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Abstract: In this study, we introduce a noble neurogenetic approach to the design of the fuzzy 
controller. The design procedure dwells on the use of Computational Intelligence (CI), namely 
genetic algorithms and neurofuzzy networks (NFN). The crux of the design methodology is 
based on the selection and determination of optimal values of the scaling factors of the fuzzy 
controllers, which are essential to the entire optimization process. First, tuning of the scaling 
factors of the fuzzy controller is carried out, and then the development of a nonlinear mapping 
for the scaling factors is realized by using GA based NFN. The developed approach is applied 
to an inverted pendulum nonlinear system where we show the results of comprehensive 
numerical studies and carry out a detailed comparative analysis.  
 
Keywords: Computational Intelligence (CI), estimation algorithm, fuzzy controller, genetic 
algorithms, neurofuzzy networks (NFN), optimization process, scaling factors. 
 

1. INTRODUCTON 
 
The ongoing challenges we face when designing 

advanced control systems has resulted in a diversity of 
underlying methodologies, development platforms 
and detailed algorithms. In parallel to PID controllers 
that are regarded nowadays as the standard control 
constructs of numeric control [1-4], fuzzy controllers 
have positioned themselves in a similar dominant role 
at the knowledge-rich end of the entire spectrum of 
control algorithms. The design goals of PID control 
and fuzzy control are similar yet the same problem is 
approached from two different angles. At the final 
stage of the design phase, one realizes that two 
different threads are being served. PID controllers are 
superb when it comes to linear systems or nonlinear 
systems with an operation mode confined to a small 
neighborhood around a given set point. The 
advantages of the fuzzy controllers are situated at 
opposite ends of the scale as we envision their full 
strength in the setting of nonlinear systems (as these 
controllers are nonlinear mappings in the first place) 

and when dealing with high deviations from the set 
point. These advantages of fuzzy controllers stem 
directly from the nonlinear type of characteristics of 
the linguistic rules and the associated membership 
functions used in the description of linguistic terms.  

The intent of this study is to develop, optimize and 
experiment with the fuzzy controllers (fuzzy PD 
controller or fuzzy PID controller) when developing a 
general design scheme of Computational Intelligence. 
One of the difficulties in the construction of the fuzzy 
controller is to derive a set of optimal control 
parameters of the controller such as linguistic control 
rules, scaling factors, and membership functions of 
the fuzzy controller. In the application of the 
conventional design method, a control expert proposes 
some linguistic rules and decides upon the type and 
parameters of the associated membership functions. 
With an attempt to enhance the quality of the control 
knowledge conveyed by the expert (and this usually 
applies to the matter of calibration of such initial 
domain knowledge), genetic algorithms (GAs) have 
already started playing a pivotal role. More 
specifically, considering a vast number of parameters 
of the fuzzy controller, they are instrumental in 
carrying out a global search in the overall parameter 
space. One should stress however that evolutionary 
computing (such as GAs) is computationally intensive 
and this may be a point of concern when dealing with 
the amount of time available for such search. For 
instance, when controlling a nonlinear plant such as 
an inverted pendulum of which initial states vary in 
each case, the search time required by GAs could be 
prohibitively high when dealing with dynamic 
systems. As a consequence, the parameters of the 
fuzzy controller cannot be easily adapted to the 
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changing initial states of this system such as an 
angular position and an angular velocity of the 
pendulum. To alleviate this shortcoming, we introduce 
a nonlinear mapping from the initial states of the 
system and the corresponding optimal values of the 
parameters. With anticipation of the nonlinearity 
residing within such transformation, in its realization 
we consider GA-based NFN. Bearing this in mind, the 
development process consists of two main phases. 
First, using genetic optimization we determine 
optimal parameters of the fuzzy controller for various 
initial states (conditions) of the dynamic system. 
Second, we build up a nonlinear model that captures a 
relationship between the initial states of the system 
and the corresponding genetically optimized control 
parameters. The paper includes the experimental study 
dealing with the inverted pendulum having the initial 
states changed. We carry out experimentation with 
several categories of the controllers such as PID 
controller, fuzzy PD controller, and fuzzy PID 
controller. The performance of systems under control 
is evaluated and compared from the viewpoint of 
ITAE (Integral of the Time multiplied by the Absolute 
value of Error), overshoot and rising time [1]. 

 
 2. THE FUZZY CONTROLLER 

  
The block diagram of a fuzzy PID controller is 

shown in Fig. 1. We confine ourselves to the 
following notation: e denotes the error between 
reference and response (output of the system under 
control), ∆e is the first-order difference of error signal 
while ∆2e is the second-order difference of the error. 
Note that the input variables to the fuzzy controller 
are transformed by the scaling factors (GE, GD, GH, 
and GC) whose role is to allow the fuzzy controller to 
properly “perceive” the external world to be 
controlled. 

The above fuzzy PID controller consists of rules of 
the following form, cf. [5,6] Rj: if E is A1j and ∆E is 
A2j and ∆2E is A3j then ∆Uj is Dj The capital letters 
existing in the rule (Rj) denote fuzzy variables 
(linguistic terms) whereas D is a numeric value 
(singleton) of the control action. In each control rule, 
a level of its activation is computed in a standard 
fashion given by (1). Subsequently, the inferred value 

of consequence part is converted into numeric values 
with the aid of (2a) [7]. 
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An overall operation of a fuzzy PID controller can be 
described in the format so that the resulting control is 
formed incrementally based on the previous control 

 
( ) ( 1) ( ).u k u k u k= − + ∆                 (3) 

 
Here the input variables are denoted by E and ∆E 
while their membership functions are as follows.  
NB: Negative Big, NM: Negative Medium, NS: 
Negative Small, ZO: Zero, PS: Positive Small, PM: 
Positive Medium, and PB: Positive Big. When dealing 
with the three input variables of the fuzzy controller, 
namely E, ∆E, and ∆2E, the membership functions are 
denoted as follows N: Negative, Z: Zero, and P: 
Positive.  

The membership functions of the output variable of 
the controller, that is, the changes of control are NB(-
m3), NM(-m2), NS(-m1), ZO(0), PS(m1), PM(m2) 
and PB(m3). The initial parameters of these 
membership functions are equal to m1, m2, and m3, 
respectively. The collection of the rules is shown in 
Table 1. 

We use triangular membership functions defined in 
the input and output spaces; see Figs. 2 and 3. Here 
these spaces are normalized to the [-1, 1] interval. 
 

