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Fuzzy control for uncertainty nonlinear

systems with dual fuzzy equations

Raheleh Jafari and Wen Yu∗

Departamento de Control Automático, CINVESTAV-IPN (National Polytechnic Institute), Mexico City, 
Mexico

Abstract. Many uncertain nonlinear systems can be modeled by the linear-in-parameter model, and the parameters are uncertain

in the sense of fuzzy numbers. Fuzzy equations can be used to model these nonlinear systems. The solutions of the fuzzy equations

are the controllers. In this paper, we give the controllability condition for the fuzzy control via dual fuzzy equations. Two types

of neural networks are applied to approximate the solutions of the fuzzy equations. These solutions are then transformed into the

fuzzy controllers. The novel methods are validated with five benchmark examples.

Keywords: Fuzzy equation, fuzzy number, fuzzy control

1. Introduction

Fuzzy control can be divided into direct and indirect

methods [15]. The direct fuzzy uses a fuzzy system as a

controller, while the indirect fuzzy control uses a fuzzy

model to approximate the nonlinear system first, then

a controller is designed based on the fuzzy model. The

indirect fuzzy controller utilizes the simple topological

structure and universal approximation ability of fuzzy

model. It has been widely used in uncertain nonlinear

system control. We use indirect fuzzy control in this

paper.

The fuzzy model usually comes from several fuzzy

rules [36]. These fuzzy rules represent the controlled

nonlinear system. Since any nonlinear system can

be approximated by several piecewise linear systems

(Takagi-Sugeno fuzzy model) or known nonlinear sys-

tems (Mamdani fuzzy model) [23], fuzzy models can

approximate a large class of nonlinear systems, while

keep the simplicity of the linear models. In this paper,

we discuss another type of fuzzy model. The basic idea
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Mexico City, Mexico. Tel.: +52 55 57473734; Fax: +52 55 57473982;
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is: many nonlinear systems can be expressed by linear-

in-parameter models, such as Lagrangian mechanical

systems [31]. The parameters of these models are uncer-

tain, and the uncertainties satisfy the fuzzy set theory

[41]. In this way, the inconvenience problems in non-

linear modeling, complexity and uncertainty, are solved

by linear-in-parameter structure and fuzzy logic theory.

The linear-in-parameter model with fuzzy parameters

is called fuzzy equation [10, 14, 30].

Fuzzy equations are very simple compared with the

normal system systems [23, 36]. They can applied

directly for nonlinear control. The nonlinear system

modeling corresponds to find the fuzzy parameters of

the fuzzy equation, and the fuzzy control is to design

suitable nonlinear functions in the fuzzy equation. Both

fuzzy modeling and fuzzy control via fuzzy equations

need solution of the fuzzy equation. There are various

approaches [16] uses the parametric form of fuzzy num-

bers and replaced the original fuzzy equations by crisp

linear systems. In [8], the extension principle is applied.

The coefficients can be real or complex fuzzy numbers.

However, the existence of the solution is not guaranteed

[1] suggests the homeotypic analysis method [2] applies

the Newton’s method. In [4], the solution of fuzzy equa-

tions are obtained by the fixed point method. One of

mailto:yuw@ctrl.cinvestav.mx
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the well-known methods is the method of α-level [17].

By using the method of superimposition of sets, fuzzy

numbers can be solved. Recently, fuzzy fractional dif-

ferential and integral equations have been extensively

studied in [3, 5, 24, 29, 37]. However, the above methods

are very complex.

The numerical solution of the fuzzy equation can be

obtained by iterative method [21], interpolation method

[39], and Runge-Kutta method [28]. It can also applied

to fuzzy differential equations [22]. These methods are

also difficult to be applied. Both neural networks and

fuzzy logic are universal estimators, they can approxi-

mate any nonlinear function to any prescribed accuracy,

provided that sufficient hidden neurons and fuzzy rules

are available [13]. Resent results show that the fusion

procedure of these two different technologies seems to

be very effective for nonlinear systems identification

[40]. Neural networks can also be used to solve the

fuzzy equation. In [9], the simple fuzzy quadratic equa-

tion is solved by a three neurons networks [19] and [20]

extend the results of [9] into fuzzy polynomial equation.

[26] gives a matrix form of the neural learning. How-

ever, these methods are very special, they cannot solve

general fuzzy equations with neural networks.

In this paper, we discuss more general fuzzy

equations: dual fuzzy equations [39]. Normal fuzzy

equations have fuzzy numbers only on one side of the

equation. However, dual fuzzy equations have fuzzy

numbers on both sides of the equation. Since the fuzzy

numbers cannot be moved between the sides of the

equation [21], dual fuzzy equations are more general

and difficult. We first discuss the existence of the solu-

tions of the dual fuzzy equations. It corresponds to

controllability problem of the fuzzy control [12]. Then

we provide two methods to approximate the solutions

of the dual fuzzy equations. They are controller design

process. Finally, we use five real examples to show the

effectiveness of our fuzzy control design methods with

neural networks.

