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Abstract-We developed a fuzzy control system to provide 
closed-loop control of mean arterial pressure (MAP) in post
surgical patients in a cardiac surgical intensive care unit setting 
by regulating sodium nitroprusside (SNP) infusion. The fuzzy 
controller, originally expert-system-based, was analytically 
converted to ten nonfuzzy control algorithms, which reduced 
execution time dramatically. The core ofthe control algorithms 
was a nonlinear proportional-integral (PI) controller whose 
proportional gain and integral gain adjusted continuously ac
cording to error and rate change of error of the process output. 
The gains became larger when process output was far from de
sired setpoint and smaller when process output was close to de
sired setpoint, resulting in more dynamic and stable control 
performance than the regular PI controller, especially when a 
linear process with time-delay or a nonlinear process was in
volved. The control algorithms, encoded in C programming 
language, were implemented to control MAP in patients. Pre
liminary clinical results showed that the average percentage of 
time in which MAP stayed between 90% and 110% of the MAP 
setpoint was 89.31 %, with a standard deviation of 4.96%. These 
were calculated based on 12 patient trials, with total trial time 
of 95 and 13 min. 

I. INTRODUCTION 

THE fast-acting vasodilator drug sodium nitroprusside 
(SNP) is used to treat patients who demonstrate ele

vated systematic arterial blood pressure after open-heart 
surgery. The rapid and powerful action of SNP imposes 
upon nursing personnel the task of frequent monitoring of 
mean arterial pressure (MAP) followed by adjustment of 
SNP infusion rate. Because nurses have many other du
ties, inappropriate or infrequent control actions on SNP 
adjustment may occur, which may lead to poor system 
performance. 

To improve the quality of patient care, automatic 
closed-loop control SNP delivery systems have been de
veloped. A nonlinear proportional-integral-derivative 
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(PID) control system was first built and used clinically in 
the mid-1970's [9]. A similar control system was also im
plemented clinically later [2]. Various control algorithms 
including nonlinear adaptive control, multiple-model 
adaptive control and adaptive multi variable control were 
developed and tested [3], [5]-[8], [12], [13]. Clinical 
study indicated that automatic control was effective and 
superior to manual control [1], [2]. Furthermore, as the 
result of over six years of intensive collaborative effort 
between IVAC™ Corporation and The Cleveland Clinic, 
IV AC Corporation began marketing its TITRA TOR ™ 
SNP Closed Loop Module Model 10K in recent years. 

The success of developing the above-mentioned drug 
delivery control systems, especially the adaptive control 
systems, heavily depended on mathematical models ofpa
tients. However, accurately identifying a mathematical 
model of patients is a very difficult task, due to the com
plexity of the human body. Modelling a process is not 
easy. Even if a process model is available, it may still be 
challenging to design an appropriate controller to achieve 
desired system performance. For a simple linear process 
without time-delay, designing a suitable linear controller 
is relatively easy. However, if a process involves time
delay, nonlinearity, or time-variance, a suitable controller 
may be difficult to design. For these kinds of processes, 
nonlinear controllers normally perform better than linear 
controllers do. But, designing nonlinear controllers is 
much more difficult because of the lack of general nonlin
ear control theory. To control complex systems involving 
time-delay, nonlinearity or time-variance, fuzzy control
lers may be needed, because they can be constructed em
pirically without explicit mathematical models of the pro
cesses involved. 

Following the invention of fuzzy set theory in 1965 
[19], the first fuzzy controller was developed in 1974 [4]. 
Fuzzy controllers are linguistic if-then rule-based and can 
be designed using control operators' knowledge and ex
perience about processes. A fuzzy controller can thus be 
regarded as an expert system employing fuzzy logic for 
its reasoning. Fuzzy controllers, being generally nonlin
ear, provide an alternative means to solve time-delay, 
nonlinear and time-variant control problems whether 
mathematical models of processes involved are available 
or not. 
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Biological systems such as the human body involve 
time-delay, nonlinearity and time-variance. Designing 
appropriate controllers for such systems based on existing 
nonfuzzy control theories is very challenging and time
consuming. The fact that human operators like medical 
doctors and other clinical personnel can control various 
physiological parameters of the human body successfully 
by using their knowledge and experience suggests the 
possibility of using fuzzy controllers in these situations. 

Because fuzzy controllers are linguistic rule-based and 
have much in common with expert systems, experts' 
knowledge and experience can be incorporated into the 
fuzzy controllers. Merger of fuzzy controllers and expert 
systems will provide potent controllers that are capable of 
learning, adapting, and self-organizing. These types of 
controllers may be useable for complicated biological 
control problems that are solvable by human operators but 
unsolvable by existing nonfuzzy controllers. 

