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ABSTRACT

The use of Bayesian Networks in the domain of disaster 

management has proven its efficiency in developing the 
disaster model and has been widely used to represent the 

logical relationships between variables. Prior to modelling 

the correlation between the flood factors, it was necessary to 
discretize the continuous data due to the weakness of the Bayesian 

Network to handle such variables. Therefore, this paper aimed to 

propose a data discretization technique and compare the existing 

discretization techniques to produce a spatial correlation model. 

In particular, the main contribution of this paper was to propose a 

fuzzy discretization method for the Bayesian-based flood model. 
The performance of the model is based on precision, recall, 

F-measure, and the receiver operating characteristic area. The

experimental results demonstrated that the fuzzy discretization

method provided the best measurements for the correlation

model. Consequently, the proposed fuzzy discretization technique

facilitated the data input for the flood model and was able to help
the researchers in developing effective early warning systems in
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the future. In addition, the results of correlation were prominent 

in disaster management to provide reference that may help the 

government, planners, and decision-makers to perform actions 

and mitigate flood events. 

Keywords: flood disaster, spatial data mining, Bayesian Network, fuzzy 
discretization.

INTRODUCTION

Floods are one of the natural hazards that commonly occur in many areas 

around the world. According to the Center for Research on the Epidemiology 

of Disasters (CRED) (2011) that reported on global natural disasters, 

flood events increased in 2010 compared to the previous year. Analyzing 
correlation, particularly in disaster research, provides a fascinating insight 

of understanding the disaster events. Furthermore, the effects of each factor 

in various areas are significantly different. According to Peerbolte and 
Collins (2013), correlations are used to represent a relationship between two 

or more variables.

In recent achievements, the use of Bayesian Network (BN) methods in the 

domain of disaster management has proven its efficiency in developing 
susceptibility models and risk models. Various researchers (Li, Wang, 

Leung, & Jiang, 2010; Liang, Zhuang, Jiang, Pann, & Ren, 2012; Peng 

& Zhang, 2012a; 2012b; Viglione, Merz, Salinas, & Blöschl, 2013; Vogel 

et al., 2013) present studies to develop flood models using BN. Although 
BN has to be highlighted as a powerful method to find dependencies, the 
challenge begins when dealing with the continuous variables (Nielsen & 

Jensen, 2009; Uusitalo, 2007; Zwirglmaier, Papakosta, & Straub, 2013). 

Dougherty, Kohavi, and Sahami (1995), Friedman and Goldsmith (1996), 

Aguilera, Fernández, Fernández, Rumí, and Salmerón (2011), and Vogel 

(2014) suggested the use of discretization to overcome this problem. 

Therefore, this study proposed the fuzzy discretization method to handle 

continuous data. Data discretization is a process of converting continuous 

variables into partition boundaries with selected cut points. In spatial data 

mining, discretization has become one of the preprocessing techniques used 

to transform a continuous variable into a discrete one (Bakar, Othman, & 

Shuib, 2009; García, Luengo, & Herrera, 2015).
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Some reviews of the discretization technique can be found in the literature 

(e.g. Liu, Hussain, Tan, & Dash, 2002; Yang, Webb, & Wu, 2010). The 

second section discusses previous research related to data discretization. 

Next, the paper describes the proposed data discretization. The performances 

of different discretization methods on correlation models are then discussed. 

Concluding remarks are provided in the last section.

DISCRETIZATION OF CONTINUOUS FLOOD 
INDUCING FACTORS

The main goal of discretization is to transform continuous attributes into 

discrete attributes. In this section, discretization will be discussed as a 

preliminary condition for data preprocessing in order to be fed into the 

Bayesian Network model. The presentations are focused on the supervised 

discretization methods. Supervised discretization methods utilize the 

class information in setting partition boundaries whereas unsupervised 

discretization methods do not utilize instance labels for the selection of 

cut points. These methods have been presented to work reasonably well 

when used in spatial data. Unsupervised methods such as equal interval 

(EI), natural breaks (NB), quantile (QU) and standard deviation (SD) are 

among the most common discretization methods implemented in the field of 
geovisualization and spatial data mapping (Fischer & Wang, 2011; Stewart 

& Kennelly, 2010). 

