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�is paper presents a comparative study of fuzzy controller design for the twin rotor multi-input multioutput (MIMO) system
(TRMS) considering most promising evolutionary techniques. �ese are gravitational search algorithm (GSA), particle swarm
optimization (PSO), arti	cial bee colony (ABC), and di
erential evolution (DE). In this study, the gains of four fuzzy proportional
derivative (PD) controllers for TRMS have been optimized using the considered techniques. �e optimization techniques are
developed to identify the optimal control parameters for system stability enhancement, to cancel high nonlinearities in the model,
to reduce the coupling e
ect, and to drive TRMS pitch and yaw angles into the desired tracking trajectory e�ciently and accurately.
�e most e
ective technique in terms of system response due to di
erent disturbances has been investigated. In this work, it is
observed that GSA is the most e
ective technique in terms of solution quality and convergence speed.

1. Introduction

In the recent few years, unmanned autonomous vehicles
are needed for various applications including Twin Rotor
MIMO system (TRMS) which has been studied under many
engineering applications including control, modeling, and
optimizations. TRMS is emulating the behavior of helicopter
dynamics [1] and its main problem can be summarized in
solving high nonlinearities in the system in order to provide
the desired tracking performancewith suitable control signal.

Real coded genetic algorithm, particle swarm, and radial
basis neural network are used for TRMS parameter iden-
ti	cation without any former knowledge [2–4]. TRMS has
been examined with di
erent controllers such as four PID
controllers with genetic algorithm to tune PID gains [5],
decoupling control using robust dead beat [6], model predic-
tive control [7], and�∞ control for disturbance rejection [8].
All aforementioned controllers are examined under hovering
positions and switching LQ controller is used to switch the
controller between di
erent operating points [9]. Hybrid
fuzzy PID controller shows good tracking performance in

comparison to PID controller [10, 11]. Sliding mode control
has been proposed in [12, 13] where fuzzy control and
adaptive rule techniques are used to cancel the system
nonlinearities. Both techniques apply integral sliding mode
for the vertical part with robust behavior against parameters
variations and they showed good results. However, their
limitations re�ected lie in the control signal and design
complexity. Generally, fuzzy logic control (FLC) has been
developed as an intelligent control approach for various
applications in the presence of uncertainties. Fuzzy has been
implemented with fuzzy control for nonlinear systems with
unknown dead zone [14, 15], for output feedback of nonlinear
MIMO systems [15, 16], for uncertain systems [17], and
for systems with random time delays [18]. Also, observer
based on adaptive fuzzy has been implemented successfully
in [19–21]. Decoupling FLC will be used in this work to
control TRMS by removing the coupling e
ect in addition to
providing the desired tracking performance.

Evolutionary algorithms are important optimization tools
in engineering applications and they are gaining popularity
among the researchers. Particle swarm optimization (PSO)
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has been proposed as e�cient optimization algorithm [22].
PSOhas been successfully implemented in di
erent engineer-
ing applications including identifying the path following foot-
step of humanoid robot [23], setting the control parameters
for automatic voltage regulator [24, 25], and designing fuzzy
PSO controller for navigating unknown environments [26].
Di
erential evolution (DE) was formulated as impressive
evolutionary algorithm in [27, 28]. DEwas successfully tested
for various applications involving tuningmultivariable PI and
PID controllers of the binaryWood-Berry distillation column
[29], optimizing delayed states of Kalman 	lter for induction
motor [30] and optimizing the controller parameters of
adaptive neural fuzzy network for nonlinear system [31]. A
new optimization technique based on bees swarming was
developed [32] and later arti	cial bee colony (ABC) emerged
in [33]. ABC shows great results for many applications, for
instance, employing ABC to 	nd the optimal distributed
generation factors for minimizing power losses in an electric
network [34], de	ning the path planning and minimizing
the consumption energy for wireless sensor networks [35].
Finally gravitational search algorithm (GSA) was proposed
recently as promising evolutionary algorithm and shows
impressive results [36]. GSA has been successfully imple-
mented in many areas including fuzzy controller design [37,
38] and solving multiobjective power system optimization
problems [39, 40].