We had previously developed a generalized expert-sys
tem-shell-based fuzzy controller [15], which we then uti
lized to control MAP by regulating SNP infusion, in both 
digital computer simulation and real-time in pigs [16], 
[17]. The encouraging results of this previous research of 
fuzzy control of MAP clearly indicated that success of 
fuzzy control MAP in patients was achievable. The re
sults of fuzzy control of MAP in postsurgical patients 
clinically, which is the first use of a fuzzy controller in a 
clinical setting, is reported in this paper. 

II. METHODS AND MATERIALS 

A. Reduction of Execution Time of the Expert-System
Shell-Based Fuzzy Controller by Analytically Converting 
It to a Group of Nonfuzzy Control Algorithms 

The fuzzy controller that we used in computer simula
tion and rcal-time animal experiments was based on a 
general-purpose fuzzy logic production system shell 
(FLOPS) [15]. Although the fuzzy controller could take 
the advantage of the capabilities of the expert system shell 
and could change its structure flexibly by utilizing differ
ent rules and commands of the expert system shell, it was 
slow in execution time. To make real-time fuzzy control 
of MAP in patients possible, we analytically converted 
the expert-system-shell-based fuzzy controller into non
fuzzy control algorithms. The conversion was to reduce 
execution time considerably and reveal the structure of 
the fuzzy controller. The method of the conversion is 
briefly described and the result of the conversion is given 
in this section. Detailed information is available in a pre
vious paper [18]. 

Designating MAP(nT) and MAP(nT - T) as MAP at 
sampling time nT and nT - T respectively (T is sampling 
period), the inputs of the fuzzy controller could be rep
resented as 

e(nT) = MAP(nT) - setpoint (1) 

renT) = [MAP(nT) - MAP(nT - T)]/T (2) 
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where the setpoint was the desired MAP level. The 
expert-system-shell-based fuzzy controller was made up 
of following six components. 

The first component scaled the inputs, e(nT) and renT), 
respectively by multiplying GE, the scalar for error of 
MAP, and GR, the scalar for rate change of error of MAP, 
to obtain scaled inputs, GE·e(nT) and GR·r(nT). 

The second component comprised the fuzzification al
gorithms illustrated in Fig. 1 that fuzzified GE· e(nT) and 
GR· renT) to obtain fuzzy sets for the inputs. In our study, 
the same fuzzification algorithm was used to fuzzify 
both scaled inputs. This yielded a fuzzy set for 
GE·e(nT)(GR·r(nT», e-(nT)(r-(nT)), which was as
sociated with two memberships for two members of the 
fuzzy set respectively, /Ae+( /Ar+) for "positive" and 
/Ae- (/Ar- ) for' 'negative. " 

The third component contained the four fuzzy control 
rules listed below that linguistically related the fuzzy sets 
for inputs to the fuzzy set for incremental SNP infusion 
rate, oSNP-(nT). 

If e - (nT) is positive and r - (nT) is positive 
then oSNP- (nT) is negative; or (d) 

if e - (nT) is positive and r- (nT) is negative 
then oSNP- (nT) is zero; or (r2) 

if e - (nT) is negative and r - (nT) is positive 
then oSNP- (nT) is zero; or (r3) 

if e - (nT) is negative and r - (nT) is negative 
then oSNP-(nT) is positive. (r4) 

The fuzzy set oSNP-(nT), shown in Fig. 2, had three 
members, namely' 'positive, " "zero," and' 'negative." 

The fourth component was Zadeh AND and OR fuzzy 
logic [19] 

AND(/A], /A2) = min(/A]' /A2) 

OR(/A], /A2) = max(/A], /A2) 

(3) 

(4) 

that defined the relation of the if-part with the then-part 
in the fuzzy control rules, d to r4. Here /AI and /A2 are two 
memberships of fuzzy sets while min (max) is a fuzzy 
logic operator which yielded smaller (larger) membership 
between /AI and /A2. Zadeh AND was used to evaluate the 
individual fuzzy control rules, and Zadeh OR was used to 
evaluate the implied OR between fuzzy control rules r2 
and r3. 