2. Uncertain nonlinear system modeling with

dual fuzzy equations

Consider the following unknown discrete-time non-

linear system

x̄k+1 = f̄ [x̄k, uk] , yk = ḡ [x̄k] (1)

where uk ∈ ℜu is the input vector, x̄k ∈ ℜl is an inter-

nal state vector, and yk ∈ ℜm is the output vector.

f̄ and ḡ are general nonlinear smooth functions

f̄ , ḡ ∈ C∞. Denoting Yk =
[

yT
k+1, y

T
k , · · ·

]T
, Uk =

[

uT
k+1, u

T
k , · · ·

]T
. If ∂Y

∂x̄
is non-singular at x̄ = 0, U =

0, this leads to the following model

yk = �[yT
k−1, y

T
k−2, · · · u

T
k , uT

k−1, · · · ] (2)

where � (·) is an unknown nonlinear difference equa-

tion representing the plant dynamics, uk and yk are

measurable scalar input and output. The nonlinear sys-

tem (2) is a NARMA model. We can also regard the

input of the nonlinear system as

xk = [yT
k−1, y

T
k−2, · · · u

T
k , uT

k−1, · · · ]T (3)

the output as yk.

Many nonlinear systems as in (2) can be rewritten as

the following linear-in-parameter model,

yk =
n

∑

i=1

aifi (xk) (4)

or

yk +
m

∑

i=1

bigi(xk) =
n

∑

i=1

aifi (xk) (5)

where ai and bi are linear parameters, fi (xk) and gi(xk)

are nonlinear functions. The variables of these functions

are measurable input and output.

A famous example of this kind of model is the robot

manipulator [31]

M (q) q̈ + C (q, q̇) q̇ + Bq̇ + g (q) = τ (6)

(6) can be rewritten as

n
∑

i=1

Yi (q, q̇, q̈) θi = τ (7)

To identify or control the linear-in-parameter sys-

tems (4), (5) or (7), the normal least square or adaptive

methods can be applied directly.

In this paper, we consider the uncertain nonlinear sys-

tems, i.e., the parameters ai, bi or θi are not fixed (not

crisp). They are uncertain in the sense of fuzzy logic.

The uncertain nonlinear systems are modeled by linear-

in-parameter models with fuzzy parameters. These

models are called fuzzy equations. Before introduce

fuzzy equations, we need the following definitions. The

explanations for these definitions can be found in [42].

Definition 1. [fuzzy number] A fuzzy number u is a

function u ∈ E : ℜ → [0, 1], such that, 1) u is normal,

(there exists x0 ∈ ℜ such that u(x0) = 1; 2) u is convex,
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u(λx + (1 − λ)y) ≥min{u(x), u(y)}, ∀x, y ∈ ℜ, ∀λ ∈
[0, 1]; 3) u is upper semi-continuous on ℜ, i.e., u(x) ≤
u(x0) + ε, ∀x ∈ N(x0), ∀x0 ∈ ℜ,, ∀ε > 0, N(x0) is a

neighborhood; 4) The set u+ = {x ∈ ℜ, u(x) > 0} is

compact.

We use so called membership functions to express the

fuzzy number. The most popular membership functions

are the triangular function

u (x) = F (a, b, c) =

{

x−a
b−a

a ≤ x ≤ b

c−x
c−b

b ≤ x ≤ c
(8)

otherwise u (x) = 0, and trapezoidal function

u (x) = F (a, b, c, d) =

⎧

⎪

⎨

⎪

⎩

x−a
b−a

a ≤ x ≤ b

d−x
d−c

c ≤ x ≤ d

1 b ≤ x ≤ c

(9)

otherwise u (x) = 0.

Similar with crisp number, the fuzzy number u has

also four basic operations: ⊕, ⊖, ⊙, and ⊘. They

represent the operations: sum, subtract, multiply, and

“multiplied by a crisp number”.

The dimension of x in the fuzzy number u depends

on the membership function, for example (8) has three

variables (9), has four variables. In order to define con-

sistency operations, we first apply α−level operation to

the fuzzy number.

Definition 2. [α-level] The α-level of fuzzy number u

is defined as

[u]α = {x ∈ ℜ : u(x) ≥ α} (10)

where 0 < α ≤ 1, u ∈ E.

So [u]0 = u+ ={x ∈ ℜ, u(x) > 0}. Because α ∈
[0, 1], [u]α is a bounded asuα ≤ [u]α ≤ uα.Theα-level

of u between uα and uα is defined as

[u]α = A
(

uα, uα
)

(11)

Let u, v ∈ E, λ ∈ ℜ, we define the following fuzzy

operations. uα and uα are the function of α. We define

uα = dM(α), uα = dU (α), α ∈ [0, 1].

Definition 3. [Lipchitz constant] [27] The Lipschitz

constant H of a fuzzy number u ∈ E is

|dM(α1) − dM(α2)| ≤ H |α1 − α2|
or |dU (α1) − dU (α2)| ≤ H |α1 − α2|

(12)

Definition 4. [fuzzy operations] [38] Sum,

[u ⊕ v]α = [u]α + [v]α = [uα + vα, uα + vα] (13)

Subtract,

[u ⊖ v]α = [u]α − [v]α = [uα − vα, uα − vα] (14)

Multiply,

wα ≤ [u ⊙ v]α ≤ wα or [u ⊙ v]α = A
(

wα, wα
)

(15)

where wα = uαv1 + u1vα − u1v1, wα = uαv1 + u1

vα − u1v1, α ∈ [0, 1]. It is a cross product of twp fuzzy

numbers.