In this work, the main contribution is proposing a
decoupling PD fuzzy control scheme for the nonlinear
TRMS. Controller parameters will be de	ned based on an
optimization technique. GSA, PSO, ABC, and DE have been
implemented for a comparative study in order to optimize
the gains of a proposed controller for the nonlinear TRMS.
Another contribution of this work is de	ning the minimum
objective function in addition to 	nding the most robust
technique with di
erent initial populations. �ese optimiza-
tion techniques will be used to tune PD gains and coupling
coe�cients.�e proposed approach is investigated for TRMS
at di
erent operating conditions taking into account the need
for cancelling strong coupling between two rotors and the
speci	c range of control signals, and 	nally providing the
desired tracking response. Generally, the results show the
e
ectiveness of the considered techniques. �e best perfor-
mance was observed with GSA in terms of convergence rate
and solution optimality. �e paper is organized as follows.
Section 2 includes the problem formulation. �e proposed
control strategy is presented in Section 3. Optimization tech-
niques will be discussed in Section 4. In Section 5, simulation
results are presented and discussed and the e
ectiveness of
the proposed approach is demonstrated. Finally, Section 6
concludes the main 	ndings and observations with recom-
mended future work.

2. Twin Rotor MIMO System Modeling

Twin rotor is a laboratory setup for stimulating helicopter
in terms of high nonlinear dynamics with strong coupling
between two rotors and training various control algorithms
for angle orientations.�e full description of TRMS has been
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Figure 1: TRMS setup.

detailed in [1], where the system has six states de	ned as

� = [�1, �2, �3, �4, �5, �6]�, two control signals �1 and �2,
and 	nally the output represented by � = [�1, �3]�. �emain
structure of TRMS studied in this work is shown in Figure 1.

�e complete model of the system can be represented as
follows:
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TRMS dynamics are de	ned by six states as vertical or main
angle, yaw or horizontal angle, vertical velocity, yaw velocity,
and two momentum torques, respectively. �e parameters of
TRMS can be de	ned as follows: �1, 
1, �2, and 
2 are constant
parameters referring to the static behavior of the system,
two moments of inertia for vertical and horizontal rotors are
stated as 	1 and 	2, frictionmomentums are�1�,�2�,�1�, and
�2�, gravitymomentum is��, gyroscopicmomentum is���,
other parameters that have to be de	ned for vertical rotor are
�11, �10 and for horizontal rotor �22, �20, and 	nally vertical
and horizontal rotor gains are �1 and �2.

�e control signals are used to control angles orienta-
tions by two torque momentum equations. Strong coupling
between two rotors in addition to high nonlinearities detailed
in (1) ended to formulate the tracking control as an interesting
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Figure 2: Membership fuctions of horizontal error and error rate.

problem to be investigated. �e solution of the control
problem will be developed using decoupling proportional
derivative fuzzy logic controller (PDFLC).

3. Proposed Control Approach

Since last few decades, fuzzy logic control [41] has been
used extensively as intelligent technique in many control
applications. In this work, decoupling PDFLC is proposed to
solve coupling e
ects and high nonlinearities in addition to
providing so� and smooth tracking response. �e proposed
control should be able to maintain the control signal in the
demand range.

3.1. Structure of the Proposed Controllers. �e proposed
decoupling PDFLC scheme is mainly composed of four
fuzzy controllers stated as vertical, horizontal, vertical to
horizontal, and horizontal to vertical controllers as�,�,��,
and ��, respectively. �e vertical controller is designed for
the main rotor and horizontal controller is designed for the
tail rotor. �� and �� controllers are designed in order to
cancel the coupling e
ect between two rotors represented by
the bias in the tracking response.

�e design of the assigned decoupling PDFLC for strong
coupling and high nonlinear TRMS is shown in Figures 2,
3, and 4 as a triangular membership function. Inputs for
PDFLC are expressed by error and rate of the error while
the output is the control signals. �e linguistic variables of
the two input membership functions for the four PDFLC are
described as PL, P, PS, Z, NS, N, and NL.�e input of PDFLC
ranged from −0.5 to 0.5 for the horizontal part and from −0.6
to 0.6 for the other three PDFLCs while output of the four
membership functions is PVL, PL, P, PS, Z, NS, N, NL, and
NVL within range −2.5 to 2.5. �e linguistic variables are
stated as PVL is positive very large, PL is positive large, P is
positive, PS is positive small, Z is zero, NS is negative small,
N is negative, NL is negative large, and NVL is negative very
large.