The fifth component defuzzified the fuzzy set 
oSNP- (nT) into a crisp incremental SNP infusion rate, 
oSNP(nT), using the following defuzzification algorithm: 

oSNP(nT) = (/AoSNP+ + /AoSNP- )L (5) 
/AoSNP+ + /AoSNPO+ /AoSNP-

where /AoSNP+, /AoSNPO and /AoSNP- were the memberships 
corresponding to the respective members of "posi!ive," 
"zero," and "negative" of the fuzzy set oSNP (nT). 
These memberships were generated by the four fuzzy con-
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"negative" 
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(-L) 
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(L) 

"positive" 

24 32 

scaled inputs 
GE*e(nT), GR*r(nT) 

Fig. I. Fuzzification algorithm for the inputs of the fuzzy controller, scaled 
error, GE . e(nT), and scaled rate change of error, GR . r(nT), of MAP. 
The fuzzy sets have two members, "positive" and "negative." 

membership 
"negative" "positive" 

1.00 
"zero" 

.... 0.50 

0.25 

-32 -24 -16 -8 
(-L) 

16 24 32 

incremental SNP 
infusion rate, c5SNP(nT) 

(L) 

Fig. 2. Fuzzy set for the incremental SNP infusion rate, I)SNP-(nT). The 
fuzzy set has three members, "positive," "zero," and "negative." 

trol rules. L, defined both in Figs. I and 2, was a turning 
point of the fuzzy sets. 

The last component scaled oSNP(nT) by GI, the 
scalar for incremental SNP infusion rate, to obtain a scaled 
incremental SNP infusion rate, GI· oSNP(nT). 
GI' oSNP(nT) was then multiplied by sampling time T and 
was then added to SNP(nT - T), the SNP infusion rate 
at sampling time nT - T, to get a new SNP infusion rate, 
SNP(nT). That is 

SNP(nT) = SNP(nT - T) + GI . oSNP(nT) . T. (6) 

To analytically convert the above-described expert-sys
tem-shell-based fuzzy controller to a group of nonfuzzy 
control algorithms, the phase plane of the scaled inputs, 
GE'e(nT) and GR'r(nT), were divided into 20 different 
regions, shown in Fig. 3. In the figure, IC stands for input 
combination and ICx means input combination No. x. To 
show how the conversion worked, let's take IC2 as an 
example. Suppose that the memberships obtained by using 
the fuzzification algorithm shown in Fig. 1 are Ile+ and 
Ile- for the scaled error GE'e(nT), and Ilr+ and Ilr- for 
the scaled rate change of error GR' renT). Here Ile+ and 
Ile- are the respective memberships for the members 
"positive" and "negative" of the fuzzy set e - (nT) while 
Ilr+ and Ilr- are the respective memberships for the mem
bers "positive" and "negative" for the fuzzy set r - (nT). 
Note that for scaled inputs in the IC2 region, 

o :::;; GR'r(nT) :::;; GE·e(nT) :::;; L. (7) 

IC18 IC12 

IC13 

IC14 

IC19 IC15 

GR'r(nT) 

IC11 

-L 
IC16 

IC17 

IC10 

GE'e(nT) 

IC9 

IC20 

Fig. 3. Input combination (IC) of scaled error, GE'e(nT), and rate change 
of error, GR· r(nT), of MAP. L = 16, as shown in Fig. I. 

Therefore according to Fig. 1, Ile+ 2=: Ilr+ and Ile- :::;; Ilr-' 
The memberships for the fuzzy set oSNP - (nT) can be 
obtained by using Zadeh AND and OR fuzzy logic. 

"positive" or oSNP-(nT) with membership Ile-' (8) 

"zero" of oSNP - (nT) with membership Ilr-' (9) 

"negative" of oSNP-(nT) with membership Ilr+' (10) 
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Be aware that Figs. 1 and 2 can be expressed as 

/Le+ [GE'e(nT) + L]/2L 

/Le- 1 - /Le+ 

/Lr+ = [GR·r(nT) + L]/2L 

(11) 

(12) 

(13) 
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TABLE I 
THE SCALED INCREMENTAL SNP INFUSION RATE OF THE Fuzzy 

CONTROLLER, GI 'bSNP(nT), FOR THE DIFFERENT SCALED INPUT 
COMBINATIONS (IC) ILLUSTRATED IN FIG. 3. GI IS THE SCALAR FOR 

bSNP(nT). GE AND GR ARE THE SCALARS FOR THE INPUTS, e(nT) AND 
r(nT), RESPECTIVELY. L, ILLUSTRATED IN FIGS. I AND 2, IS THE TURNING 

POINT OF THE Fuzzy SETS, e - (nT) AND r - (nT) 

Input Combinations (IC) 
/Lr- = 1 - /Lr+' (14) of the Scaled Inputs 

Scaled Incremental SNP 
Infusion Rate, GI 'bSNP(nT) 

Substitute the memberships in the expressions (8) 
through (10) into the defuzzification algorithm (5). We 
can then simplify the algorithm by utilizing (11)-(14) to 
get 

oSNP(nT) 
L'G! 

