach. With regard

to overcoming the drawback of common quadratic Lyapunov

functions, piecewise quadratic Lyapunov functions and fuzzy

Lyapunov functions have received increasing attention recently

[27], [28]. However, controller synthesis conditions based on

piecewise quadratic Lyapunov functions and fuzzy Lyapunov

functions are generally given by bilinear matrix inequalities

(BMIs), which have to be solved by way of, e.g., a cone com-

plementarity linearisation approach [28] or a descriptor system

approach [27]. Therefore, the computation cost and complex-

ity of using piecewise quadratic Lyapunov function and fuzzy

Lyapunov function approaches would be much higher in general.

In terms of the possible requirement on real-time computation

for a practical system and the feasible solutions checking on

the given system, this paper keeps using the common quadratic

Lyapunov function approach regardless of its conservatism.

V. APPLICATION EXAMPLE

In this section, we will apply the proposed approach to design

a fuzzy state feedback controller for a full-car electrohydraulic

suspension model, as described in Section II. The full-car sus-

pension model parameter values are listed in Table II, and the

parameter values for each hydraulic actuator used in the simu-

lation are given in Table III.

In this study, we suppose that the input voltage of each spool

valve is limited to ulim = 2.5 V, and each actuator output force

is limited to 2000 N. The bounds of the nonlinear function fi(t)
are estimated as fmin = 2800 and fmax = 4000. The sprung

TABLE II
PARAMETER VALUES OF THE FULL-CAR SUSPENSION MODEL

TABLE III
PARAMETER VALUES OF THE HYDRAULIC ACTUATOR

mass is assumed to be varied between msmin = 1120 kg and

msmax = 1680 kg, which is ±20% variation of the nominal

sprung mass. Using the controller design approach presented in

Section IV, and choosing ε = 0.97 by trial and error, we obtain

the controller gain matrices Ki that consist of 32 matrices, each

with dimensions of 4 × 22. It is noted that the controller gain

matrices are constant matrices that do not need to be recalcu-

lated in a real-time implementation and can be easily stored in

a microprocessor memory (RAM or ROM). The calculation of

the control outputs, i.e., input voltages sent to the actuators, in

terms of the measured state variables and the calculated mem-

bership functions is also quite straightforward. Therefore, the

required computational power will not be very high, which en-

ables the implementation of the controller on a DSP, e.g., the

Texas Instruments TMS320C30.

To compare the suspension performance, an optimal H∞

controller is designed for the linear full-car suspension model

(5) without considering the electrohydraulic actuator dynamics

(7). By defining the control output as the sprung mass acceler-

ation and using the bounded real lemma (BRL), this controller

gain matrix is obtained as (35), as shown at the bottom of the

next page.

Since the optimal H∞ controller design theory can be found

in many references, the controller design process is omitted here

for brevity.

In the simulation, a test road disturbance, which is given as

zr (t) = 0.0254 sin 2πt + 0.005 sin 10.5πt

+ 0.001 sin 21.5πt (m) (36)

is used first. This road disturbance is close to the car body

resonance frequency (1 Hz), with high-frequency disturbance

added to simulate the rough road surface. To observe the roll

motion, this road disturbance is assumed to pass the wheels on

the left side of the car only. The simulation program is realized

by MATLAB/Simulink.

For the nominal sprung mass under the specified road distur-

bance (36), the time-domain responses for three suspensions,

i.e., passive suspension, active suspension with H∞ controller

(35), and active suspension with the electrohydraulic actuators
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Fig. 4. Time-domain responses under a test road profile. Solid line is for active suspension with fuzzy controller. Dotted line is for active suspension with H∞

controller. Dot-dashed line is for passive suspension.

and the designed fuzzy controller are compared. The responses,

consisting of the sprung mass heave acceleration, heave dis-

placement, pitch angle, and roll angle, are plotted in Fig. 4. It

is observed from Fig. 4 that the proposed fuzzy control strategy

reduces the sprung mass acceleration and displacement mag-

nitudes significantly compared to the passive suspension under

the same road disturbance. The active suspension with the de-

signed fuzzy controller also achieves a very similar suspension

performance to the active suspension with an optimal H∞ con-

troller. This confirms that the proposed fuzzy control strategy

can realize good suspension performance with highly nonlinear

electrohydraulic actuators.

Fig. 5 shows the actuator output forces for the active sus-

pension with the designed fuzzy controller. It is observed that

the four actuators provide different control forces in accordance

with the fuzzy rules and the measurements of the state variables.

The proposed fuzzy control strategy provides effective actuator

forces that aim to optimize the sprung mass heave acceleration,

pitch acceleration, and roll acceleration to improve ride com-

fort performance. Fig. 6 shows the control input voltages, and

Fig. 7 shows the nonlinear function outputs. It can be seen from

Figs. 6 and 7 that the control input voltages are within the de-

fined input voltage range and the nonlinear function outputs are

located within the estimated bounds.

Now, consider the case of an isolated bump in an otherwise

smooth road surface. The corresponding ground displacement

for the wheel is given by

zr (t) =















a

2

(

1 − cos

(

2πv0

l
t

))

, 0 ≤ t ≤
l

v0

0, t >
l

v0

(37)

where a and l are the height and the length of the bump. We

choose a = 0.1 m, l = 10 m, and the vehicle forward velocity

as v0 = 45 km/h.