3. AUTO-TUNING OF THE FUZZY 
CONTROLLER BY GAS 

 
Genetic algorithms (GAs) are the search algorithms 

inspired by nature in the sense that we exploit a 
fundamental concept of a survival of the fittest as 
being encountered in selection mechanisms among 
species. In GAs, the search variables are encoded in 
bit strings called chromosomes. They deal with a 
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Fig. 1. An overall architecture of the fuzzy PID controller. 
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population of chromosomes with each representing a 
possible solution for a given problem. Each chromosome 
has a fitness value that indicates how good a solution 
represented by it is. In control applications, the 
chromosome represents the controller’s adjustable 
parameters and the fitness value is a quantitative 
measure of the performance of the controller.  

In general, the population size, number of bits used 
for binary coding, crossover rate, and mutation rate 
are essential parameters whose values are specified in 
advance. The genetic search is guided by reproduction, 
mutation, and crossover. Each of these phases comes 
with a set of specific numeric parameters characterizing 
the phase. In this study, the number of generations is 
set at 100, crossover rate is equal to 0.6, while the 
mutation rate is taken as 0.1. The number of bits used 
in the coding is equal to 10.  

Fig. 4 portrays an overall auto-tuning scheme. Let 
us recall that this involves tuning of the scaling factors 

and a construction of the control rules. These are 
genetically optimized. We set the initial individuals of 
GAs using three types of parameter estimation modes 
such as a basic mode, contraction mode and expansion 
mode. In the case of the basic mode (BM), we use 
scaling parameters that normalize error between 
reference and output, one level error difference and 
two level error difference by [-1, 1] for the initial 
individuals in the GA. In the contraction mode (CM), 
we use scaling parameters reduced by 25% in relation 
to the basic mode. In the expansion mode (EM), we 
use scaling parameters enlarged by 25% from a basic 
mode. The standard ITAE expressed for the reference 
and the output of the system under control is treated 
as a fitness function [2]. 

Table 1. Fuzzy control rules. 
(a) 2 input variables. 

∆E  
NB NM NS ZO PS PM PB 

NB -m3 -m3 -m3 -m3 -m2 -m1 0 
NM -m3 -m3 -m3 -m2 -m1 0 m1 
NS -m3 -m3 -m2 -m1 0 m1 m2 
ZO -m3 -m2 -m1 0 m1 m2 m3 
PS -m2 -m1 0 M1 m2 m3 m3 
PM -m1 0 m1 M2 m3 m3 m3 

E 

PB 0 m1 m2 M3 m3 m3 m3 

 
(b) 3 input variables. 

  ∆2E=N                  ∆2E = Z       
∆E ∆E  

N Z P 
 

N Z P 
N -m3 -m3 -m2 N -m3 -m3 -m2 
Z -m2 -m1 0 Z -m2 -m1 0 E 
P 0 m1 m3 

 

E 
P 0 m1 m3 

∆2E =P 
∆E  

N Z P 
N -m3 -m3 -m2 
Z -m2 -m1 0 E 
P 0 m1 m3 

 

E, ∆E, ∆2E

-1 0 1

N PZ
1

   
(a) In case of E, ∆E and ∆2E. 
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(b) In case of E and ∆E. 

 
Fig. 2. Membership functions of the premise input

variables. 
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Fig. 3. Membership functions (singletons) defined in

the consequence variable, ∆U. 
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Fig. 4. The scheme of auto-tuning of the fuzzy PID controller involving estimation of the scaling factors. 
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The overall design procedure of the fuzzy PID 
controller realized by means of GAs is illustrated in 
Fig. 4. It consists of the following steps. 
 [Step 1] Select the general structure of the fuzzy 
controller according to the purpose of control and 
dynamics of the process. In particular, we consider 
architectural options. (PID, FPD (Fuzzy PD), and 
FPID (Fuzzy PID) controller) 
 [Step 2] Define the number of fuzzy sets for each 
variable and set up initial control rules. Refer to Figs. 
2 and 3.   
 [Step 3]  Form a collection of initial individuals of  
GAs. We set the initial individuals of GAs for the 
scaling factors of the fuzzy controller. The scaling 
factors can be described as normalized coefficients. 
Each scaling factor is expressed by (4). 
Fig. 5 illustrates three types of estimation modes of 
the scaling factors being used in setting the initial 
individuals of GAs describing the fuzzy controller.  
 

( ) ,E kT e GE= ×                         (4a) 
( ) [ ( ) (( 1) )] ,E kT e kT e k T GD∆ = − − ×          (4b) 

2 ( ) [ ( ) 2 (( 1) ) (( 2) )] ,E kT e kT e k T e k T GH∆ = − − + − ×  
                                       (4c) 

( ) (( 1) ) ( ) .U kT U k T U kT GC= − + ∆ ×        (4d) 
 

 [Step 4]  Here, all the control parameters such as 
the scaling factors GE, GD, GH and GC are tuned 
simultaneously.  
 

4. THE ESTIMATION ALGORITHM BY 
MEANS OF GA-BASED NEUROFUZZY 

NETWORKS (NFN) 
 

Let us consider an extension of the network with 
the fuzzy partition realized by fuzzy relations. Fig. 6 
visualizes the architecture of two-input and one-output 
NFNs, where each input assumes three membership 
functions. The circles denote processing units of the 
NFN. The node indicated ∏ denotes a Cartesian 
product, whose output is the product of all the 
incoming signals. N denotes the normalization of the 
membership grades. 

In the language of the rule-based systems, the 
structure is equivalent to the following collection of 
rules  

1
1 11 1 1 1

1 1
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=

=

=
                                        (5) 
The fuzzy rules in equation (5) constitute the 

overall networks of modified NFNs such as are shown 
in Fig. 6. The output fi of each node generates a final 
output ŷ  of the form 
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The learning of the NFN is realized by adjusting 
connections of the neurons and as such it follows a 
standard Back-Propagation (BP) algorithm. In this 
study, we use the Euclidean error distances  

 
2ˆ( ) ,p p pE y y= −                     (7) 
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where pE is an error measure for the p-th data, py is 

the p-th target output data, ˆ py stands for the p-th 
actual output of the model for this specific data point, 
N is total input-output data pairs, and E is a sum of 
the errors. As far as learning is concerned, the 
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Fig. 5. Three types of estimation modes for the scaling factors: basic, expansion, and contraction. 
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connections change as follows 
 

 ( ) ( )w new w old w= + ∆ ,                 (9) 
 
where the update formula follows the gradient descent 
method 
 

ˆ
ˆ

ˆ2 ( )

p p p i
ij

i p i i

p p i

E E y f
w

w y f w

y y

η η

η µ

∂ ∂ ∂  ∂
∆ = ⋅ − = − ⋅ ⋅ ⋅ 

∂ ∂ ∂ ∂ 
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with η being a positive learning rate. 

Quite commonly to accelerate convergence, a 
momentum term is being added to the learning 
expression. Combining (10) and a momentum term, 
the complete update formula merging the already 
discussed components is 

 
ˆ2 ( ) ( ( ) ( 1)).ij p p i ij ijw y y w t w tη µ α∆ = ⋅ ⋅ − ⋅ + − − (11) 

 
(Here the momentum coefficient,α, is constrained to 
the unit interval). 