Multiplied by a crisp number: For arbitrary crisp real

positive number τ,

−τuα ≤ [u]α ⊘ τ ≤ −τuα

or [u]α ⊘ τ = A (−τuα, −τuα)

Obviously, we have the following properties: the scalar

multiplication: α ∈ [0, 1]

[λu]α = λ[u]α =

{

A (λuα, λuα) λ ≥ 0

A (λuα, λuα) λ < 0
(16)

⊖u = (−1)u, u ∈ E

Definition 5. [dot product] [6]The dot product of two

fuzzy variables u and v is

(u.v)α = A

(

min{uαvα, uαvα, uαvα, uαvα}
max{uαvα, uαvα, uαvα, uαvα}

)

Definition 6. [distance] The distance between the fuzzy

numbers u and v is

d(u, v) = sup
0≤α≤1

{max
(

|uα − vα|, |uα − vα|
)

} (17)

Definition 7. [absolute value] [2] Absolute value of a

triangular fuzzy number u(x) = F (a, b, c) is

|u(x)| = |a| + |b| + |c| (18)

Definition 8. [positive] A fuzzy number u ∈ E is said

to be positive if u1 ≥ 0 and negative if u1 ≤ 0.

Clearly, If u is positive and v is negative then u ⊙
v = ⊖(u ⊙ (⊖v)) is a negative fuzzy number. If u is

negative and v is positive then u ⊙ v = ⊖((⊖u) ⊙ v) is

a negative fuzzy number. If u and v are negative then

u ⊙ v = (⊖u) ⊙ (⊖v) is a positive fuzzy number.
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If u is positive and v is negative:

(u ⊙ v)α = A

(

uαv1 + u1vα

−u1v1, uαv1 + u1vα − u1v1

)

If u is negative and v is positive:

(u ⊙ v)α = A

(

uαv1 + u1vα

−u1v1, uαv1 + u1vα − u1v1

)

If u and v are negative:

(u ⊙ v)α = A

(

uαv1 + u1vα

−u1v1, uαv1 + u1vα − u1v1

)

When the parameters in the linear-in-parameter

model (4) or (5) are fuzzy number, (4) and (5) become

fuzzy equations. For the uncertain nonlinear system (1),

we use the following two types of fuzzy equations to

model it

yk = a1f1(xk) ⊕ a2f2(xk) ⊕ ... ⊕ anfn(xk) (19)

or

a1f1(xk) ⊕ a2f2(xk) ⊕ ... ⊕ anfn(xk)

= b1g1(xk) ⊕ b2g2(xk) ⊕ ... ⊕ bmgm(xk) ⊕ yk

(20)

Because ai and bi are fuzzy numbers, we use the fuzzy

operation ⊕. (20) has more general form than (19), it is

called dual fuzzy equation.

In a special case, fi(xk) has polynomial form,

a1xk ⊕ ... ⊕ anx
n
k = b1xk ⊕ ... ⊕ bnx

n
k ⊕ yk (21)

(21) is called dual fuzzy polynomial.

If we use the dual polynomial fuzzy Equation (21) to

model a nonlinear function

zk = f (xk) (22)

The object is to minimize error between the two out-

put yk and zk. Since yk is a fuzzy number and zk is a

crisp number, we use the maximum of all points as the

modeling error

max
k

|yk − zk| = max
k

|yk − f (xk)| = max
k

|βk| (23)

where yk =F (a (k) , b (k) , c (k)) , βk =F (β1, β2, β3) ,

which are defined in (8). From the definition of the

absolute value of a triangular fuzzy number (18),

maxk |βk| = maxk

[

|a (k) − f (xk)|
+|b (k) − f (xk)| + |c (k) − f (xk)|

]

β1 = maxk |a (k) − f (xk)|
β2 = maxk {b (k) + f (xk)}
β3 = maxk {c (k) + f (xk)}

(24)

The modelling problem (23) is to find a (k) , b (k) , and

c (k) , such that

min
ak,bk,ck

{

max
k

|βk|
}

= min
ak,bk,ck

{

max
k

|yk − f (xk)|
}

(25)

From (24)

β1 ≥ |a (k) − f (xk)|, β2 ≥ b (k) + f (xk)

β3 ≥ c (k) + f (xk)

(25) can be solved by the linear programming method,
⎧

⎪

⎪

⎨

⎪

⎪

⎩

min β1

subject:
β1 +

∑n
j=0 ajx

j
k ⊖

∑n
j=0 bjx

j
k ≥ f (xk)

β1 − {
∑n

j=0 ajx
j
k ⊖

∑n
j=0 bjx

j
k} ≥ −f (xk)

(26)
⎧

⎪

⎪

⎨

⎪

⎪

⎩

min β2

subject:
β2 −

[

∑n
j=0 ajx

j
k ⊖

∑n
j=0 bjx

j
k

]

≥ f (xk)

β2 ≥ 0

(27)
⎧

⎪

⎪

⎨

⎪

⎪

⎩

min β3

subject:
β3 −

[

∑n
j=0 ājx

j
k ⊖

∑n
j=0 b̄jx

j
k

]

≥ f (xk)

β3 ≥ 0

(28)

where aj, bj, āj and b̄j are defined as in (11). In

this way, the best approximation of f (xk) at point xk

is yk = F (ak, bk, ck). The approximation error of this

approximation βk is minimized.