3L - GE'e(nT) 

[GE'e(nT) + GR·r(nT)]. (15) 

Similarly, we can convert the expert-system-shell-based 
fuzzy controller to nonfuzzy control algorithms for other 
input combinations. A total of ten different nonfuzzy con
trol algorithms for 20 different input combinations can be 
obtained; these are listed in Table I. 

It should be noted that these non fuzzy control algo
rithms are the analytical description of the expert-system
shell-based fuzzy controller. Therefore, they precisely 
represent the fuzzy controller. Usually, such precise rep
resentation is not.possible because the structures of fuzzy 
controllers are so complicated that they can not be de
scribed analytically. 

The resultant ten control algorithms discussed above 
were employed in the patient trials. The control algo
rithms were encoded in C programming language and the 
execution time for each input was only a fraction of a 
second. Not only was the execution time reduced dra
matically but the time used to design the control system 
was also reduced. The analytical expressions shown in 
Table I enabled us to analyze the structure of the fuzzy 
controller as well as the role of the different components 
and parameters of the fuzzy controller. 

B. Nonlinear Characteristic of the Fuzzy Controller 

Among the ten control algorithms discussed above, the 
most important in affecting performance are two nonlinear 
control algorithms corresponding to the input combina
tions of scaled inputs IC 1, IC2, IC5, and IC6 and IC3, 
IC4, IC7 and IC8 shown in Fig. 3. 

IfGR'!r(nT)! :5 GE'!e(nT)! :5 L, 

L'G! 
oSNP(nT) = 

3L - GE'!e(nT)! 

[GE' e(nT) + GR' r(nT)] (16) 

ifGE'!e(nT)! :5 GR'!r(nT)! :5 L, 

L'G! 
oSNP(nT) = 

3L - GR'! renT)! 

[GE' e(nT) + GR· r(nT)]. (17) 

see equation (16) ICI, IC2, ICS, and IC6 
IC3, IC4, IC7. and ICS 
IC9 and IClO 

see equation (17) 
-[GR'r(nT) + Lj'GI/2 

ICII and ICI2 -[GE'e(nT) + Lj'GI/2 
ICI3 and ICI4 -[GR'r(nT) - Lj'GI/2 
ICIS and ICI6 -[GE'e(nT) - Lj'GI/2 
ICl7 
ICIS 
ICI9 
IC20 

-L'GI 
o 
L'GI 
o 

If the fuzzy controller is appropriately designed, MAP 
should stay in these input combination regions most of the 
time and gradually approach the origin of the phase plane 
ofGE'e(nT) and GR·r(nT)(e(nT) = 0 and renT) = 0). 

Comparing (16) and (17) to the proportional-integral 
(PI) control algorithm in the discrete-time form 

oSNP(nT) = -[Ki . e(nT) + Kp . renT)] (18) 

where Kp and Ki are the proportional gain and integral 
gain, the fuzzy controller can clearly be regarded as a 
non fuzzy nonlinear PI controller, with a proportional gain 

L·G!·GR L·G!·GR 
Kpd = 3L _ GE'!e(nT)! or 3L - GR'!r(nT)! 

(19) 

and an integral gain 

L·G!·GE L'G!'GE 
Kid = 3L - GE'!e(nT)! 

or 
3L - GR·! renT)! 

(20) 

continuously changing with error, e(nT), and rate change 
of error, renT), of the system output. When MAP is in a 
steady state, that is, when e(nT) = 0 and renT) = 0, (16) 
and (17) become 

G! 
oSNP(nT) = - 3 [GE . e(nT) + GR . renT)] (21) 

which is a PI controller with Kp = GI . GR/3 and Ki = 
G! . GE/3. If MAP is not in a steady state, Kpd and Kid 

in (19) and (20) are always greater than the respective Kp 
and Ki of the corresponding PI controller. That is 

Kpd = Kid = 3L > 1 
Kp Ki 3L - GE'!e(nT)! - , 

if GR'! renT)! :5 GE'!e(nT)! :5 L (22) 

Kpd = Kid = 3L 

! ! 
~ 1, 

3L - GR' renT) 

ifGE'!e(nT)! :5 GR'!r(nT)! :5L. (23) 
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The larger e(nT) and renT) are, the greater the difference 
between Kpd and Kp(Kid and K;). Nevertheless, the maxi
mum difference is reached when GE'le(nT)1 = Land/or 
GR' I r(nT)1 = L. At these points, Kpd and Kid are GI . 
GR/2 and GI . GE /2, respectively, which are 50% larger 
than the integral gain and the proportional gain, namely 
Kp = GI . GR/3 and K; = GI . GE/3, associated with 
a corresponding PI controller. 