Supervised methods have been presented widely in the research fields of 
spatial data mining, risk studies and prediction. Berger (2004) performed the 

Minimum Description Length Principle (MDLP) to discretize continuous 

environmental data using a rough set rule for agricultural soils and assess 

crop suitability. Bai, Ge, Wang and Lan Liao (2010) also used MDLP to 

discretize continuous risk factors and mined underlying rules between neural 

tube defects (NTD). Lustgarten, Visweswaran, Gopalakrishnan and Cooper 

(2011) provided an efficient supervised Bayesian discretization method to 
give better results of classification from a high-dimensional biomedical 
dataset. Ge, Cao and Duan (2011) compared the impacts of three supervised 

discretization methods which were used on remote sensing classification. 
The authors presented supervised methods for spatial data discretization.

Jenks and Caspall (1971) proposed the natural breaks method to determine 

the values of cut points. The author presented the choropleth map classes 
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using the unsupervised method that improved inputs of the choropleth 

map information system. Moreover, Dawod, Mirza and Al-Ghamdi (2012) 

also used the natural breaks method to identify the break points of total 

flood volume values. Although the natural breaks can handle volumes of 
spatial data, this method required predefined numbers of intervals before the 
discretization process. 

There are numerous studies including works by various researchers (Chang 

& Tsai, 2016; Güçlü & Şen, 2016; Lohani, Kumar, & Singh, 2012; Pulvirenti, 
Pierdicca, Chini, & Guerriero, 2011; Tsyganskaya et al., 2016) that exploit 

the concept of fuzzy logic in model development for disaster management 

analysis. It has been shown that fuzzy logic is extensively applied to analyze 

complex patterns with high accuracy.

In this study, the supervised method, which is the membership function 

(MF) graph in fuzzy logic, was used to discretize the continuous variables. 

Zadeh (2008) presented the fuzzy logic concept as a data preprocessing 

technique that provided more logical and scientific explanation to describe 
the attributes of the object. The fuzzy set intervals for each flood factor are 
represented as linguistic variables to a maximum of five intervals, which are 
very low, low, moderate, high and very high. Fuzzy logic is based on the 

theory of fuzzy sets that measure the ambiguity and believe that all things 

admit degrees (Kanagavalli & Raja, 2013; Negnevitsky, 2011). Hiwarkar 

and Iyer (2013) claimed that fuzzy logic presents the easier technique 

to clearly define the conclusion when it comes upon imprecise, vague, 
ambiguous, noisy or missing input information. In addition, Chin and Lim 

(2007) and Ku-Mahamud and Othman (2010)  underlined the interpretations 

of linguistic variables that were claimed as a very natural and plausible way 

to obtain a better understanding to solve problems.

The major data acquisition for this study was focused on the environmental 

elements that can be classified into three categories: (a) time series data, 
which is the mean annual rainfall in 2010; (b) raster data, i.e. Interferometric 

Synthetic Aperture Radar (IfSAR); and (c) vector data, i.e. the data on the 

historical flooded area in 2010, the topographic map from the Department of 
Survey and Mapping Malaysia (JUPEM) and the soil map from the Minerals 

and Geoscience Department. Among the nine selected flood inducing 
factors, the attribute values of DEM, slope, SPI, TWI, river and rainfall 

need to be discretized and consequently fed into the BN model. Figure 1 

shows the flowchart for the proposed data discretization technique based on 
fuzzy logic.
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Figure 1.  Flowchart for the proposed data discretization technique.