Table 1 describes the rule base of the proposed PDFLC.
Figure 5 shows the proposed controller of decoupling
PDFLC. Ten gains will be tuned divided into eight gains for
the proposed coupling PDFLC represented by four propor-
tional gains and another four derivative gains in addition to
two gains demonstrating the coupling e
ect from the output
of HV and VH controllers.

Table 1: Rule base of all fuzzy controllers.

Δ� \ � NL NM NS Z PS PM PL

NL NVL NVL NL NM NS NS Z

N NVL NL NM NM NS Z PS

NS NL NM NS NS Z PS PM

Z NM NS NS Z PS PS PM

PS NM NS Z PS PS PM PL

P NS Z PS PM PM PL PVL

PL Z PS PS PM PL PVL PVL

NL Z PLPPSNSN

0.60.40.20−0.6 −0.4 −0.2

Figure 3: Membership fuctions of error and rate of vertical, vertical
to horizontal, and horizontal to vertical fuzzy controllers.
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Figure 4: Membership functions of control signals of all fuzzy
controllers.

3.2. Problem Formulation. Ten gains to be optimized are
de	ned as���,����,���,����,����,�����,����,
�����, ���, and ���, where � refers to gain, � refers
to vertical, � refers to horizontal, �� refers horizontal to
vertical,�� refers vertical to horizontal, � refers to error, and
�� refers to rate of error. �e gains assigned to be between
maximum and minimum constraints as follows:

0.001 ≤ �fuzzy (�) ≤ 40 for � = 1, . . . , 8.

−2 ≤ �coupling (�) ≤ 2 for � = 1, 2,
(2)

where

�fuzzy

= [���,����,���,����,����,

�����,����,�����]� ,

�coupling = [���,���]� .

(3)
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Figure 5: Proposed fuzzy controller for the nonlinear MIMO TRMS.

�e objective function is chosen to satisfy well-tracked
response as follows:

	t =
	sim
∑
	=0

(�2� (�) + �2
 (�)) � (�) , (4)

where

�� (�) = �� (�) − � (�) ,

�
 (�) = �� (�) − � (�) ,
(5)

�(�) and ��(�), are actual and desired vertical angles,
respectively, �(�) and ��(�) are actual and desired horizontal
angles, respectively, ��(�) and ��(�) are errors between the
desired and actual angles for vertical and horizontal parts
respectively, and �(�) is a weight factor in order to penalize
the error as time increases. Ten gains will be optimized using
four optimization techniques as mentioned in the literature.
�e objective function of each optimization technique is a
minimization function considering gains have to satisfy the
constraints in (2). In this study, GSA, PSO, ABC, and DE will
be developed as a comparison study in order to search for the
optimal gains.

4. Optimization Algorithms

�is work presents a comparison study among four evo-
lutionary optimization techniques. Each optimization algo-
rithm aims to 	nd the optimal gains for minimum possible

objective function as de	ned in (4). �e following subsec-
tions describe brie�y optimization techniques implemented
in this work.

4.1. Gravitational Search Algorithm. In the last few years,
gravitational search algorithm (GSA) has been introduced
as a new metaheuristic optimization algorithm developed by
newton gravitational laws and was 	rst proposed in 2009 by
[36]. �e algorithm stated that, for any two objects, every
object is attracted to the other object by attraction forcewhich
is directly proportional to their mass and inversely propor-
tional to their square distance. GSA has been explained in
detail in [36].

GSA can be summarized in the following �owchart as
shown in Figure 6.

4.2. Particle Swarm Optimization. Particle swarm optimiza-
tion has emerged recently as combinational metaheuristic
approach and was 	rst inspired from a behavior combined
between bird �ocking and 	sh schooling in 1995 by [22]. PSO
combines principles of human sociocognition in addition
to evolutionary computation. Each particle in the swarm
represents a potential or a solution which is required to
be sought in the search space in order to 	nd the optimal
solution. A potential is formed by a set of agents. Two
important equations are necessary to emulate socio and
cognition behaviors are represented by position and velocity
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Figure 6: GSA computational �owchart.

for each agent.�e position of the agent can be de	ned by the
following equation:

��, (�) = V�, (�) + ��, (� − 1) . (6)

�e velocity of each agent can be de	ned by

V�, (�) = � (�) V�, (� − 1) +  1!1 (�∗�, (� − 1) − ��, (� − 1))

+  2!2 (�∗∗�, (� − 1) − ��, (� − 1)) ,
(7)

where � = 1, 2, . . . , " and " is the population size, # =
1, 2, . . . , $ and $ are the size of agents in the potential, �∗�,
is the local best solution, �∗∗�, is the global best solution,

�(�) is a decreasing weight that can be de	ned by �(�) =
exp(−�(� − 1)�),  1 and  2 are positive constants, and !1 and
!2 are uniformly distributed random numbers in [0, 1]. PSO
is described in detail in [22, 42].