The nonlinearity of the fuzzy controller expressed in 
(16) and (17) can be also changed by using different val
ues of GE, GR, and L. As one extreme, if the value of L 
---> 00, then Kpd ---> Kp and Kid -> Ki , which means the 
fuzzy controller becomes the PI controller. On the other 
hand, the smaller the value of L, the more nonlinear the 
fuzzy controller is. 

The controller may switch from one control algorithm 
to another in Table I, depending on the change of input 
combination from time to time. However, the switching 
is always continuous and smooth on the boundaries of two 
or more adjacent input combinations involved. For ex
ample, on the boundary between IC6, IC7, ICI4, ICI5, 
and IC19 on which GE'e(nT) = -L and GR'r(nT) = 
- L, any control algorithm for the input combinations in
volved produces the same oSNP(nT) as others do. 

Two of the control algorithms shown in Table I impose 
restraints on maximum increment and decrement of SNP 
infusion rate for any sampling period. The maximum dec
rement, L . GI . T, is reached when the scaled inputs are 
in the IC 19 region. The maximum increment, - L . GI . 
T, is earned when the scaled inputs are in region IC 17. 
For the values of the parameters we chose, L = 16, GI = 
-0.06, and T = 10 s (the choice of these values will be 
discussed in the next section), the maximum increment 
was 9.6 mL/h and the maximum decrement was 9.6 
mL /h. It should be noted that the restraints are charac
teristics of the fuzzy controller itself rather than safety 
mechanisms built in by the authors. 

The understanding of the structure and the role of the 
parameters of the fuzzy controller made it more effective 
to design the fuzzy control SNP delivery system for pa
tients by utilizing appropriate nonlinearity and the values 
of the adjustable parameters of the fuzzy controller. 

C. Design of Fuzzy Control SNP Delivery System Based 
on Computer Simulation 

The nonlinearity of the fuzzy controller discussed above 
was desirable because the controller was to deal with 
MAP, which was an unknown function involving time
delay, nonlinearity and time-variance of many physiolog
ical variables of the human body. However, the nonlin
earity of the fuzzy controller had to be confined within an 
adequate range. This confinement was important in order 
to adapt to a wider range of the patient's dynamic param
eters, and to restrict adverse effects possibly associated 
with the nonlinear fuzzy controller. Most importantly, 
properly limiting the range of the nonlinearity and thus 
avoiding some possible unstable states of the fuzzy con-

trol system improved safety of the patients who were ex
tremely sensitive to SNP. 

There are five adjustable parameters of the fuzzy con
troller, namely GE, GR, GI, Land T, which significantly 
affect the performance of the fuzzy controller. Based on 
our previous experience, a sampling period of ten seconds 
was used for the patient trials. To determine the effect of 
adjusting the other parameters, the mathematical model 
in Laplace transfer function describing the relationship 
between SNP infusion rate, SNP(s), and change in MAP 
in patients, oMAP(s) [10], [11] 

oMAP(s) Ke- 30s(1 + 0.4e-50s
) 

SNP(s) 1 + 40s 
(24) 

was used in computer simulation. K represented the sen
sitivity of patients to SNP. K is - 0.72 for the normal 
patients, - 0 .18 for the insensitive patients and - 2.88 for 
the sensitive patients [10]. 

As stated in the last section, the nonlinearity of the 
fuzzy controller can be adjusted by changing the param
eters of the controller, GE, GR, and L (GI does not affect 
nonlinearity). The equations (16) and (17) were utilized 
to guide tuning of the parameters. The larger GE and/or 
GR values are, the more nonlinear the fuzzy controller is 
when L is fixed. We chose the same GE and GR values 
as those used in the pig experiments [17] for initial patient 
trials, that is, GE = 0.25 and GR = 8.0. We increased L 
from 10, used in the previous study, to 16 to avoid pos
sibly excessive overshoot of MAP for the sensitive pa
tients. Fig. 4 illustrates the effect of the increase in L value 
on the performance of MAP when the sensitive patients 
(K = - 2.88) were tested. The overshoot of MAP was 
lowered from 16.4% for L = 10 to 13.2% for L = 16. 