In this paper, we use the dual fuzzy Equation (20)

to model the uncertain nonlinear system (1). The con-

troller design process is to find uk, such that the output

of the plant yk can follow desired output y∗
k , or the

trajectory tracking error is minimized

min
uk

∥

∥yk − y∗
k

∥

∥ (29)

This control object can be considered as: finding a

solution uk for the following dual fuzzy equation

a1f1(xk) ⊕ a2f2(xk) ⊕ ... ⊕ anfn(xk)

= b1g1(xk) ⊕ b2g2(xk) ⊕ ... ⊕ bmgm(xk) ⊕ y∗
k

(30)
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where xk = [yT
k−1, y

T
k−2, · · · uT

k , uT
k−1, · · · ]T

It is impossible to obtain an analytical solution for

(30). In this paper, we use neural networks to approxi-

mate the solution.

2.1. Controllability of uncertain nonlinear systems

via dual fuzzy equations

Since the control object is to find a uk for the

dual fuzzy Equation (30), the controllability problem

becomes if the dual fuzzy equation has solution. In order

to show the existence of the solution of (30). We need

the following lemmas

Lemma 1. If the dual fuzzy Equation (30) has a crisp

solution uk, then
{

∩n
j=1domain

[

fj (x)
]}

∩
{

∩m
j=1domain

[

gj (x)
]}

/= φ

(31)

Proof. Let u0 ∈ ℜ be a solution of (30), the dual fuzzy

equation becomes

a1f1(u0) ⊕ ... ⊕ anfn(u0)

= b1g1(u0) ⊕ ... ⊕ bmgm(u0) ⊕ y∗
k

Since fj(u0) and gj(u0) exist, u0 ∈domain
[

fj (x)
]

,

u0 ∈domain
[

gj (x)
]

. Consequently, it can be con-

cluded that u0 ∈ ∩n
j=1domain

[

fj (x)
]

= D1, and u0 ∈
∩m

j=1domain
[

gj (x)
]

= D2. So there exists u0, such

that u0 ∈ D1 ∩ D2 /= φ.

Obviously, the necessary condition for the existence

of the solution of (30) is (31).

Assume two fuzzy numbers m0, n0 ∈ E, m0 < n0.

Define a set K (x) = {x ∈ E, m0 ≤ x ≤ n0}, and an

operator S : K → K, such that

S (m0) ≥ m0, S (n0) ≤ n0 (32)

here S is condensing and continuous, it is bounded as

S(z) < r(z), z ⊂ K and r(z) > 0. r(Z) can be regarded

as the measure of z.

Lemma 2. If we define ni = S (ni−1) and mi =
S (mi−1), i = 1, 2, ..., the upper and lower bounds of

S are s̄ and s, then

s̄ = lim
i→+∞

ni, s = lim
i→+∞

mi, (33)

and

m0 ≤ m1 ≤ ... ≤ mn ≤ ... ≤ nn ≤ ... ≤ n1 ≤ n0.

(34)

The proof of this lemma is directly, see [11].

If there exists a fixed point x0 in K, the successive

iterates xi = S (xi−1) , i = 1, 2, ... will converge to x0,

i.e., the distance (17) limi→∞ d(xi, x0) = 0.

Theorem 1. If the fuzzy numbers ai and bj (i = 1 · · · n,

j = 1 · · · m) in (30) satisfy the Lipschitz condition (12)

|dM(ai) − dM(ak)| ≤ H |ai − ak|
|dU (ai) − dU (ak)| ≤ H |ai − ak|
|dM(bi) − dM(bk)| ≤ H |bi − bk|
|dU (bi) − dU (bk)| ≤ H |bi − bk|

(35)

where k = 1 · · · n, dM and dU are defined in (12), the

upper bounds of fi and gj are |fi| ≤ f̄ ,
∣

∣gj

∣

∣ ≤ ḡ, then

the dual fuzzy Equation (30) has a solution u which is

in the following set

KH =

{

u ∈ E, |uα1 − uα2 |
≤

(

nf̄ + mḡ
)

H |α1 − α2|

}

(36)

Proof. Because the fuzzy numbers ai and bj in (30)

are linear-in-parameter, from the definition (12) and the

property (16)

dM(α) = a1M(α)f1(x) ⊕ ... ⊕ anM(α)fn(x)

⊖b1M(α)g1(x) ⊖ ... ⊖ bmM(α)gm(x)