PSO can be summarized in the following �owchart as
shown in Figure 7.

4.3. Arti�cial Bees Colony. In the last few years, arti	cial
bees colony has been introduced as a new metaheuristic
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Figure 7: PSO computational �owchart.

optimization approach and was 	rst inspired in 2005 by [32].
Colony of bees usually divided into three groups of bees as
employed, onlooker, and scout bees. Life in bees’ colony can
be brie�y summarized as employed bees search randomly
for food where the best position of food is considered as the
optimal solution. Employed bees dance to share information
with other bees about amount of nectar and food source.
Onlookers wait in the hive to receive information from
employed bees. Onlooker bees can di
erentiate between the
good source and the bad source and decide on the food
quality based on dance length, dance type, and speed of
shaking. Onlooker bees choose scout bees before sending
them for a new process of food searching. According to food
quality, onlooker and scout bees may decide to be employed
and vice versa. �e relation between bees food searching and
ABC has been discussed in detail in [32, 33]. In the ABC
algorithm employed and onlooker bees are responsible for
searching in the space about the optimal solution while scout
bees control the search process as mentioned in [33]. In ABC,
the solution of the optimization problem is the position of the
food source while the amount of nectar with respect to the
quality refers to the objective function of the solution.
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�e position of the food source in the search space can be
described as follows:

�new
� = �old

� + � (�old
� − ��) . (8)

�e probability of onlooker bees for choosing a food source
is as follows:

%� =
	tness�

∑���=1 	tness�
(9)

with � = 1, 2, . . . , '� and '� is the half of the colony size,
# = 1, 2, . . . , *, and # is the number of positions with *
dimension, where * refers to number of parameters to be
de	ned, 	tness� is the 	tness function, � is a random number,
where � ∈ (1, 2, . . . , '�), and � is random number between 0
and 1.

ABC can be summarized in the following �owchart as
shown in Figure 8.

4.4. Di�erential Evolution. Di
erential evolution has been
developed as an optimization technique and has been tested
on “Chebyshev Polynomial 	tting problem” before adding
several improvements [27]. Finally, DE has been formulated
as impressive optimization technique in [28]. DE has the
same structure of Genetic algorithm represented by crossover
and mutation in addition to retaining the better population
and best solution by comparing the old population with the
new one. Important relations will be used in the searching
process represented by mutation and crossover. Perform-
ing mutation requires assigning mutation probability (MP)
arbitrarily as a constant number between 0 and 1. Mutation
relation will be calculated only ifMP is greater than a random
number between 0 and 1 as follows:

�� (/ + 1)

= 9� (/)

+ : (9best (/) − 9� (/)) + : (9�1 (/) − 9�2 (/)) .
(10)

�e crossover will be computed by simple relation where
crossover probability (CP) will be set arbitrarily between
0 and 1 and then it will be compared to random number
between 0 and 1. �e crossover step will be executed only if
CP is greater than the random number. Crossover equation
can be calculated from the following relation:

9� (/ + 1) = �� (/ + 1) , (11)

where � = 1, 2, . . . , "� and � is iterated number for every
solution in the generation, 9�(/) represents a solution at
iteration � in the generation, ��(/ + 1) is a mutant vector
generated from (10), 9�1(/), 9�2(/) are solution vectors
selected randomly from current generation,9best(/) is the
best achieving solution, and : is a random number between
0 and 1. DE is described in detail in [43].

DE can be summarized in the following �owchart as
shown in Figure 9.

Generate food source position

Calculate the �tness value for each position
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Calculate �tnesses of updates positions

Compare food positions and retain best solution

Calculate probability for positions solutions

De�ne the lowest probability for position

Stopping 

Update position solutions

criteria met?

Yes

Stop and retain best solution

No

Figure 8: ABC computational �owchart.

4.5. Optimization Algorithms Implementation. For fair com-
parison, the population size is set as 150 particles for all
techniques. For each particle, 10 parameters are de	ned to
be optimized controller gains as shown in Figure 5. Initial
settings for optimizations techniques are demonstrated in
Tables 2, 3, and 4 for GSA, PSO, and DE, respectively, with
setting maximum number of generations being 200.