In this algorithm, to optimize the learning rate, we 
use the genetic algorithm for the momentum term and 
fuzzy membership function of the above NFN. We use 
100 generations, 60 populations, 10 bits per string, 
crossover rate equal to 0.6, and mutation probability 
equal to 0.1. Fig. 7. depicts the detailed flowchart of 

the overall optimization process. 
 

5. EXPERIMENTAL STUDIES 
 

The proposed control scheme can be applied to a 
variety of control problems. In this section, we 
demonstrate the effectiveness of the fuzzy PD/PID 
controller by applying it to the inverted pendulum 
system. The inverted pendulum system is composed 
of a rigid pole and a cart on which the pole is hinged 
[4,8]. The cart moves on the rail tracks to its right or 
left, depending on the force exerted on the cart. The 
pole is hinged to the car through a frictionless free 
joint such that it has only one degree of freedom. The 
control goal is to balance the pole starting from 
nonzero conditions by supplying appropriate force to 
the cart. In this study, the dynamics of the inverted 
pendulum system are characterized by two state 
variables: θ (angle of the pole with respect to the 
vertical axis), θ (angular velocity of the pole). The 
behavior of these two state variables is governed by 
the following second-order equation.  

The dynamic equation of the inverted pendulum 
comes in the form 

2
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    (12) 

 
where g (acceleration due to gravity) is 9.8m/s2, mc 
(mass of cart) is 1.0kg, m (mass of pole) is 0.5kg, and 
F is the applied force expressed in Newtons.  

Our control goal here is to balance the pole without 
regard to the cart’s position and velocity, and we 
compare the fuzzy PID controller and the fuzzy PD 
controller with the conventional PID controller under 
identical conditions to validate the fuzzy PID 
controller and the fuzzy PD controller.  

 
Tuning of control parameters and estimation 

We genetically optimize control parameters 
(namely GE, GD, GH, and GC) with a clear intent of 
achieving the best performance of the controller [9]. 
GAs are powerful nonlinear optimization techniques.  

However, their high performance is obtained at the 
expense of computing time. This essentially rules out 
the use of GAs in an on-line mode. Rather than that 
we select a collection of “representative” control 
scenarios (viz. initial conditions of the pendulum) to 
off-line genetically optimize the controller and then 
use these results as a training set to form a nonlinear 
mapping between the initial conditions of the system 
and the corresponding scaling factors of the fuzzy 
controller. The form of the mapping can be experimented 

Get the auto-tuned control parameters by means of GAs 
for each initial angle(0.1,0.2,...,0.8) and each initial 

angular velocity(0.1,0.2,...,0.8) 

Tuning Algorithm

Estimating Algorithms

Estimate the control parameters for the 
arbitrarily given values 

(initial angle, initial angular velocity)

To estimate the control 
parameters, identify the acquired 

data by means of 
GA+Neurofuzzy networks

GA based Neurofuzzy networks

 
Fig. 7. Overall organization of the optimization

process. 
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with the help of a GA-based NFN. In the sequel, first we 
select several initial angular positions and angular 
velocities and then we obtain the auto-tuned control 
parameters by means of GAs according to the change of 
each selected initial angular positions and angular 
velocities. Next we build a table. Secondly, we use a 
GA-based NFN to estimate the control parameters, 
which are explained in the next section [10,11]. 
Proceeding with the genetic optimization, we consider 
the ITAE (Integral of the Time multiplied by the 
Absolute value of Error), overshoot and rising time as 
the three underlying criteria of the PI (Performance 
Index) of the controller. We decided to select 0.1 rad., 0.2 
rad.,…,0.7 rad., and 0.8 rad. as a collection of initial 
angular positions and 0.1 rad/sec, 0.2 rad/sec ,…, 0.7 
rad/sec, and 0.8 rad/sec as the corresponding family of 
values of the initial angular velocity. We also tuned 
(adjust) the control parameters of each controller (fuzzy 
PID controller, fuzzy PD controller and PID controller). 

Table 2 presents the scaling factors of the fuzzy 
controller tuned by using GAs, ITAE, overshoot and 
rising time in case that the initial angular position of 
the inverted pendulum is 0.1 rad, 0.2 rad,…, 0.7 rad, 

and 0.8 rad and the initial angular velocity is 0.1 
rad/sec, 0.2 rad/sec,…, 0.7 rad/sec, and 0.8 rad/sec, 
respectively. Using these 64 data, the auto-tuned 
values of scaling factors are obtained by using GAs 
for estimating control parameters. 

Fig. 8 shows (a) the performance of a fitness 
function in case of θ = 0.6 (rad) and θ =0.4 (rad/sec) 
and (b) the tuning procedure of scaling factors such as 
GE, GD, GH and GC according to successive 
generation with the aid of GAs. Refer to Table 2. 

Fig. 9 visualizes the value of the scaling factors 
treated as a function of initial angular position and 
angular velocity of the inverted pendulum in the fuzzy 
PID controller. Evidently there are nonlinear 
characteristics. 

Table 3 summarizes the scaling factors of the fuzzy 
PD controller that are tuned by using GAs under the 
same initial condition as those of the fuzzy PID 
controller, ITAE, overshoot and rising time.  

Table 4 shows the control parameters of the PID 
controller that are tuned by using GAs under the same 
initial condition as those of the fuzzy PID controller, 
ITAE, overshoot and rising time. 
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Fig. 8. (a) fitness function, (b) tuning procedure of scaling factors in successive generations (θ = 0.6 rad and
θ =0.4 rad/sec). 
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Tables 2-4 show the control parameters such as the 
scaling factors and PID parameter of each controllers 
obtained from GAs, and the performance indexes (ITAE, 
overshoot, and rising time) for each controller. In general, 
fuzzy PD and fuzzy PID controllers are preferred 
architectures. However, PID controller is also 
satisfactory in comparison to fuzzy PID controller within 
a linear range of θ < 0.4, while in case of a nonlinear 
range of θ > 0.6 fuzzy PID controller architecture is 
superior to both fuzzy PD and PID controller.  

Fig. 10(a) and (b) illustrate the dynamics of output 
of the system controlled by each controller after 
genetic optimization in the case of θ = 0.3 (rad), 

θ =0.7 (rad/sec) and (b) θ = 0.7 (rad), θ =0.5 (rad/ 
sec), respectively. 

In Fig. 10, we know that the fuzzy PID controller 
and fuzzy PD controller are superior to the 
conventional PID controller from the viewpoint of 
ITAE, overshoot and rising time. 