For the nominal sprung mass under the road disturbance (37),

Fig. 9 shows the bump responses of the sprung mass heave

104 ×











−1.0324 −0.2478 −1.2670 0.8961 0.2431 2.2499

−1.0324 −0.2478 1.2670 0.2431 0.8961 −2.0930

−1.3299 1.3735 −1.5342 0.4602 −0.4434 −0.6042

−1.3299 1.3735 1.5342 −0.4434 0.4602 1.6712

−2.0930 0.2879 0.3718 0.0665 0.0044 −0.0023 0.0078 −0.0072

2.2499 0.2879 0.3718 −0.0665 −0.0023 0.0044 −0.0072 0.0078

1.6712 0.2097 −0.3700 0.0504 0.0128 −0.0124 0.0110 −0.0081

−0.6042 0.2097 −0.3700 −0.0504 −0.0124 0.0128 −0.0081 0.0110











.

(35)
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Fig. 5. Actuator output forces for active suspension with fuzzy controller.

Fig. 6. Actuator control voltages for active suspension with fuzzy controller.

acceleration, pitch acceleration, and roll acceleration for the

passive suspension, the active suspension with H∞ controller

(35), and the active suspension with the electrohydraulic actua-

tors and the designed fuzzy controller. It is again observed that

the proposed fuzzy control strategy achieves suspension per-

formance very similar to the active suspension with an optimal

H∞ controller. The active suspension performance is signifi-

cantly improved compared to the passive suspension.

To illustrate the effect of sprung mass variation, Fig. 9 shows

the bump responses of the sprung mass heave acceleration for
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Fig. 7. Nonlinear function values for active suspension with fuzzy controller.

Fig. 8. Acceleration responses under a bump road profile. Solid line is for active suspension with fuzzy controller. Dotted line is for active suspension with H∞

controller. Dot-dashed line is for passive suspension.

the passive suspension (passive) and the active suspension with

electrohydraulic actuator and fuzzy controller (active) when the

sprung mass is 1120 and 1680 kg. It is observed that, despite the

change in sprung mass, the designed fuzzy controller achieves

significantly better performance on heave acceleration, where a

lower peak and shorter settling time are obtained. Figs. 10 and 11

show the bump responses of the sprung mass pitch acceleration

and roll acceleration, respectively. It can be seen from Fig. 10

that the sprung mass affects the pitch acceleration significantly.

However, the active suspension can keep the pitch acceleration
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Fig. 9. Heave acceleration responses for different sprung mass.

Fig. 10. Pitch acceleration responses for different sprung mass.

low, regardless of the sprung mass variation. In Fig. 11, the

active suspension achieves lower roll acceleration compared to

the passive suspension, although the sprung mass variation does

not affect roll acceleration due to the symmetric distribution of

the sprung mass about the vehicle’s roll axis. Figs. 9–11 indicate

that the improvement in ride comfort can be maintained by the

designed active suspension for large changes in load conditions.

When the road disturbance is considered as random vibration,

it is typically specified as a stationary random process that can

be represented by

żr (t) = 2πq0

√

G0V ω(t) (38)

where G0 stands for the road roughness coefficient, q0 is the

reference spatial frequency, V is the vehicle forward velocity,

and ω(t) is zero-mean white noise with identity power spectral

density. For a given road roughness G0 = 512 × 10−6 m3 and

a given vehicle forward velocity V = 20 m/s, the rms values

for sprung mass heave acceleration, pitch acceleration, and roll
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Fig. 11. Roll acceleration responses for different sprung mass.

Fig. 12. RMS ratios for sprung mass heave acceleration, pitch acceleration, and roll acceleration versus sprung mass.

acceleration are calculated as the sprung mass changes from

1120 to 1680 kg. The rms ratios between the active suspension

with fuzzy controller and the passive suspension are plotted

against sprung mass in Fig. 12. It can be seen that the designed

fuzzy controller maintains a ratio below 1, regardless of the

large variations in the sprung mass. When the road roughness

and vehicle forward velocity are given different values, very

similar results are obtained. For brevity, these results are not

shown. Fig. 12 further validates the claim that the proposed

fuzzy control strategy can realize good ride comfort perfor-

mance for electrohydraulic suspension even when the sprung

mass is varied significantly.

VI. CONCLUSION

In this paper, we have presented a fuzzy state feedback control

strategy for electrohydraulic active suspensions to deal with

the nonlinear actuator dynamics, sprung mass variation, and
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control input constraint problems. First, using the idea of “sector

nonlinearity,” the nonlinear uncertain electrohydraulic actuator

was represented by a T–S fuzzy model in defined regions. Thus,

by means of the PDC scheme, a fuzzy state feedback controller

was designed for the obtained T–S fuzzy model to optimize the

H∞ performance of ride comfort. At the same time, the actuator

input voltage constraint was incorporated into the controller

design process. The sufficient conditions for designing such a

controller were expressed by LMIs. Simulations were used to

validate the effectiveness of the designed controller.
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