So

|dM(α) − dM(ϕ)| = |f1(x)| | a1M(α) ⊖ a1M(ϕ) |
+ · · · + |fn(x)| |anM(α) ⊖ anM(ϕ)|
+ |g1(x)| |b1M(α) ⊖ b1M(ϕ)|
+ · · · + |gm(x)| |bmM(α) ⊖ bmM(ϕ)|

(37)

By the Lipschitz condition (12), (37) is

|dM(α) − dM(ϕ)| ≤ f̄H
∑n

i=1 |α − ϕ|
+ḡH

∑n
i=1 |α − ϕ| =

(

nf̄ + mḡ
)

H |α − ϕ|

Similarly, the upper bounds satisfy

|dU (α) − dU (ϕ)| ≤
(

nf̄ + mḡ
)

H |α − ϕ|

Since the lower bound |dM(α) − dM(ϕ)| ≥ 0, by

Lemma 2 the solution is in KH which is defined in (36).

The following theorem uses linear the programming

conditions (26)–(28) to show the controllability condi-

tions of the dual polynomial fuzzy Equation (21).

Lemma 3. If the data number m and the order the

polynomial n in (21) satisfy

m ≥ 2n + 1 (38)
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where k = 1 · · · m, then the solutions of (27) and (28)

are β2 = β3 = 0.

Proof. Because

n
∑

j=0

ajx
j
k ⊖

n
∑

j=0

bjx
j
k ≤ −f (xk) (39)

i = 1, 2, ..., m. We choose 2n + 1 points for xk, and the

interpolating the dual polynomial

b (k) =
n

∑

j=0

ajx
j
k ⊖

n
∑

j=0

bjx
j
k (40)

If h = maxk{b (k) + f (xk)} and h > 0, then we can

change the dual polynomial (21) into a new dual poly-

nomial b (k) − h. This new dual polynomial satisfies

(39). Because the feasible point of (27) β2 ≥ 0, it must

be zero. Similar result can be obtained for (28).

Both f (xk) and xk are crisp. If the data number is

k = 1 · · · n, there exists solution for the polynomial

approximation [25]. Because b (k) and c (k) , (26) has a

solution.

Theorem 2. If the data number is big enough as (38),

and the dual polynomial fuzzy Equation (21) satisfies

D [h (xk1, uk1) , h (xk2, uk2)] ≤ lD [uk1, uk2] (41)

where 0 < l < 1, h (·) represents a dual polynomial

fuzzy equation,

h (xk1, uk1) : a1xk1 ⊕ ... ⊕ anx
n
k1

= b1xk1 ⊕ ... ⊕ bnx
n
k1 ⊕ yk1

(42)

D [u, v] is the Hausdorff distance [32],

D [u, v] = max

{

sup
x∈u

inf
y∈v

d (x, y) , sup
x∈v

inf
y∈u

d (x, y)

}

d (x, y) is the distance defined in (17), then (21) has a

unique solution u.

Proof. From Lemma 2 we know, there are solutions for

(26)–(28), if there are many data which satisfy (38).

Without loss of generality, we assume the solutions for

(26)–(28) are at xk = 0, which corresponds to u0 (41)

means h (·) in (42) is continuous. If we choose a δ > 0

such that D
[

yk, u0

]

≤ δ, then

D [h(xk, u0), u0] ≤ (1 − l)δ

Here h(0, u0) = u0. Now we select x near 0, xk ∈
[0, c], c > 0, and define

C0 : ρ = sup
xk∈[0,c]

D
[

yk1
, yk2

]

Let {ykm} be a sequence in C0, for any ε > 0, we can

find N0(ε) such that ρ < ε, m, n ≥ N0. So ykm −→ yk

for xk ∈ [0, c]. Furthermore

D
[

yk, u0

]

≤ D
[

yk, ykm

]

+ D
[

ykm , u0

]

< ε + δ

(43)

for all x ∈ [0, c], m ≥ N0(ε). Since ε > 0 is arbitrary

small,

D
[

yk, u0

]

≤ δ (44)

for all x ∈ [0, c]. We now show that yk is continuous at

x0 = 0. Given δ > 0, there exists δ1 > 0 such that

D
[

yk, u0

]

≤ D
[

yk, ykm

]

+ D
[

ykm , u0

]

≤ ε + δ1

for every m ≥ N0(ε), by (44), whenever |x − x0| < δ1,

yk is continuous at x0 = 0. So (21) has a unique solution

u0.

The necessary condition for the controllability (exis-

tence of solution) of the dual fuzzy Equation (30) is

(31), the sufficient condition of the controllability is

(35). For most of membership functions such as the tri-

angular function (8) and the trapezoidal function (9),

the Lipschitz condition (35) is satisfied. They are con-

trollable.

3. Fuzzy controller design with neural

networks approximation

There are not analytical solution for the dual fuzzy

Equation (30). In this paper, we use neural networks

to approximate the solution (control). In order to use

neural networks to approximate the solution of the dual

fuzzy Equation (30), we first need to transform it into

normal fuzzy Equation as (19).