Now, we consider the case in which the initial 
angular positions and angular velocities of the 
inverted pendulum are not included in Tables 2, 3 and 
4 (in other words, selected arbitrarily within the given 
range). Here we show that the control parameters 
under the arbitrarily selected initial condition are not 
tuned by the GAs and the control parameters of each 

Table 2. The control parameters, ITAE, overshoot and rising time of the fuzzy PID controller after genetic 
optimization in the case that the initial angular position of the inverted pendulum is 0.1 rad, 0.2 
rad,…, 0.7 rad, and 0.8 rad and the initial angular velocity 0.1 rad/sec, 0.2 rad/sec ,…, 0.7 rad/sec, 
and 0.8 rad/sec. 
θ        θ  GE GD GH GC ITAE Overshoot 

(%) 
Rising time 

(sec) 
0.100000   0.100000 
0.100000   0.200000 
0.100000   0.300000 
0.100000   0.400000 
0.100000   0.500000 
0.100000   0.600000 
0.100000   0.700000 
0.100000   0.800000 
0.200000   0.100000 
0.200000   0.200000 
0.200000   0.300000 
0.200000   0.400000 
0.200000   0.500000 
0.200000   0.600000 
0.200000   0.700000 
0.200000   0.800000 
0.300000   0.100000 
0.300000   0.200000 
0.300000   0.300000 
0.300000   0.400000 
0.300000   0.500000 
0.300000   0.600000 
0.300000   0.700000 
0.300000   0.800000 
0.400000   0.100000 
0.400000   0.200000 
0.400000   0.300000 
0.400000   0.400000 
0.400000   0.500000 
0.400000   0.600000 
0.400000   0.700000 
0.400000   0.800000 
0.500000   0.100000 
0.500000   0.200000 
0.500000   0.300000 
0.500000   0.400000 
0.500000   0.500000 
0.500000   0.600000 
0.500000   0.700000 
0.500000   0.800000 
0.600000   0.100000 
0.600000   0.200000 
0.600000   0.300000 
0.600000   0.400000 
0.600000   0.500000 
0.600000   0.600000 
0.600000   0.700000 
0.600000   0.800000 
0.700000   0.100000 
0.700000   0.200000 
0.700000   0.300000 
0.700000   0.400000 
0.700000   0.500000 
0.700000   0.600000 
0.700000   0.700000 
0.700000   0.800000 
0.800000   0.100000 
0.800000   0.200000 
0.800000   0.300000 
0.800000   0.400000 
0.800000   0.500000 
0.800000   0.600000 
0.800000   0.700000 
0.800000   0.800000 

1.650049 
1.668622 
1.557185 
7.351906 
1.575758 
1.854350 
1.947214 
2.040078 
2.244379 
3.321603 
1.891496 
1.668622 
2.114369 
1.928641 
1.928641 
1.538612 
2.987292 
3.080156 
1.538612 
2.448680 
2.820137 
3.154448 
2.281525 
2.857283 
2.337243 
1.650049 
1.928641 
2.430108 
1.130010 
2.374389 
2.411535 
2.114369 
1.891496 
1.928641 
1.947214 
2.040078 
2.021505 
1.891496 
1.854350 
1.891496 
1.575758 
1.687194 
1.390029 
1.018573 
1.761486 
1.705767 
1.594330 
1.557185 
1.427175 
1.538612 
1.575758 
1.427175 
1.538612 
1.594330 
1.018573 
1.594330 
1.427175 
1.445748 
1.260020 
1.371457 
1.408602 
1.334311 
1.371457 
1.445748 

45.161293 
43.108505 
36.070381 
69.208214 
45.747803 
58.651028 
53.372433 
51.319649 
59.237537 
72.434013 
47.214077 
48.680351 
56.598240 
46.334312 
44.868038 
39.882702 
72.140762 
96.774193 
37.536655 
69.501465 
66.862167 
78.299118 
53.079178 
84.750732 
33.137829 
30.791788 
48.973606 
83.577713 
25.219942 
66.275658 
78.005859 
70.967743 
81.818184 
66.862167 
76.832840 
49.266865 
70.087975 
59.530792 
52.785923 
74.486801 
39.882702 
61.583576 
35.483871 
22.287392 
43.695015 
39.589439 
62.170086 
86.803520 
42.228741 
53.079178 
52.785923 
62.463341 
73.900291 
50.733139 
23.460411 
50.733139 
62.756596 
40.762466 
55.131966 
34.310852 
30.205278 
42.228741 
55.425220 
45.454548 

215.542511 
236.656891 
177.126099 
127.272728 
211.730194 
281.524933 
229.912018 
256.598236 
268.328430 
283.870972 
229.618759 
210.263931 
297.360718 
232.844574 
197.360718 
216.129044 
198.240479 
257.771271 
184.457474 
299.413483 
229.912018 
214.662750 
241.348969 
281.231659 
47.507332 
119.354843 
223.460419 
226.392960 
102.639297 
229.325516 
210.557175 
272.434021 
234.017593 
255.718475 
222.873901 
154.252197 
158.651016 
179.765396 
189.149551 
210.557175 
153.665680 
211.730194 
175.659821 
98.533730 
127.565987 
129.618774 
200.586517 
287.683289 
53.372433 
195.894424 
172.434021 
258.357788 
179.472153 
136.363647 
112.023460 
136.363647 
185.923752 
136.070389 
239.296188 
125.219940 
88.563049 
145.747803 
154.545456 
180.645172 

1.735093 
1.319648 
1.832844 
5.571847 
2.468231 
2.126100 
2.834800 
1.735093 
1.588465 
2.003910 
2.443793 
3.787879 
1.441838 
1.441838 
4.178886 
1.515152 
2.443793 
2.199414 
2.174976 
2.419355 
2.199414 
3.470186 
1.930596 
1.710655 
9.946237 
4.667644 
1.417400 
3.054741 
5.498534 
3.714565 
3.494624 
1.686217 
2.223851 
3.616813 
2.834800 
4.618768 
3.983382 
2.834800 
2.859238 
2.663734 
3.616813 
3.641251 
2.419355 
6.036168 
5.474096 
4.472141 
2.565982 
2.101662 
5.131965 
4.692082 
4.398827 
3.079179 
3.567937 
5.229716 
3.494624 
5.229716 
4.032258 
5.962854 
2.321603 
5.449658 
5.156403 
3.372434 
3.519062 
5.474096 

0.097273 
0.074026 
0.074897 
0.031921 
0.177262 
0.220245 
0.181537 
0.138513 
0.220017 
0.176821 
0.233764 
0.358009 
0.253218 
0.194606 
0.262681 
0.243090 
0.194699 
0.228670 
0.335907 
0.491584 
0.278169 
0.276092 
0.392080 
0.343879 
0.344132 
0.445385 
0.439613 
0.457985 
0.596329 
0.533014 
0.522671 
0.612176 
0.636086 
0.747243 
0.703863 
0.723054 
0.753718 
0.795945 
0.870931 
0.911025 
1.044728 
1.066975 
1.219189 
1.291297 
1.181221 
1.260368 
1.358645 
1.556496 
1.465122 
1.647075 
1.707701 
1.947195 
1.900622 
1.982359 
2.255980 
2.274349 
2.319965 
2.451787 
2.768469 
2.848641 
2.930422 
3.164248 
3.402342 
3.833133 