The proposed data discretization technique consists of two activities, which 

are the conversion of the actual data to Min-Max normalization, and the 

development of membership function (MF) to obtain fuzzy discretization. For 

the normalization process, the actual data is rescaled in the range of 0 to 1 

using the max-min normalization procedure according to Al Shalabi, Shaaban, 

and Kasasbeh (2006) based on Eq. (1):

(1)

This operation was carried out in order to standardize the different intervals 

of each continuous variable for the attribute values of rainfall, DEM, slope, 

SPI, TWI and river. The construction of the MF graph was undertaken in the 

second step. The transformed data was then used to calculate the Entropy to 

develop the MF graph. The following equations were used in the Entropy 

estimation that was expressed by Christensen (1981) as follows:

(2)

where from Eq. (2),

vʹ = ( (v ew_mina)

) 

 Yes 

 

No 

Min-max  

normalization 

Development of         

MF graph 

Data input 

Flood factors 

 Continuous 

variable? 

vʹ = ( (v-mina) / (maxa – mina) ) * (new_maxa – new_mina) + new_mina 

S(x) = p(x) ∗ Sp(x) + q(x) ∗ Sq(x) 



Journal of ICT, 17, No. 2 (April) 2018, pp: 167–189

172

(3)

 
(4)

where, p
k
(x) and q

k
(x)  conditional probabilities that class k samples are in the 

regions [x
1
, x

1 
+  x] and [x

1
 + x, x

2
], respectively,

p(x) and q(x)  probabilities that all samples are in the regions [x
1
, x

1
 + x] and 

[x
1
 + x, x

2
], respectively, and

  p(x) + q(x) = 1      (5)

Based on Eqs. (3) and (4), this is the formula to estimate the Entropy of p
k
(x), 

q
k
(x), p(x) and q(x):

(6)

(7)

(8)

(9)

where, n
k
(x)  =  the number of class k samples located in [x

 1
, x

1
 + x],

 n(x)  =  the total number of samples located in [x
 1
, x

 1
 + x],

 N
k
(x) =  the number of class k samples located in [x

 1
 + x, x

 2
], and

 n  =  the total number of samples in [x
 1
, x

 2
].

Table 1 shows the segmentation of x into two arbitrary classes. x is the 

transformed data that has been chosen randomly and has been classified into 
two classes. The value was divided into fuzzy partitions.

Sp(x)   [p1(x) ln p1(x)  p2(x) ln p2(x)] 

 

Sq(x)   [q1(x) ln q1(x)  q2(x) ln q2(x)] 
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Table 1

The Segmentation of x into Two Arbitrary Classes 

x 0 0.14 0.16 0.24 0.28 0.32 0.38 0.45 0.52 0.60 0.73 1.00

Class 1 1 1 1 1 1 1 1 2 2 2 2

Eqs. (2), (3), (4), (6), (7), (8), and (9) are used to compute p
1
, p

2
, q

1
, q

2
, p(x), 

q(x), sp(x), sq(x), and S, and the results are shown in Table 2. The value of 

x that gives the minimum value of the Entropy (S) is selected as the first 
threshold value partition point called the primary threshold (PRI) value.

Table 2

 

Calculations for Selection of Partition Point Primary Threshold (PRI) Value

x 0.13 0.15 0.22 0.26 0.30 0.35 0.42 0.51 0.54 0.64 0.85

p
1

1.00 1.00 1.00 1.00 1.00 0.86 0.88 0.89 0.80 0.73 0.67

p
2

0.50 0.33 0.25 0.20 0.17 0.29 0.25 0.22 0.30 0.36 0.42

q
1

0.58 0.55 0.50 0.44 0.38 0.43 0.33 0.20 0.25 0.33 0.50

q
2

0.50 0.55 0.60 0.67 0.75 0.71 0.83 1.00 1.00 1.00 1.00

p(x) 0.08 0.17 0.25 0.33 0.42 0.50 0.58 0.67 0.75 0.83 0.92

q(x) 0.92 0.83 0.75 0.67 0.58 0.50 0.42 0.33 0.25 0.17 0.08

S
p
(x) 0.35 0.37 0.35 0.32 0.30 0.49 0.46 0.44 0.54 0.60 0.64

S
q
(x) 0.66 0.66 0.65 0.63 0.58 0.60 0.52 0.32 0.35 0.37 0.35

Sx 0.64 0.61 0.58 0.53 0.47 0.55 0.49 0.40 0.49 0.56 0.61

The same process as displayed in Table 2 is repeated for the negative and 

positive partitions for different values of x. Table 3 shows the calculations 

to determine the secondary threshold value known as TER1 for the negative 

side. The value of x that has been selected is lower than the PRI value.