After the determination of T, GE, GR, and L values, 
the value of the scalar for incremental SNP infusion rate, 
GI, was to be set. GI should be a negative number since 
the patient sensitivity, K, is negative. According to (16) 
and (17), GI changes the overall gain of the fuzzy con
troller. As indicated by (19) and (20), the larger the ab
solute value of GI, the greater the nonlinear proportional 
gain Kpd and integral gain Kid of the fuzzy controller. Too 
large an absolute value of GI may cause the SNP control 
system to become unstable. This is especially true when 
patients are extremely sensitive to SNP. The GI value used 
in the computer simulation and the pig experiments was 
-0.08. To attenuate possible large overshoot of MAP and 
improve the patients' safety, the GI value used in the pa
tient trials was - 0.06. The effect of GI = - 0.08 and GI 
= -0.06 on the performance of MAP for both the sen
sitive patients (K = -2.88) and the normal patients (K 
= -0.72) is shown in Figs. 5 and 6, respectively. Ac
cording to Figs. 5 and 6, the reduction of absolute value 
of GI resulted in the decrease of overshoot of MAP from 
18.6% to 13.2% for the sensitive patients at the expense 
of prolonging the rise-time of MAP from 100 to 120 s for 
the normal patients. This necessary compromise im
proved the stability of the fuzzy control SNP delivery sys
tem for the sensitive patients while losing little dynamic 
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Fig. 4. The effect of increasing the value of L from 10 to 16 on the per
formance of the fuzzy controller regulating MAP in the sensitive patients 
(K = -2.88) based on computer simulation. 
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Fig. 5. The effect of decreasing the absolute value of GI from -0.08 to 
-0.06 on the performance of the fuzzy controller regulating MAP in the 
sensitive patients (K = -2.88) based on computer simulation. 

control perfonnance for the nonnal patients. Further tun
ing in a clinical setting was necessary to achieve better 
transient and steady-state response. 

To improve patients' safety, we limited the maximum 
increment of SNP infusion rate to 7.0 mL/h for any sam
pling time, overriding 9.6 mL/h imposed automatically 
by the fuzzy controller itself. We also set the increment 
of SNP infusion rate to zero when MAP was more than 
20 mm Hg below the MAP setpoint and when calculated 

0; 
I 

E 
E 

0... 
<{ 
:::;: 

GE=0.25, GR=13.5, L=16, T=10 sec 
K=-0.72, MAP set point = 100 mm Hg 
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80 L.... ___ L-_----.l ___ ----'-__ -L ___ -'----_------' 

\065 

o 200 400 600 800 1000 1200 

time (second) 

Fig. 6. The effect of decreasing the absolute value of GI from -0.08 to 
-0.06 on the performance of the fuzzy controller regulating MAP in the 
normal patients (K = -0.72) based on computer simulation. 

SNP infusion rate was less than zero. These measures 
were similar to those used in [9]. 

D. Clinical Setting 

The fuzzy controller designed above was used to main
tain desired MAP in patients in the Cardiac Surgical In
tensive Care Unit (CICU) of the Carraway Methodist 
Medical Center. Fig. 7 is a block diagram of the imple
mented fuzzy control SNP delivery system. A Hewlett
Packard 78534 Monitor/Tenninal was used to collect, 
process, and display MAP, systolic pressure, diastolic 
pressure, left atrial pressure, right atrial pressure, heart 
rate, and the electrocardiogram. A Puritan-Bennett nOOa 
Microprocessor Ventilator was connected to the patients 
to maintain respiration. MAP values were fed from the 
Hewlett-Packard Monitor into an IBM PS/2 Model 70 
computer, ran the fuzzy controller in the fonn ofthe non
linear control algorithms encoded in C programming lan
guage. SNP infusion rate calculated by the fuzzy control
ler was sent to an Abott/Shaw LifeCare™ Pump Model 
4. The pump infused SNP to patients. 

Twelve postoperative patients who exhibited elevated 
MAP following coronary artery bypass grafting proce
dures took part in the study. Typically the trials began 
within 1-2 h after the patients arrived in CICU. The typ
ical MAP setpoint, detennined by the attending medical 
doctors or the nurses, was 80 mm Hg. The fuzzy control 
system' was started by technical personnel when the at
tending nurses thought SNP was needed for a patient. The 
fuzzy control system was always initiated at a SNP infu
sion rate of zero. The technical personnel constantly mon
itored the operation of the control system. During the op
eration of the fuzzy control system, no special care was 
given to the patient by the nurses. 
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Fig. 8. Comparison of MAP in the sensitive patients (K = -2.88) before 
and after increasing the value of GR from 8.0 to 13.5 based on computer 
simulation. 

III. CLINICAL PERFORMANCE OF THE FUZZY CONTROL 
SNP DELIVERY SYSTEM 

In the first two patient trials, it was found that SNP 
infusion rate was not regulated satisfactorily to handle 
rapid and large changes of MAP. We analyzed the results 
and concluded that the fuzzy controller did not increase 
or decrease SNP infusion rate fast enough when MAP was 
changing dramatically. The problem occurred due to in
adequate nonlinearity and lack of sensitivity of the fuzzy 
controller with respect to the rate change of error of MAP. 