0.000255 
1.057175 
0.520979 
0.284381 
0.001417 
0.000361 
0.003848 
0.597917 
0.002452 
0.084697 
0.572674 
0.000340 
0.523023 
0.575528 
0.529929 
0.813163 
0.168146 
0.541496 
0.476415 
0.001374 
0.016132 
0.682007 
0.401829 
0.931851 
0.983603 
0.557061 
0.764274 
0.822324 
0.123811 
0.669856 
0.438267 
0.021387 
0.223738 
0.334514 
0.279617 
0.941279 
0.752549 
0.282009 
0.278803 
0.314776 
0.004459 
0.153832 
0.529370 
0.595427 
0.279334 
0.796205 
0.001934 
0.127577 
1.354618 
0.410465 
0.906766 
0.362886 
0.604560 
0.690369 
0.444391 
1.094785 
0.348073 
0.062809 
0.366498 
0.013807 
1.509672 
0.050040 
0.285634 
1.429595 

0.19108 
0.14779 
0.14178 
0.076249 
0.22292 
0.24818 
0.2131 
0.16876 
0.19383 
0.16606 
0.18522 
0.23948 
0.18571 
0.1466 
0.17919 
0.15522 
0.11374 
0.12085 
0.16969 
0.21956 
0.12592 
0.11368 
0.16297 
0.12301 
0.12211 
0.15545 
0.14312 
0.13338 
0.1798 
0.1411 

0.13076 
0.1484 
0.15523 
0.1702 
0.15312 
0.14564 
0.14271 
0.14634 
0.15069 
0.14768 
0.18124 
0.1748 
0.19305 
0.19592 
0.16266 
0.16061 
0.16766 
0.18196 
0.17854 
0.19333 
0.18489 
0.20453 
0.18265 
0.17907 
0.2019 
0.17625 
0.20954 
0.21003 
0.2222 
0.21421 
0.19847 
0.20457 
0.20153 
0.20405 
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(a)                                          (b) 

Fig. 10. The dynamics of output of the system controlled by each optimized controller in the case of (a) θ = 0.3
(rad), θ =0.7 (rad/sec) and (b) θ = 0.7 (rad), θ =0.5 (rad/sec). 

Table 3. The control parameter and performance index (ITAE, overshoot and rising time) of the fuzzy PD 
controller after genetic optimization in the case of θ = 0.1,…,0.8 (rad) and θ = 0.1,…,0.8 (rad/sec).

θ        θ  GE GD GC ITAE Overshoot(%) Rising time (sec) 
0.100000   0.100000 
0.100000   0.200000 
0.100000   0.300000 
0.100000   0.400000 
0.100000   0.500000 
0.100000   0.600000 
0.100000   0.700000 
0.100000   0.800000 
0.200000   0.100000 
0.200000   0.200000 
0.200000   0.300000 
0.200000   0.400000 
0.200000   0.500000 
0.200000   0.600000 
0.200000   0.700000 
0.200000   0.800000 
0.300000   0.100000 
0.300000   0.200000 
0.300000   0.300000 
0.300000   0.400000 
0.300000   0.500000 
0.300000   0.600000 
0.300000   0.700000 
0.300000   0.800000 
0.400000   0.100000 
0.400000   0.200000 
0.400000   0.300000 
0.400000   0.400000 
0.400000   0.500000 
0.400000   0.600000 
0.400000   0.700000 
0.400000   0.800000 
0.500000   0.100000 
0.500000   0.200000 
0.500000   0.300000 
0.500000   0.400000 
0.500000   0.500000 
0.500000   0.600000 
0.500000   0.700000 
0.500000   0.800000 
0.600000   0.100000 
0.600000   0.200000 
0.600000   0.300000 
0.600000   0.400000 
0.600000   0.500000 
0.600000   0.600000 
0.600000   0.700000 
0.600000   0.800000 
0.700000   0.100000 
0.700000   0.200000 
0.700000   0.300000 
0.700000   0.400000 
0.700000   0.500000 
0.700000   0.600000 
0.700000   0.700000 
0.700000   0.800000 
0.800000   0.100000 
0.800000   0.200000 
0.800000   0.300000 
0.800000   0.400000 
0.800000   0.500000 
0.800000   0.600000 
0.800000   0.700000 
0.800000   0.800000 

14.93646 
10.26392 
6.549364 
17.12610 
7.820137 
3.734115 
9.716520 
13.43108 
4.672532 
9.638318 
5.571847 
5.337244 
10.45943 
5.298142 
6.392962 
6.295210 
3.069404 
6.920821 
6.001955 
6.510263 
3.558162 
4.437928 
6.451612 
5.591398 
7.526882 
3.753666 
3.343109 
4.320626 
3.460411 
4.633431 
3.734115 
4.985337 
5.767351 
4.242424 
4.281525 
3.323558 
1.779081 
4.907136 
3.910069 
3.304008 
4.496579 
2.697947 
4.261975 
3.479961 
2.795699 
2.287390 
2.717498 
3.538612 
3.753666 
4.320626 
4.750733 
2.521994 
4.535679 
4.125122 
2.033236 
2.248289 
3.577713 
2.209189 
2.971652 
2.404692 
2.306940 
3.792766 
3.010753 
2.404692 

0.899866 
0.802163 
0.622390 
1.046420 
0.765036 
0.247211 
0.675150 
0.911590 
0.305833 
0.626298 
0.454341 
0.426984 
0.661471 
0.374225 
0.462157 
0.626298 
0.256981 
0.460203 
0.395719 
0.442617 
0.256981 
0.380087 
0.512963 
0.342960 
0.499284 
0.335144 
0.303879 
0.305833 
0.282384 
0.399628 
0.294108 
0.305833 
0.423076 
0.337098 
0.288246 
0.253073 
0.180773 
0.319511 
0.286292 
0.243303 
0.307787 
0.217900 
0.272614 
0.262844 
0.229625 
0.221808 
0.239395 
0.258935 
0.268706 
0.282384 
0.290200 
0.227671 
0.288246 
0.290200 
0.200314 
0.221808 
0.253073 
0.200314 
0.223762 
0.225717 
0.204222 
0.264798 
0.235487 
0.204222 