Table 3

Calculations to Determine the Secondary Threshold Value (TER1): NG Side

x 0.14 0.20 0.24 0.28 0.32 0.38 0.45

p
1

1.00 1.00 1.00 1.00 1.00 0.86 0.88

(continued)
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p
2

0.50 0.33 0.25 0.20 0.17 0.29 0.25

q
1

0.88 0.86 0.83 0.80 0.75 1.00 1.00

q
2

0.25 0.27 0.33 0.40 0.50 0.33 0.50

p(x) 0.13 0.25 0.38 0.50 0.63 0.75 0.88

q(x) 0.88 0.75 0.63 0.50 0.38 0.25 0.13

S
p
(x) 0.38 0.37 0.35 0.32 0.30 0.50 0.46

S
q
(x) 0.46 0.49 0.52 0.55 0.56 0.37 0.35

Sx 0.45 0.46 0.46 0.44 0.40 0.46 0.45

Table 4 shows the calculations to determine the secondary threshold value 

known as TER2 for the positive side. The value of x that has been selected is 

higher than the PRI value.

Table 4

Calculations to Determine the Secondary Threshold Value (TER2): PO Side

x 0.61 0.80 0.95

p
1

0.50 0.33 0.25

p
2

1.00 1.00 1.00

q
1

0.25 0.33 0.50

q
2

1.00 1.00 1.00

p(x) 0.25 0.50 0.75

q(x) 0.75 0.50 0.25

S
p
(x) 0.35 0.37 0.35

S
q
(x) 0.347 0.366 0.347

Sx 0.347 0.366 0.347

Table 5 shows the calculations to determine the tertiary threshold value known 

as TER3 for the negative side. The value of x that has been selected is lower 

than the PRI value.
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Table 5

Calculations to Determine the Tertiary Threshold Value (TER3): NG Side

x 0.18 0.22 0.26 0.30

p
1

1.00 1.00 1.00 1.00

p
2

0.50 0.33 0.25 0.20

q
1

1.00 1.00 1.00 1.00

q
2

0.20 0.25 0.33 0.50

p(x) 0.20 0.40 0.60 0.80

q(x) 0.80 0.60 0.40 0.20

S
p
(x) 0.35 0.37 0.35 0.32

S
q
(x) 0.32 0.35 0.37 0.35

Sx 0.33 0.36 0.35 0.33

Table 6 shows the calculations to determine the tertiary threshold value known 

as TER4 for the positive side. The value of x is higher than the PRI value.

Table 6

Calculations to Determine the Tertiary Threshold Value (TER4): PO Side

x 0.69 0.85

p
1

0.50 0.33

p
2

1.00 1.00

q
1

0.33 0.50

q
2

1.00 1.00

p(x) 0.33 0.67

q(x) 0.67 0.33

S
p
(x) 0.35 0.37

S
q
(x) 0.37 0.35

Sx 0.36 0.36

As explained by Marcot, Steventon, Sutherland and McCann (2006), the 

maximum number of intervals or discretization should be limited in five states 
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to improve the precision and the network structure. In the present study, the 

fuzzy set intervals for each flood factor were represented as linguistic variables 
as follows:

Table 7

Linguistic Variable 

Linguistic Variable Interval 

Very low 1

Low 2

Moderate 3

High 4

Very high 5

DIGITAL ELEVATION MODEL

Digital elevation models (DEM) are the major source to derive topographic 

factors that have a direct effect on runoff velocity and flow size. DEM was 
created using the IfSAR data with a resolution of 10m. x 10m. IfSAR is an 

active remote sensing technology that is able to easily collect data from huge 

areas. The resultant dataset is the base of the digital surface and elevation 

models. Since the surface conditions are the leading factors that determine 

the formation of flood events, the use of high-resolution synthetic data is the 
perfect source to derive the topographic factors of elevation, which are DEM, 

slope angle, curvature, SPI, TWI and distance from the river. Figure 2 shows 

the original data and reclassified data using fuzzy discretization. 