5. Results and Discussions

Nonlinear TRMS has been simulated considering TRMS
parameters in �e appendix. Brie�y, the system has been
simulated for 80 secondswith initial conditions for both pitch
and yaw angles are 0.1 and 0.15 rad, respectively, with 0.01
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Table 2: Parameters setting for GSA.

Parameter � � ; /0 �best

Setting 7 6 0.00001 1000 4

Table 3: Parameters setting for PSO.

Parameter � �  1  2
Setting 10 0.99 2 2

seconds sampling time. �e objective function is computed
from (4) where �(�) is a penalty factor. To improve the
settling time, the objective function will be multiplied by an
increasing time weighting �(�) which starts initially as �(�) =
1. In this experiment, the reference has been chosen for both
yaw and pitch angles to be 0.3 sin(0.031�).

GSA, PSO, ABC, and DE are functioned to search for
minimum error for 80 iterations in a number of experiments

Table 4: Parameters setting for DE.

Parameter MP CP :
Setting 0.9 0.9 0.5
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Figure 10: Fitness minimization for GSA with di
erent initializa-
tions.
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Figure 11: Fitness minimization for PSO with di
erent initializa-
tions.

with di
erent initializations. Table 5 demonstrates the mini-
mum error a�er 80 iterations of each experiment and their
average values with their consumption time per iteration
and also the number of setting parameters is discussed. It
is noticed from Table 5 that GSA has the smallest average
followed by DE then PSO and the highest average is ABC
although GSA has more setting parameters than other com-
parison techniques.

Figures 10–13 present the 	tness reduction for GSA,
PSO, ABC, and DE, respectively, in 80 iterations. With
di
erent initial populations, GSA has been simulated in eight
experiments while PSO, ABC, and DE have been simulated
in 	ve experiments in order to validate the robustness of the
four search techniques.
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Table 5: Minimum error a�er 80 iterations and time per iteration.

Exp1 Exp2 Exp3 Exp4 Exp5 Exp6 Exp7 Exp8 Average
Time per

iteration (sec)
Setting

parameters

GSA 3.2915 5.7112 5.8316 6.4720 5.4030 4.3753 5.7497 6.7643 5.4498 6383.15 5

PSO 6.3411 6.9329 7.2922 6.293 5.6631 — — — 6.5045 6382.10 4

ABC 9.4855 11.5355 10.7622 9.9329 10.7004 — — — 10.4833 6382.60 —

DE 4.6437 7.8255 6.3855 6.4262 5.4983 — — — 6.1558 6381.44 3

Table 6: Optimal gains a�er 200 iterations with their objective function.

KVe KVde KHVe KHVde KVHe KVHde KHe KHde KHV KVH Obj

GSA 40 26.544 40 29.2786 1.7778 20.8239 7.3525 2.2567 −1.0862 −0.6442 3.0380

PSO 39.95 21.117 39.8855 17.201 1.3643 22.7434 7.3525 13.9838 −1.1284 −1.0432 3.9698

ABC 35.5195 19.1465 25.3081 3.0515 4.3111 24.4751 19.5009 16.1338 −1.2142 −1.0412 7.5166

DE 40 26.4236 40 32.5652 1.2728 20.0212 4.3722 3.5919 −1.0381 −0.8021 3.2915

10 20 30 40 50 60 70 80

Samples

0

20

40

60

80

100

120

140

160

F
it

n
es

s

Exp1

Exp2

Exp3

Exp4

Exp5

Figure 12: Fitness minimization for ABC with di
erent initializa-
tions.

�e robustness for each method has been validated as
shown in Figures 10–13 and Table 5 where the objective
functions for each algorithm are very close by the end of 80
iterations. Figure 14 demonstrates the average 	tness function
for each algorithm.

�e optimal gains of each search technique with
their minimum objective function a�er 200 iterations are
expressed in Table 6. A�er 200 iterations and among the four
comparison techniques, GSA gives the minimum error. On
contrary, ABC gives the highest error.

In order to validate the presented results in Table 6, two
di
erent scenarios discuss the proposed technique where the
	rst case is nonzero initial condition with sinusoidal input
and the second case is zero initial condition with sinusoidal
transient response.