1.185454 
1.052545 
1.287091 
0.978273 
0.927455 
3.831909 
1.377000 
1.033000 
3.151727 
1.549000 
1.810909 
1.955546 
1.517727 
2.448091 
1.932091 
1.111182 
3.128273 
2.065000 
2.428545 
2.139273 
3.511364 
2.096273 
1.631091 
2.956273 
1.912545 
2.287818 
2.487182 
2.964091 
2.925000 
1.963364 
2.854636 
3.296364 
2.104091 
2.487182 
3.296364 
3.390182 
3.573909 
3.038364 
3.104818 
3.652091 
3.030545 
3.769364 
3.401909 
3.312000 
3.577818 
3.237727 
3.214273 
3.468364 
3.358909 
3.409727 
3.628637 
3.308091 
3.421455 
3.186909 
3.476182 
3.151727 
3.636455 
3.773273 
3.914000 
3.296364 
3.753727 
3.476182 
3.605182 
3.914000 

0.034373 
0.045998 
0.073581 
0.049569 
0.087333 
0.047277 
0.054430 
0.065572 
0.095997 
0.127201 
0.135217 
0.139306 
0.158252 
0.139665 
0.153668 
0.248850 
0.242936 
0.252706 
0.241516 
0.276194 
0.267076 
0.325881 
0.392499 
0.299164 
0.538816 
0.469680 
0.486880 
0.445922 
0.498048 
0.616099 
0.545544 
0.533104 
0.842767 
0.749735 
0.690006 
0.733171 
0.899276 
0.843915 
0.877988 
0.902420 
1.048746 
1.045987 
1.075930 
1.171544 
1.240273 
1.407169 
1.425942 
1.456570 
1.552194 
1.645655 
1.741531 
1.860775 
1.966259 
2.134502 
2.282319 
2.432745 
2.346170 
2.528666 
2.592028 
2.927830 
3.045240 
3.301775 
3.490056 
3.748619 

0.000092 
0.100769 
0.000000 
0.026306 
0.076760 
0.134572 
0.073070 
0.073025 
0.077961 
0.051684 
0.074449 
0.074474 
0.018422 
0.072501 
0.101304 
0.081654 
0.076407 
0.060785 
0.055312 
0.037955 
0.064160 
0.054341 
0.056445 
0.044844 
0.036244 
0.059967 
0.062577 
0.080275 
0.055342 
0.060080 
0.080466 
0.070599 
0.036113 
0.049547 
0.043878 
0.084664 
0.270279 
0.038558 
0.060032 
0.058428 
0.044971 
0.078194 
0.422543 
0.052938 
0.049336 
0.052847 
0.071779 
0.037791 
0.048066 
0.055660 
0.010769 
0.070872 
0.052065 
0.026069 
0.086637 
0.075062 
0.042356 
0.053902 
0.079453 
0.033023 
0.064020 
0.045469 
0.045494 
0.046755 

0.09920 
0.11809 
0.15279 
0.10701 
0.15233 
0.09530 
0.09997 
0.10502 
0.10776 
0.12571 
0.13046 
0.12701 
0.12827 
0.11224 
0.11511 
0.16335 
0.14274 
0.13752 
0.12708 
0.13542 
0.12602 
0.14534 
0.15815 
0.11366 
0.1821 
0.16405 
0.16267 
0.13948 
0.14933 
0.17118 
0.1447 
0.12827 
0.1983 
0.17579 
0.15353 
0.15592 
0.18419 
0.15806 
0.15613 
0.15031 
0.18273 
0.17535 
0.16773 
0.17489 
0.17577 
0.19181 
0.18084 
0.16951 
0.19662 
0.19666 
0.19666 
0.20154 
0.1963 
0.20084 
0.20661 
0.20607 
0.21543 
0.22109 
0.20856 
0.22568 
0.21653 
0.21634 
0.21136 
0.20982 
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controller are estimated by using the estimation 
algorithm of the GA-based NFN. We implement the 
optimal neurofuzzy networks for parameter estimation 
using GAs. In this algorithm, we adjust the learning 
rates, momentum coefficient, and apexes of the 
membership function of neurofuzzy networks by 
using GAs.  

Table 5 shows the estimated scaling factors of the 
fuzzy PID controller and describes the performance 
index (ITAE, overshoot and rising time) of the fuzzy 
PID controller with the estimated scaling factors in the 
case of θ = 0.22, 0.45, 0.78 (rad) and θ = 0.22, 0.45, 
0.78 (rad/sec), respectively. 

In the case of the fuzzy PD controller, the estimated 

scaling factors and performance index are shown in 
Table 6 when the initial angular position is 0.22 (rad), 
0.45 (rad), or 0.78 (rad) and the initial angular 
velocity is 0.22 (rad/sec), 0.45 (rad/sec), or 0.78 (rad/ 
sec), respectively.  

In the case of the PID controller, the estimated 
scaling factors by means of the GA-based NFN are 
presented in Table 7 when the initial angular position 
is 0.22 (rad), 0.45 (rad), or 0.78 (rad) and the initial 
angular velocity is 0.22 (rad/sec), 0.45 (rad/sec), or 
0.78 (rad/sec), respectively. 

Fig. 11 demonstrates (a) pole angle (b) pole angular 
velocity for initial angle θ = 0.22 (rad) and initial 
angular velocity θ =0.22 (rad/sec) (Case 1). 

Table 4. The control parameter and performance index (ITAE, overshoot and rising time) of the PID 
controller after genetic optimization in the case of θ = 0.1,…,0.8 (rad) and θ = 0.1,…,0.8 (rad/sec).

θ         θ  K Ti Td ITAE Overshoot 
(%) 

Rising time 
(sec) 

0.100000   0.100000 
0.100000   0.200000 
0.100000   0.300000 
0.100000   0.400000 
0.100000   0.500000 
0.100000   0.600000 
0.100000   0.700000 
0.100000   0.800000 
0.200000   0.100000 
0.200000   0.200000 
0.200000   0.300000 
0.200000   0.400000 
0.200000   0.500000 
0.200000   0.600000 
0.200000   0.700000 
0.200000   0.800000 
0.300000   0.100000 
0.300000   0.200000 
0.300000   0.300000 
0.300000   0.400000 
0.300000   0.500000 
0.300000   0.600000 
0.300000   0.700000 
0.300000   0.800000 
0.400000   0.100000 
0.400000   0.200000 
0.400000   0.300000 
0.400000   0.400000 
0.400000   0.500000 
0.400000   0.600000 
0.400000   0.700000 
0.400000   0.800000 
0.500000   0.100000 
0.500000   0.200000 
0.500000   0.300000 
0.500000   0.400000 
0.500000   0.500000 
0.500000   0.600000 
0.500000   0.700000 
0.500000   0.800000 
0.600000   0.100000 
0.600000   0.200000 
0.600000   0.300000 
0.600000   0.400000 
0.600000   0.500000 
0.600000   0.600000 
0.600000   0.700000 
0.600000   0.800000 
0.700000   0.100000 
0.700000   0.200000 
0.700000   0.300000 
0.700000   0.400000 
0.700000   0.500000 
0.700000   0.600000 
0.700000   0.700000 
0.700000   0.800000 
0.800000   0.100000 
0.800000   0.200000 
0.800000   0.300000 
0.800000   0.400000 
0.800000   0.500000 
0.800000   0.600000 
0.800000   0.700000 
0.800000   0.800000 