Figure 2. DEM maps: (a) the original DEM and (b) reclassified DEM.

Linguistic Variable

DIGITAL ELEVATION MODEL

 

Linguistic Variable

DIGITAL ELEVATION MODEL
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Slope

Another important aspect to consider is the slope in the study area. Slope is 

the basic index extracted from DEM to describe the terrain. Heavy rainfall 

will cause slope failure during flood events. This situation might give a great 
impact on the breeding of disasters as the sliding surface for the runoff process. 

The slope gradient in degrees are shown in Figure 3.

Figure 3. Slope maps: (a) the original slope and (b) reclassified slope.

Stream Power Index

Stream power index is the rate that the energy of flowing water expands on the 
bed and banks of a channel. High stream power values generally correspond 

with steep, straight, scoured reaches and bedrock gorges. Low stream power 

values occur in broad alluvial flats, floodplains and slowly subsiding areas, 
where the valley fill is usually intact and deep. The given equations are 
calculated and the generated SPI is as shown in Figure 4. 

SPI=Ln((“facc_dem” + 0.001) * ((“slope_dem” / 100) + 0.001))

Figure 4. SPI maps: (a) the original SPI and (b) reclassified SPI. 

 

Stream Power Index

 

 

Stream Power Index

 

Stream Power Index

 

e 4. SPI maps: (a) the original SPI and (b) re

Stream Power Index

 

 

classified SPI.  
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Topographic Wetness Index

Topographic Wetness Index (TWI) is a steady-state wetness index. The 

value for each cell in the output raster (the TWI raster) is the value in a flow 
accumulation raster for the corresponding DEM. Higher TWI values represent 

drainage depressions; lower values represent crests and ridges. Figure 5 shows 

the original and reclassified TWI. In creating the TWI, the following equation 
is calculated to produce the TWI:

TWI =Ln((“facc_dem” + 0.001) / ((“slope_dem” / 100) + 0.001))

Figure 5. TWI maps: (a) the original TWI and (b) reclassified TWI.

River

Distance from river is a factor that calculates the approximate point between 

the consecutive points along rivers (polygon). At first, the main river in the 
study area was extracted using the IfSAR data. Next, the Euclidean Distance 

tool was used to create a raster of the distance from river. Figure 6 shows the 

original and reclassified distance from river. 

Figure 6. River maps: (a) original river and (b) reclassified river.

Topographic Wetness Index

 

e 5. TWI maps: (a) the original TWI and (b)

River

Topographic Wetness Index

 

 

 reclassified TWI. 

River

 

Topographic Wetness Index

River

 

e 6. River maps: (a) original river and (b) re

Topographic Wetness Index

River

 

 

lassified river. 
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Rainfall

The historical data that included 18 rainfall stations with mean annual rainfall 

were obtained. In producing the mean annual rainfall intensity, the historical 

data were considered as the primary source of information. The available 

rainfall data was recorded at permanent but very dispersed rain gauges. 

Therefore, this study used the Inverse Distance Weighted (IDW) method to 

reproduce the spatial distribution of rainfall data for the entire study areas. The 

spatial distribution of rainfall data is illustrated in Figure 7. 

Figure 7. Rainfall maps: (a) the original rainfall and (b) reclassified 
rainfall.

RESULT AND DISCUSSION

Figure 8 illustrates the MF graph for rainfall data after the calculation of 

entropy was complete. The development of the MF graph was to standardize 

the differences in rainfall data for each mukim that can be measured by using 

one graph. x0, x1, x2, x3 and x4 were the threshold values estimated using 

the Entropy method, which were 0.180, 0.320, 0.510, 0.610 and 0.690, 

respectively. Very low, low, moderate, high and very high are the standard 

stages for all levels. The y axis is the value of MF in the range of zero to one, 

while the x axis is the transformed value from the range of 0 to 1.