To achieve better results, the parameters of the fuzzy 
controller chosen before the clinical trials should be mod
ified. The mathematical model of the patient described in 
(24) was utilized to further tune the parameters of the 
fuzzy controller, especially GR, which scaled the rate 
change of error of MAP. By varying the nonlinearity and 
sensitivity of the fuzzy controller with respect to rate 
change of error of MAP for patients with different sensi
tivities, a larger GR value 13.5 was found which resulted 
in better control performance. Figs. 8 and 9 demonstrate 
the simulated results of the fuzzy control SNP delivery 
system for the sensitive patients (K = -2.88) and the 
normal patients (K = -0.72), before and after GR was 

--;; 
I 

E 
~ 
(L 
<! 
:::2 

GE=0.25. Gl=-0.06. L=16. T=10 sec 
K=-O.72. MAP setpoint = 100 mm Hg 

160 r----,---,---r--,---,----, 

140 

120 

100 

a -- GR=S.O 
b-- GR=13.5 

BO L..-_--' __ --'-__ -'-__ --'-__ -'--_-' 

o 200 400 600 800 1000 1200 

time (second) 

Fig. 9. Comparison of MAP in the normal patients (K = -0.72) before 
and after increasing the value of GR from 8.0 to 13.5 based on computer 
simulation. 

increased from 8.0 to 13.5. Obviously, the larger GR 
made the fuzzy control system considerably more robust. 
Consequently, the performance of the fuzzy controller was 
significantly improved and better clinical results were ob
tained for the remaining ten patients. 

Fig. 10 shows a typical trend plot of both MAP and the 
corresponding SNP infusion rate obtained from a fuzzy 
controller controlled patient, after the larger GR was im
plemented. Fig. 11 illustrates how the nonlinear propor
tional gain Kpd and integral gain Kid of the fuzzy controller 
continuously changed with time to cope with the nonlin
earities of the MAP response shown in Fig. 10, compared 
to the constant proportional gain Kp and integral gain Ki 
of the PI controller. 

During the trials, all normal patient care duties were 
performed by the nurses. The duties included sampling 
patient blood, suctioning the patient to clear his/her air
way, bathing the patient, changing bed linen, injecting 
drugs other than SNP, infusing blood, and so on. MAP 
in the patient frequently fluctuated considerably when the 
above-mentioned duties were being carried out. Sampling 
blood normally caused MAP to jump up to a high value 
(say, 150 mm Hg) or down to a low value (say, 20 mm 
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Fig. 10. (a) MAP response for a single patient obtained by using the fuzzy control SNP delivery system clinically. (b) The 
corresponding SNP infusion rate. The patient had blood sampled at 12: 57, 13: 42, 15: 56, and 17: 50. Suctioning the patient 
began at 13 : 04, 17: 00, and 19: 17. The patient was bathed between 15: 36 to 15: 50. Changing bed linen stated at 19: 45 and 
lasted for several minutes. Injection of Valium took place at 13: 09, 14: 41, and 17: 57. The drugs Pavulon and morphine were 
injected into the patient at 14: 50 and 17: 10, respectively. 

Hg) within a very short period of time. This temporary 
fluctuation of MAP signal can be filtered by a digital fil
ter. Such a digital filter, however, was not used in our 
trials, but is planned for use in future studies. In these 
trials, the fuzzy controller was manually put into a hold 
mode right before blood was sampled. The hold mode of 
the fuzzy controller ignored the MAP signal and sent the 
previous SNP infusion rate as the current rate to the in
fusion pump. Fuzzy control resumed upon completion of 
sampling. The fuzzy controller was always in operation 
when the patients were being injected with other drugs or 
infused with blood. The fuzzy controller was generally in 
operation when the patients were being suctioned, bathed, 
or having bed linens changed. Suctioning, bathing, and 
changing bed linen usually caused large fluctuation of 
MAP, especially when such activities were prolonged. 

The fuzzy controller was sometimes temporarily put into 
the hold mode if the fluctuation of MAP was too large. 
The fuzzy control resumed immediately after the duties 
were perfonned. The patient whose MAP is shown in Fig. 
10 had blood sampled blood at 12: 57, 13: 42, 15: 56, and 
17 : 50. Suctioning the patient began at 13: 04, 17: 00 and 
19 : 17. The patient was bathed between 15 : 36 and 15 : 50. 
Changing bed linen started at 19 : 45 and lasted for several 
minutes. Injection of Valium took place at 13: 09, 14: 41, 
and 17: 57. The drugs Pavulon and morphine were in
jected into the patient at 14: 50 and 17: 10, respectively. 