Generally, the inverse element for an arbitrary fuzzy

number u ∈ E does not exist , i.e., there is not v ∈ E,

such that

u ⊕ v = 0

In other word,

u ⊕ (⊖u) /= 0



R. Jafari and W. Yu / Fuzzy control with fuzzy equations

Fig. 1. Dual fuzzy equation in the form of neural network (NN).

So (30) cannot be

a1f1(xk) ⊕ ... ⊕ anfn(xk) ⊖ b1g1(xk)

⊖... ⊖ bmgm(xk) = y∗
k

[a1 ⊖ b1] f1(xk) ⊕ [a2 ⊖ b2] f2(xk) ⊕ ... = y∗
k

In this paper we use the ⊘ operation. We add ⊕bigi(x),

and apply ⊘τ on the both sides of (30)

a1f1(xk) ⊕ ... ⊕ anfn(xk)

⊕
{[

b1g1(x) ⊕ ... ⊕ bmgm(x)
]

⊘ τ
}

= b1g1(xk) ⊕ ... ⊕ bmgm(xk)

⊕
{[

b1g1(x) ⊕ ... ⊕ bmgm(x)
]

⊘ τ
}

⊕ y∗
k

(45)

When τ = 1, be the definition of ⊘, (45) is

a1f1(x) ⊕ ... ⊕ anfn(x) ⊖ b1g1(x) ⊖ ... ⊖ bmgm(x) = y∗
k

(46)

We design a neural network to represent the fuzzy

equation (46), see Fig. 1. The input to the neural network

is the fuzzy numbers ai and bi, the output of the fuzzy

number yk. The weights are fi (x) and gj (x) .

The objective is to find suitable weight x (solution)

such that the output of the neural network ŷk converges

to the desired output y∗
k . In the control point of view,

we want to find a controller uk which is a function of

x, such that the output of the plant (1) yk (crisp value)

approximate the fuzzy number y∗
k .

In order to simplify the operation of the neural net-

work as in Fig. 1, we use the triangular fuzzy number

(8) in this paper. The input fuzzy numbers ai and bi are

first applied to α-level as in (10)

[ai]
α = A

(

aα
i , aα

i

)

i = 1 · · · n

[bj]α = A
(

bα
i , b

α

i

)

j = 1 · · · m
(47)

Then they are multiplied by the weights fi (x) and

gj (x) , and summarized according to (13)

[

Of

]α = A

(∑

iǫMf
fi (x) ai

α +
∑

iǫCf
fi (x) ai

α,
∑

iǫCf
fi (x) ai

α,
∑

iǫMf
fi (x) ai

α

)

[

Og

]α = A

(∑

jǫMg
gj (x) bj

α +
∑

jǫCg
gj (x) bj

α
,

∑

jǫCg
gj (x) bj

α
,
∑

jǫMg
gj (x) bj

α

)

(48)

where Mf = {i|fi (x) ≥ 0}, Cf ={i|fi (x) < 0}, Mg =
{j|gj (x) ≥ 0}, Cg = {j|gj (x) < 0}.

The output of the neural network is

[

ŷk

]α = A
(

Of
α − Og

α, Of
α − Og

α
)

(49)

In order to train the weights, we need to define a cost

function for the fuzzy numbers. The training error is

ek = y∗
k ⊖ ŷk

where
[

y∗
k

]α =A
(

y∗
k
α, y∗

k

α
)

,
[

ŷk

]α = A
(

ŷk
α, ŷk

α
)

,

[ek]α = A
(

ek
α, ek

α
)

. The cost function is defined as

Jk = Jα + J
α

Jα = 1
2

(

y∗
k
α − ŷk

α
)2

J
α = 1

2

(

y∗
k

α − ŷk
α
)2

(50)

Obviously, Jk → 0 means
[

ŷk

]α →
[

y∗
k

]α
.

Remark 1. A main advantage of the least mean square

index (50) is that it has a self-correcting feature which

permits to operate for arbitrarily long period without

deviating from its constraints. The corresponding gra-

dient algorithm is susceptible to cumulative round off

errors and is suitable for long runs without an addi-

tional error-correction procedure. It is more robust in

statistics, identification and signal processing [33].

Now we use gradient method to train the weights

fi (x) and gj (x). The solution x0 is the functions of

fi (x) and gj (x) . We calculate ∂Jk

∂x0
as

∂Jk

∂x0
=

∂Jα

∂x0
+

∂J
α

∂x0
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By the chain rule

∂Jα

∂x0
= ∂Jα

∂ŷk
α

∂ŷk
α

∂Of
α

∑ ∂Of
α

∂fi(x)
∂fi(x)
∂x0

+ ∂eα

∂ŷk
α

∂ŷk
α

∂Og
α

∑ ∂Og
α

∂gj(x)

∂gj(x)

∂x0

∂J
α

∂x0
= ∂Jα

∂ŷk
α

∂ŷk
α

∂Of
α

∑ ∂Of
α

∂fi(x)
∂fi(x)
∂x0

+ ∂ek
α

∂ŷk
α

∂ŷk
α

∂Of
α

∑ ∂Of
α

∂gj(x)

∂gj(x)