166.177917 
168.670578 
167.174973 
168.172043 
167.174973 
168.670578 
170.000000 
168.338226 
167.839691 
168.504395 
169.335297 
169.833817 
169.501465 
167.507339 
167.839691 
165.180847 
169.002930 
169.501465 
168.172043 
169.169113 
167.673508 
169.501465 
169.002930 
168.836761 
169.833817 
169.667648 
170.000000 
167.008804 
170.000000 
167.839691 
167.174973 
169.501465 
169.002930 
167.507339 
169.335297 
168.005859 
169.667648 
169.833817 
167.341156 
169.335297 
168.670578 
167.507339 
167.507339 
168.670578 
169.501465 
168.172043 
168.504395 
167.673508 
169.002930 
163.519058 
169.169113 
164.017593 
167.673508 
166.842621 
169.002930 
166.842621 
165.845551 
170.000000 
167.341156 
168.836761 
169.335297 
166.344086 
168.338226 
169.833817 

168.670975 
161.195160 
168.670975 
167.341934 
165.348389 
165.348389 
164.850006 
165.182266 
165.680649 
159.035477 
167.508072 
168.006454 
170.000000 
169.501617 
169.335480 
169.335480 
167.840332 
161.029037 
169.501617 
159.201614 
168.670975 
161.195160 
168.006454 
157.041931 
164.850006 
167.674194 
168.837097 
168.172577 
169.501617 
165.182266 
169.003220 
169.501617 
169.169357 
166.511292 
165.348389 
168.837097 
166.677429 
162.358063 
163.354828 
164.351608 
167.175812 
168.837097 
168.670975 
169.335480 
166.012909 
169.501617 
167.840332 
168.504837 
168.006454 
170.000000 
163.188705 
169.335480 
167.009674 
167.674194 
163.188705 
169.003220 
165.016129 
168.172577 
160.862900 
164.850006 
167.840332 
169.833878 
162.856445 
168.837097 

0.105460 
0.104877 
0.105655 
0.106239 
0.105849 
0.104099 
0.105849 
0.106822 
0.104488 
0.104682 
0.104488 
0.103515 
0.105655 
0.105655 
0.105460 
0.105266 
0.104099 
0.104099 
0.103904 
0.104293 
0.104488 
0.104099 
0.103126 
0.104488 
0.103126 
0.102932 
0.103126 
0.102932 
0.103904 
0.104099 
0.102932 
0.101764 
0.104099 
0.103515 
0.103710 
0.103126 
0.101375 
0.102932 
0.104099 
0.102348 
0.103904 
0.102932 
0.104099 
0.102153 
0.101181 
0.102153 
0.101375 
0.103321 
0.104293 
0.104293 
0.102543 
0.103515 
0.101570 
0.104099 
0.102348 
0.101959 
0.102543 
0.100792 
0.102153 
0.100792 
0.102153 
0.103126 
0.101375 
0.100986 

0.094016 
0.098847 
0.105030 
0.111790 
0.116218 
0.117358 
0.128590 
0.137882 
0.207465 
0.218555 
0.225252 
0.230809 
0.251252 
0.261690 
0.273272 
0.284905 
0.362849 
0.379521 
0.391446 
0.414550 
0.430043 
0.451165 
0.461775 
0.498353 
0.571272 
0.592150 
0.618764 
0.642883 
0.681876 
0.715386 
0.736046 
0.763473 
0.868561 
0.901292 
0.945491 
0.979462 
1.009529 
1.078726 
1.140496 
1.179671 
1.273187 
1.318895 
1.394525 
1.440542 
1.505114 
1.589511 
1.666328 
1.778220 
1.861877 
1.942323 
2.035579 
2.144568 
2.243018 
2.406587 
2.529273 
2.665989 
2.707035 
2.839842 
3.038635 
3.202980 
3.427777 
3.665044 
3.906416 
4.178266 

0.076108 
0.080049 
0.078796 
0.080387 
0.085414 
0.096094 
0.090310 
0.094369 
0.086079 
0.088015 
0.085342 
0.095161 
0.085611 
0.090230 
0.093410 
0.104905 
0.092720 
0.096959 
0.102306 
0.102718 
0.103205 
0.108161 
0.122959 
0.116110 
0.112191 
0.117532 
0.114223 
0.144168 
0.110402 
0.122198 
0.151878 
0.167841 
0.111528 
0.131474 
0.122725 
0.140650 
0.181248 
0.143894 
0.141993 
0.166694 
0.128207 
0.154512 
0.136399 
0.172079 
0.202769 
0.185255 
0.215378 
0.169083 
0.138084 
0.168098 
0.174166 
0.193269 
0.225348 
0.170850 
0.200558 
0.235506 
0.212035 
0.227844 
0.223635 
0.257897 
0.210568 
0.216031 
0.264730 
0.262563 

0.17165 
0.17077 
0.17169 
0.17288 
0.17029 
0.16486 
0.1688 
0.16985 
0.1716 
0.17226 
0.17157 
0.16843 
0.17366 
0.17212 
0.17106 
0.16889 
0.17604 
0.17575 
0.17478 
0.17535 
0.17497 
0.17388 
0.17047 
0.17307 
0.18146 
0.18075 
0.18098 
0.17913 
0.18173 
0.18081 
0.17733 
0.17431 
0.1929 
0.19141 
0.19163 
0.18977 
0.18561 
0.18844 
0.18926 
0.18525 
0.20418 
0.20204 
0.20372 
0.19977 
0.19719 
0.19793 
0.19575 
0.19828 
0.21974 
0.21785 
0.21553 
0.21567 
0.21206 
0.21563 
0.21162 
0.20932 
0.23376 
0.23121 
0.23243 
0.22947 
0.23097 
0.23096 
0.22702 
0.22532  
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Table 5. The estimated parameters by means of the GA-based NFN and performance index (ITAE, overshoot 
and rising time) of the fuzzy PID controller in the case of θ = 0.22, 0.45, 0.78 (rad) and θ = 0.22, 
0.45, 0.78 (rad/sec). 