Case 1. Figure 15 shows the system response of the proposed
fuzzy controller with initial conditions 0.1 and 0.15 for pitch
and yaw angles, respectively. �e reference input applied in
this case is assigned to be 0.3 sin(0.031�) for both pitch and
yaw angles.�eoutput response shows that the error is almost
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zero which demonstrates the e
ectiveness of the proposed
controllers. Focusing on the tracking response, GSA shows
better tracking performance and closer to the reference signal
followed by DE while ABC shows the farthest in addition to
some ripples at the peak point.
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Figure 15: �e proposed decoupling PDFLC controller response with GSA, PSO, ABC, and DE in Case 1.
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Figure 16: �e proposed decoupling PDFLC controller response with GSA, PSO, ABC, and DE in Case 2.

Case 2. In this case, Figure 16 has square wave reference
inputs with so� transients for both angles where the fre-
quency is 0.023Hz.�e output response shows good tracking
results. Similar to Case 1, GSA shows close and well-tracked
performance to the reference signal followed by DE in
contrast to presence of ripples in ABC and a bit far from the
reference input.

�ese two cases conclude that GSA is more robust and
faster evolutionary algorithm in the search space than other
three algorithms. Although four search algorithms give good
tracking results with the proposed controller PDFLC, GSA
is the most impressive technique with minimum objective
function.

6. Conclusion

In this work, a comprehensive comparative study of four
optimization techniques with decoupling PDFLC for high
nonlinear TRMS has been proposed in order to cancel high
nonlinearities and to solve high coupling e
ects in addition
to maintaining the control signal within a suitable range.
GSA, PSO, ABC, and DE have been implemented to tune
the controller parameters and they showed great results in
terms of tracking and error minimization. Robustness has
been validated successfully for each technique with di
erent
initializations, optimizing the control parameters attempted
by the optimization algorithms with two di
erent operating
conditions to test the e�cacy of each algorithm. Finally,
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Table 7: TRMS parameters.

Parameters description Parameter value Parameters description Parameter value

	1 kg⋅m2 6.8 × 10−2 �1 0.0135

	2 kg⋅m2 2 × 10−2 
1 0.0924

�1� (N⋅m⋅sec/rad) 6 × 10−3 �2 0.02

�2� (N⋅m⋅sec/rad) 1 × 10−3 
2 0.09

�1� (N⋅m⋅sec/rad) 0.1 �1 1.1

�2� (N⋅m⋅sec/rad) 0.01 �2 0.8

��� (rad/sec) 0.5 �11 1.1

�� (N⋅m) 0.32 �10 1

�22 1 �20 1

GSA shows the most impressive results in contrast to other
algorithms with respect to convergence speed and optimum
objective function. Implementing gain-scheduling technique
with the decoupling PD fuzzy controller can be considered as
a recommended future work.

Appendix

�e parameters of the twin rotor MIMO system used in this
study are given as shown in Table 7.
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[8] M. López-Mart́ınez, C. Vivas, and M. G. Ortega, “A multi-
variable nonlinear H∞ controller for a laboratory helicopter,”
in Proceedings of the 44th IEEE Conference on Decision and
Control, and the European Control Conference (CDC-ECC ’05),
pp. 4065–4070, December 2005.

[9] T.-S. Kim, J.-H. Yang, Y.-S. Lee, and O.-K. Kwon, “Twin
rotors system modeling and bumpless transfer implementation
algorithm for LQ control,” in Proceedings of the SICE-ICASE
International Joint Conference, pp. 114–119, October 2006.

[10] A. Rahideh and M. H. Shaheed, “Hybrid fuzzy-PID-based
control of a twin rotorMIMOsystem,” inProceedings of the 32nd
Annual Conference on IEEE Industrial Electronics (IECON ’06),
pp. 49–54, November 2006.

[11] S. F. Toha andM. O. Tokhi, “Dynamic nonlinear inverse-model
based control of a twin rotor system using adaptive neuro-fuzzy
inference system,” in Proceedings of the 3rd UKSim European
Modelling Symposium on Computer Modelling and Simulation
(EMS ’09), pp. 107–111, November 2009.

[12] C.-W. Tao, J.-S. Taur, Y.-H. Chang, and C.-W. Chang, “A novel
fuzzy-sliding and fuzzy-integral-sliding controller for the twin-
rotor multi-inputmulti-output system,” IEEE Transactions on
Fuzzy Systems, vol. 18, no. 5, pp. 893–905, 2010.