∂x0

If f ′
i and g′

j are positive

∂Jα

∂x0
=

∑n
i=1 −

(

y∗
k
α − ŷk

α
)

aα
i f ′

i

+
∑m

j=1

(

y∗
k
α − ŷk

α
)

bα
j g′

j

∂J
α

∂x0
=

∑n
i=1 −

(

y∗
k

α − ŷk
α
)

ai
αf ′

i

+
∑m

j=1

(

y∗
k

α − ŷk
α
)

bj
α
g′

j

Otherwise

∂Jα

∂x0
=

∑n
i=1 −

(

y∗
k
α − ŷk

α
)

ai
αf ′

i

+
∑m

j=1

(

y∗
k
α − ŷk

α
)

bj
α
g′

j

∂J
α

∂x0
=

∑n
i=1 −

(

y∗
k

α − ŷk
α
)

aα
i f ′

i

+
∑m

j=1

(

y∗
k

α − ŷk
α
)

bα
j g′

j

The solution x0 is updated as

x0 (k + 1) = x0 (k) − η
∂Jk

∂x0

where η is the training rate η > 0. In order to increase

training process, we add a momentum term as

x0 (k + 1) = x0 (k) − η
∂Jk

∂x0
+ γ [x0 (k) − x0 (k − 1)]

where γ > 0

After x0 is updated, it should be substitute to the

weights fi (x0) and gj (x0).

The solution of the dual fuzzy equation (30) can be

also approximated by another type of neural network,

see Fig. 2. Here the inputs are the nonlinear functions

fi (x) and gj (x) , the weights are the fuzzy number ai

and bj. We use the training error ek to update x.

The input is a crisp number x (k) . After the nonlinear

operations fi (x) and gj (x), Of and Og are the same as

(48). The output of this neural network is the same as

(49).

The different between the networks of Fig. 1 (NN)

and Fig. 2 (FNN) are: FNN does not change weights,

Fig. 2. Dual fuzzy equation in the form of feedback neural network

(FNN).

it is an autonomous system. NN is a standard neural

network. FNN is more robust than NN, and we can use

bigger training rate η in FNN.

4. Applications

In this section, we use several real applications to

show how to use the dual fuzzy equation to design fuzzy

controller.

Example 1. [A chemistry process] A chemical reac-

tion is to use the poly ethylene (PE) and poly propylene

(PP) to generate a desired substance (DS). If the cost

of the material is defined as x, the cost PE is x and the

cost of PP is x2. The weights of PE and PP are uncer-

tain, which satisfy the triangle function (8). We want to

product two types DS. If we wish the cost between them

are F (3.5, 4, 5) = y∗, what is the cost x ? The weights

of PE are F (2.5, 3, 3.25) = a1 and F (0.75, 1, 1.25) =
b1. The weights of PP are F (1.75, 2, 2.5) = a2 and

(1.75, 2, 2.5) = b2. The above relation can be modeled

by the following dual fuzzy equation

(2.5, 3, 3.25)x ⊕ (1.75, 2, 2.5)x2

= (0.75, 1, 1.25)x ⊕ (1.75, 2, 2.5)x2 ⊕ (3.5, 4, 5)

Here f1 (x) = g1 (x) = x, f2 (x) = g2 (x) = x2. We use

NN and FNN shown in Fig. 1 and Fig. 2 to approx-

imate the solution x. The learning rates for them are

the same η = 0.02. The results are shown in Table 1.

The exact solution is x0 = 2. The neural networks start

from x(0) = 4. Both neural networks converge to the

real solution.
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Table 1

Comparison results of two types of neural networks

k x (k) with NN k x (k) with FNN

1 3.8377 1 3.7970

2 3.6105 2 3.3090

3 3.3435 3 2.9567

.

.

.
.
.
.

.

.

.
.
.
.

38 2.0053 26 2.0080

39 2.0044 27 2.0053

40 2.0036 28 2.0034

Fig. 3. Heat source by insulating materials.

Example 2. [Heat source by insulating materials]Heat

source is in the center of the insulating materials. The

thickness of the materials are not exact, which satisfy

the trapezoidal function (9),

A = F (0.12, 0.14, 0.15, 0.18) = a1

B = F (0.08, 0.1, 0.2, 0.5) = a2

C = F (0.09, 0.1, 0.2, 0.4) = b1

D = F (0.02, 0.03, 0.05, 0.08) = b2

see Fig. 3. The conductivity coefficient of these

materials are KA = ex = f1, KB = x
√

x = f2,

KC = x2 = g1, KD = xsin(�x
8

) = g2, here x is the

elapsed time. The object of the example is to find the

time when the thermal resistance at the right side arrives

R = F (0.00415, 0.00428, 0.00569, 0.03187) = y∗.

Table 2

Comparison results of two types of neural networks

k x (k) with NN k x (k) with FNN

1 0.6251 1 0.7250

2 1.0542 2 1.1060

3 1.3321 3 1.5042

.

.

.
.
.
.

.

.

.
.
.
.