Besides the situations listed above, other factors also 
affected MAP. Substantial fluctuation of MAP took place 
as body temperature of the patients was changing or if the 
patients were in pain. Spontaneous fluctuation of MAP 
occurred as well. In addition to these, sensitivity of the 
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Fig. 11. Comparison of the nonlinear proportional gain Kpd of the fuzzy 
controller to the constant proportional gain Kp of the corresponding PI con
troller «Kpd - Kp) / Kp) showed change of Kpd over time corresponding to 
the nonlinearities in MAP for this patient. Change of K;d over time is the 
same as that of Kpd since (K,d - K;) / K; = (Kpd - Kp) / Kp. 

TABLE II 
MEAN (1-') PERCENT OF TOTAL FUZZy-CONTROLLER-RuN TIME (AND STANDARD DEVIATION a) FOR 

DIFFERENT MAP INTERVALS. THE CALCULATION IS BASED ON 12 PATIENT TRIALS. MAPd IS THE DESIRED 
MAP SETP01NT 

<0.8 MAPd (0.8-0.9) MAPd (0.9-1.1) MAPd (1.1-1.2) MAPd > 1.2 MAPd 

I-' 
a 

1.00 
1.09 

3.92 
2.72 

patients to SNP changed with time. The response delay to 
SNP varied among the patients. Nevertheless, as the re
sult shown in Fig. 10 illustrates, the fuzzy control SNP 
delivery system regulated MAP satisfactorily even with 
the fluctuation of MAP caused by the various factors stated 
above. For this patient, the percentage of time in which 
MAP stayed within the band between 90 % and 110% of 
the MAP setpoint was 86.5%. The trial lasted 7 hand 49 
min. 

The length of time that 12 patients were on the fuzzy 
control system ranged from 1 h 45 min to 18 h 7 min. The 
total fuzzy-controller-run time was 95 h 13 min. This in
cludes the time for the patient trials undertaken both be
fore and after the further tuning of the controller param
eters. The times for which SNP infusion rate was zero and 
the patients' own system was regulating MAP were ex
cluded. Time for which the fuzzy controller was put in 
the hold mode was also excluded. For the sampling period 
T = 10 s, 34278 MAP samples were collected from the 
patients. The overall performance of the fuzzy control 
SNP delivery system in 12 patient trials is summarized in 
Table II. The table exhibits that MAP is tightly controlled 
around the desired MAP level. 

89.31 
4.96 

3.85 
1.84 

1.92 
1.14 

IV. DISCUSSION 

A wide variation of patient sensitivity to SNP was ex
perienced during the clinical trials. Even through different 
patient sensitivity resulted in different MAP response, it 
was not estimated since the sensitivity was not needed by 
the fuzzy controller. The fuzzy controller could cope with 
different sensitivity by continuously adjusting its nonlin
ear proportional gain Kpd and integral gain Kid' To eval
uate the ability of the fuzzy control system handling the 
patients with different sensitivity, computer simulation 
was conducted by again using the patient model given in 
(24). The simulated results illustrated in Fig. 12 indicate 
that the clinically fine-tuned fuzzy control SNP system 
could adapt to a wide range of patient sensitivity, from 
the sensitive patients (K = -2.88) to the insensitive pa
tients (K = -0.18), a ratio of 16: 1. This range of sen
sitivity covers that of most patients [10]. 

To enhance the performance of the fuzzy control SNP 
delivery system, refinements are necessary. Some "intel
ligent" digital filters should be developed to identify and 
process different MAP waveforms generated by different 
clinical activities such as suctioning the airway and 
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Fig. 12. Simulated MAP for the sensitive patients (K = -2.88). the nor
mal patients (K = -0.72) and the insensitive patients (K = -0.18). using 
the clinically fine-tuned parameters of the fuzzy controller. 

bathing the patient. It would be helpful to let the filters 
guide the action of the fuzzy controller and adjust the pa
rameters of the fuzzy controller on-line. Additionally, the 
safety measures and the warning system need to be mod
ified to further improve patient safety. 

V. CONCLUSION 

Results of the clinical trials on 12 patients revealed that 
the performance of the fuzzy control SNP delivery system 
was clinically acceptable. Based on the clinical results and 
the simulated results, we expect the fuzzy control SNP 
delivery system to perform reasonably well for most pa
tients. 

The preliminary successful implementation of the non
linear control algorithms for controlling MAP in patients 
shows effectiveness in a case involving nonlinearity, time
delay, and time-variance. Therefore, the algorithms 
should be effective on other physiological variables in
volving these factors. 
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