[13] S. Mondal and C. Mahanta, “Adaptive second-order sliding
mode controller for a twin rotor multi-input–multi-output
system,” IET Control �eory & Applications, vol. 6, no. 14, pp.
2157–2167, 2012.

[14] Y. Li, S. Tong, Y. Liu, and T. Li, “Adaptive fuzzy robust output
feedback control of nonlinear systems with unknown dead
zones based on a small-gain approach,” IEEE Transactions on
Fuzzy Systems, vol. 22, no. 1, pp. 164–176, 2014.

[15] S. Tong and Y. Li, “Adaptive fuzzy output feedback control of
MIMO nonlinear systems with unknown dead-zone inputs,”
IEEE Transactions on Fuzzy Systems, vol. 21, no. 1, pp. 134–146,
2013.

[16] F. Zheng, Q.-G. Wang, and T. H. Lee, “Output tracking control
of MIMO fuzzy nonlinear systems using variable structure
control approach,” IEEE Transactions on Fuzzy Systems, vol. 10,
no. 6, pp. 686–697, 2002.

[17] S. Tong, X. He, Y. Li, and H. Zhang, “Adaptive fuzzy backstep-
ping robust control for uncertain nonlinear systems based on



Computational Intelligence and Neuroscience 11

small-gain approach,” Fuzzy Sets and Systems, vol. 161, no. 6, pp.
771–796, 2010.

[18] I. Pan, S. Das, and A. Gupta, “Tuning of an optimal fuzzy
PID controller with stochastic algorithms for networked control
systems with random time delay,” ISA Transactions, vol. 50, no.
1, pp. 28–36, 2011.

[19] D. K. Saroj and I. Kar, “T-S fuzzy model based controller and
observer design for a TwinRotorMIMOSystem,” inProceedings
of the IEEE International Conference on Fuzzy Systems (FUZZ
’13), pp. 1–8, July 2013.

[20] S.-C. Tong, Y.-M. Li, G. Feng, and T.-S. Li, “Observer-based
adaptive fuzzy backstepping dynamic surface control for a class
of MIMO nonlinear systems,” IEEE Transactions on Systems,
Man, and Cybernetics, Part B: Cybernetics, vol. 41, no. 4, pp.
1124–1135, 2011.

[21] Y. Li, S. Tong, and T. Li, “Observer-based adaptive fuzzy
tracking control of MIMO stochastic nonlinear systems with
unknown control direction and unknown dead-zones,” IEEE
Transactions on Fuzzy Systems, vol. PP, no. 99, p. 1, 2014.

[22] R. C. Eberhart and J. Kennedy, “New optimizer using particle
swarm theory,” in Proceedings of the 6th International Sympo-
sium onMicroMachine and Human Science, pp. 39–43, October
1995.

[23] K.-B. Lee and J.-H. Kim, “Multiobjective particle swarm opti-
mization with preference-based sort and its application to path
following footstep optimization for humanoid robots,” IEEE
Transactions on Evolutionary Computation, vol. 17, no. 6, pp.
755–766, 2013.

[24] Z.-L. Gaing, “A particle swarm optimization approach for
optimum design of PID controller in AVR system,” IEEE
Transactions on Energy Conversion, vol. 19, no. 2, pp. 384–391,
2004.

[25] V. Mukherjee and S. P. Ghoshal, “Intelligent particle swarm
optimized fuzzy PID controller for AVR system,” Electric Power
Systems Research, vol. 77, no. 12, pp. 1689–1698, 2007.

[26] C.-F. Juang and Y.-C. Chang, “Evolutionary-group-based
particle-swarm-optimized fuzzy controller with application to
mobile-robot navigation in unknown environments,” IEEE
Transactions on Fuzzy Systems, vol. 19, no. 2, pp. 379–392, 2011.

[27] R. Storn and K. Price,Di�erential Evolution—A Simple and E-
cient Adaptive Scheme for Global Optimization Over Continuous
Spaces, International Computer Science InstituteDirections,
Berkeley, Calif, USA, 1995.

[28] R. Storn and K. Price, “Di
erential evolution—a simple and
e�cient heuristic for global optimization over continuous
spaces,” Journal of Global Optimization, vol. 11, no. 4, pp. 341–
359, 1997.

[29] L. D. S. Coelho and M. W. Pessôa, “A tuning strategy for
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