Case 
Initial 
angle 
(rad) 

Initial 
angular 
velocity 

GE GD GH GC ITAE Overshoot 
(%) 

Rising time 
(sec) 

1 0.22 0.22 2.032828 61.545998 237.387817 3.706272 0.419737 0.000000 0.26105 
2 0.22 0.45 2.117639 61.290897 242.742706 3.047558 0.398423 0.000000 0.24208 
3 0.22 0.78 2.185512 60.583847 250.425781 1.442666 0.363320 0.000000 0.20613 
4 0.45 0.22 1.818810 57.950821 222.710297 4.021980 0.923726 0.000000 0.23562 
5 0.45 0.45 1.868329 58.781029 228.355225 3.553186 0.898830 0.000000 0.21048 
6 0.45 0.78 1.907958 61.082088 236.454498 2.411014 0.855770 0.000000 0.16716 
7 0.78 0.22 1.372258 47.819809 174.743240 4.474953 2.432061 0.000000 0.21519 
8 0.78 0.45 1.348141 51.708344 181.336151 4.278651 2.911324 0.000000 0.21672 
9 0.78 0.78 1.328839 62.486092 190.795532 3.800384 3.726972 0.000000 0.21093 

 
Table 6. The estimated parameters by means of the GA-based NFN and performance index (ITAE, overshoot 

and rising time) of the fuzzy PD controller in the case of θ = 0.22, 0.45, 0.78 (rad) and θ = 0.22, 
0.45, 0.78 (rad/sec). 

Case Initial 
angle (rad) 

Initial 
angular 
velocity 

GE GD GC ITAE Overshoot 
(%) 

Rising time 
(sec) 

1 0.22 0.22 7.437843 0.529057 1.854648 0.149772 0.000000 0.12902 
2 0.22 0.45 7.003085 0.508195 2.066092 0.173872 0.000000 0.13051 
3 0.22 0.78 6.693032 0.492697 2.270946 0.216222 0.000000 0.13200 
4 0.45 0.22 4.914640 0.333972 2.715822 0.546678 0.155587 0.15296 
5 0.45 0.45 4.470177 0.317409 2.791710 0.609271 0.133525 0.15100 
6 0.45 0.78 4.153202 0.305104 2.865232 0.728531 0.102153 0.14932 
7 0.78 0.22 3.597757 0.247494 3.913758 2.270186 0.026860 0.20643 
8 0.78 0.45 3.148229 0.232836 3.801080 2.617699 0.076634 0.20401 
9 0.78 0.78 2.827642 0.221947 3.691914 3.304682 0.140848 0.20195 

 
Table 7. The estimated parameters, ITAE, overshoot and rising time of the PID controller in the case of θ = 

0.22, 0.45, 0.78 (rad) and θ = 0.22, 0.45, 0.78 (rad/sec). 

Case Initial 
angle (rad) 

Initial 
angular 
velocity 

K Ti Td ITAE Overshoot 
(%) 

Rising time 
(sec) 

1 0.22 0.22 168.686066 164.717194 0.104505 0.247020 0.087829 0.17247 
2 0.22 0.45 168.680069 164.879379 0.104704 0.273436 0.092216 0.17193 
3 0.22 0.78 168.661194 164.987473 0.104988 0.319242 0.100283 0.16993 
4 0.45 0.22 168.392883 166.310638 0.103440 0.742116 0.122528 0.18613 
5 0.45 0.45 168.420395 166.041107 0.103302 0.819175 0.131957 0.18468 
6 0.45 0.78 168.506943 165.861481 0.103104 0.953855 0.147016 0.18185 
7 0.78 0.22 167.593369 167.404816 0.102826 2.674119 0.187619 0.23005 
8 0.78 0.45 167.712250 166.838821 0.102493 3.051612 0.208242 0.22797 
9 0.78 0.78 168.086258 166.461639 0.102016 3.762012 0.241529 0.22332 
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                        (a)                                          (b) 
Fig. 11. (a) pole angle, (b) pole angular velocity for initial angle θ = 0.22 (rad) and initial angular velocity 

θ =0.22 (rad/sec) (Case 1). 
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Fig. 12 demonstrates (a) pole angle (b) pole angular 
velocity for initial angle θ = 0.78 (rad) and initial 
angular velocity θ =0.45 (rad/sec) (Case 8). 

From the above Figs. 11 and 12, we know that the 
fuzzy PD and fuzzy PID effectively control the 
inverted pendulum system. The proposed estimation 
algorithm such as GA-based NFN generates the 
preferred model architectures. The output perfor-
mance of the fuzzy controllers such as the fuzzy PD 
and the fuzzy PID controller including nonlinear 
characteristics are superior to that of the PID 
controller, especially in a nonlinear range of θ>0.45 
when using the nonlinear dynamic equation of the 
inverted pendulum. While in case of a linear range 
θ<0.45, the PID controller is also satisfactory in 
comparison to the fuzzy PID controller. In particular 
the fuzzy PD controller is the most preferred one 
among the controllers when using NFN-based 
estimation techniques. Fig. 13 depicts the nonlinear 

characteristic of the fuzzy PD controller in cases 
where GE, GD, and GC are equal to 1.  

Fig. 14 visualizes the input-output relation of the 
fuzzy PD controller when using Case 6. Note that the 
fuzzy PD comes with a significant nonlinear mapping 
between the inputs and the output. 
 

6. CONCLUSIONS 
 

In this paper, we have proposed a two-phase 
optimization scheme of the fuzzy PID and PD 
controllers. The parameters under optimization 
concern scaling factors of the input and output 
variables of the controller that are known to exhibit an 
immense impact on its quality. The first phase of the 
design of the controller employs genetic computing 
that aims at the global optimization of its scaling 
factors where they are optimized with regard to a 
finite collection of initial conditions of the system 
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                       (a)                                           (b) 
Fig. 12. (a) pole angle, (b) pole angular velocity for initial angle θ = 0.78 (rad) and initial angular velocity

θ =0.45 (rad/sec) (Case 8). 
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Fig. 13. The input-output relation of the fuzzy PD        Fig. 14. The input-output relation of fuzzy PD 

controller (GE, GD, GC = 1).                        controller (Case 6). 
 



Fuzzy Controller Design by Means of Genetic Optimization and NFN-Based Estimation Technique 373 
 

under control. In the second phase, we construct a 
nonlinear mapping between the initial conditions of 
the system and the corresponding values of the scaling 
factors. Based on the simulation studies, using genetic 
optimization by scaling factor estimation modes and 
the estimation algorithm of the GA-based neurofuzzy 
networks model, we demonstrated that the fuzzy 
PD/PID controller effectively controls the inverted 
pendulum system, particularly in a nonlinear range of 
θ. While the study showed the development of the 
controller in the experimental framework of control of 
a specific dynamic system (inverted pendulum), this 
methodology is general and can be directly utilized to 
any other system. Similarly, one can envision a 
number of modifications that are worth investigating. 
For instance, a design of systems exhibiting a 
significant level of variability could benefit from the 
approach pursued in this study. 
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