39 2.9899 10 2.9931

40 2.9922 11 2.9959

41 2.9940 12 2.9974

The thermal balance is [18]:

A

KA

⊕
B

KB

=
C

KC

⊕
D

KD

⊕ R

The exact solution is x = 3 [18]. The maximum learn-

ing rate of NN as Fig. 1 is η = 0.005. The maximum

learning rate of FNN as Fig. 2 is η = 0.1. The approx-

imation results are shown in Table 2. FNN is faster and

more robust than NN.

Example 3. [Water tank system] The water tank

system has two inlet valves q1, q2, and two outlet

valves q3, q4, see Fig. 4. The areas of the valves

are uncertain as the triangle function (8), A1 =
F (0.023, 0.025, 0.026), A2 = F (0.01, 0.02, 0.04),

A3 = F (0.014, 0.015, 0.017), A4 = F (0.04, 0.06,

0.07). The velocities of the flow (controlled by

the valves) are f1 = ( x
10

)ex, f2 = xcos(�x),

f3 = cos(�x
8

), f4 = x
2

. If we hope the outlet

flow is q = (4.090, 6.338, 36.402) = y∗, what is the

control variable x. The mass balance of the tank is

[34]:

ρA1f1 ⊕ ρA2f2 = ρA3f3 ⊕ ρA4f4 ⊕ q

where ρ is the density of the water. The exact solution is

x0 = 2 [34]. We use x (0) = 5, η = 0.001, γ = 0.001

for both NN and FNN. The error |x̂ − x0| between the

approximate solution x̂ and the exact solution x0 is

shown in Fig. 5. For this example, both NN and FNN

work well.

Example 4. [Solid cylindrical rod] The deformation

of a solid cylindrical rod depend on the stiffness

E, the forces on it F, the positions of the forces

L, and the diameter of the rod d [35], see Fig. 6.

The positions are not exact, they satisfy the trape-

zoidal function (9). L1 = F (0.3, 0.4, 0.6, 0.7), L2 =
F (0.5, 0.7, 0.8, 0.9), L3 = F (0.5, 0.7, 0.8, 0.9). The

are of the rod is A = π
4
d2. The external forces are

the function of x, F1 = x7, F2 = x6
√

x, F3 = e2x [7].
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Fig. 4. Water tank system.

Fig. 5. The error between the approximate solution and the exact

solution.

We want the desired deformation at the point N is

N∗ = F (0.000673, 0.000931, 0.001164, 0.001310) as

in (9), what is control force should be applied. Accord-

ing to the tension relations [7]

L1F1

AE
⊕

L2(F1 + F2)

AE
=

L3F3

AE
⊕ N∗

where d = 0.02, E = 70 × 109. The exact solution is

x = 4.

We use x (0) = 7, η = 0.002, γ = 0.002 for both NN

and FNN. The error |x̂ − x0| between the approximate

solution x̂ and the exact solution x0 is shown in Fig. 7.

For this example, both NN and FNN work well. FNN

is little better than NN.

Example 5. [Water Channel system] The water in the

pipe d1 is divided into three pipes d2, d3, d4, see Fig.

8. The areas of the pipes are uncertain, they satisfy

the trapezoidal function (9). A1 = F (0.4, 0.6, 0.7, 0.8),

A2 = F (0.05, 0.1, 0.2, 0.4), A3 = F (0.03, 0.08, 0.1,

0.2). The water velocities in the pipes are controlled

by the valves parameter x, v1 = x3, v2 = ex

2
, v3 = x

[34]. The control object is to let the flow in pipe d4 is

Fig. 6. Two solid cylindrical rods.

Fig. 7. The error between the approximate solution and the exact

solution.

Table 3

Comparison results of two types of neural networks

k x (k) with NN k x (k) with FNN

1 5.9024 1 5.9226

2 5.7361 2 5.5341

3 5.5321 3 5.1234

.

.

.
.
.
.

.

.

.
.
.
.

77 3.0599 21 3.0162

78 3.0322 22 3.0131

79 3.0110 23 3.0086

Q=F (10.207861, 14.955723, 16.591446, 16.982892)

what is the valve control parameter x. By mass balance

A1v1 = A2v2 ⊕ A3v3 ⊕ Q

The exact solution is x = 3 [34]. The maximum learn-

ing rate of NN as Fig. 1 is η = 0.001. The maximum

learning rate of FNN as Fig. 2 is η = 0.08. The approx-

imation results are shown in Table 3. FNN is faster and

more robust than NN.
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d2
A2

V2

A 3

A 1

d1 V 1

d4

V3

Q=cte

A4

d3

Fig. 8. Water Channel system.

5. Conclusions

In order to model uncertain nonlinear system, we use

dual fuzzy equations, which are in the form of linear-in-

parameter. We first prove that these fuzzy models have

solutions under certain conditions. These conditions are

controllability of the fuzzy control algorithms. By some

special fuzzy operations, we transform the dual fuzzy

equations into two types of neural networks. We design

modified gradient descent algorithms to train the neural

networks, such that the solutions (fuzzy controllers) are

estimated by the neural networks he novel methods are

validated with Five benchmark examples are proposed

to validate our methods. Further work is to study the

stability of training algorithms.
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