By using this graph, the converted data was transformed into new representations 

for interval boundaries. The fuzzy set interval was then defined as shown in 
Table 8. The rainfall data was been normalized in the range of 0 to 1 and then 

transformed into new representations of fuzzy discretization by using the MF 

graph. 

Rainfall

 

RESULT AND DISCUSSION

Rainfall

 

 

RESULT AND DISCUSSION
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Figure 8. The membership function graph for rainfall data

Table 8

Sample of Transformed Rainfall Data

Rainfall 
data

Normalized 

classes

Linguistic 
variable

Fuzzy 

discretization

172.10 0.08 Very low 1

173.33 0.13 Very low 1

175.88 0.24 Very low 1

176.15 0.25 Low 2

178.54 0.35 Low 2

181.65 0.49 Moderate 3

183.19 0.55 Moderate 3

184.12 0.59 High 4

185.42 0.65 High 4

187.89 0.76 Very high 5

This new representation was used to enhance the correlation model of BN 

in the data discretization phase. This was applied to all data with continuous 

variables. The second MF graph was developed for DEM. The estimated 

threshold values for the DEM level were 0.120, 0.164, 0.240, 0.482 and 0.560, 

respectively. Figure 9 illustrates the MF graph for DEM.

 

Rainfall ta asses Linguistic variable on 
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Figure 9. The membership function graph for DEM.

The third MF graph was developed for the slope data. The estimated threshold 

values for the data level were 0.040, 0.210, 0.272, 0.404 and 0.540, respectively. 

Figure 10 illustrates the MF graph for the slope data.

Figure 10. The membership function graph for slope data.

Figure 11. The membership function graph for SPI.

 

 

 

Figure 11. The membership function graph for SPI. 
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The fourth MF graph was developed for the SPI data. The estimated threshold 

values for the data level were 0.204, 0.480, 0.610, 0.700 and 0.782, respectively. 

Figure 11. Illustrates the MF graph for SPI.

The fifth MF graph was developed for the TWI data. The estimated threshold 
values for the data level were 0.531, 0.633, 0.703, 0.737 and 0.779, respectively. 

Figure 12 illustrates the MF graph for TWI.

Figure 12. The membership function graph for TWI.

The last MF graph was developed for the river data. The estimated threshold 

values for the data level were 0.114, 0.170, 0.430, 0.630 and 0.970, respectively. 

Figure 13 illustrates the MF graph for the river data.

The structure of the Bayesian Network correlation model for the area of 

interest is displayed in Figure 14. This structure presents the complexity of 

the relationship between the occurrences of flood events that link with the 
flood inducing factors. The flood is the parent node of the BN structure, and 
each flood inducing factor is directly linked to it. 
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Figure 13. The membership function graph for river data.

Figure 14. Structure of Bayesian Network correlation model.

This result reveals that among the nine flood inducing factors, TWI is the most 
significant factor that contributes to flood. TWI is one of the most influential 
topography factors that is used to depict the effect of flow accumulation in 
an area (Dehotin et al., 2015; Kafira, Albanakis, & Oikonomidis, 2015). 
Information of the correlation model listed in Table 9, shows high probability 

 

Figure 13. The membership function graph for river data. 
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(29%) of flood occuring when TWI is low (discretize value is 2). Lower TWI 
values represent ridges and crests. This means the velocity of runoff water will 

increase and cause a greater capacity of water to be distributed to all areas with 

lower elevation. The relationship between TWI and other flood influencing 
factors indicate that TWI is strongly associated followed by curvature, SPI, 

river, land use, DEM, soil types, rainfall and slope.

Table 9

Conditional Probability of the Node TWI

The value of the 

parent node TWI     

(Flood) Very low Low Moderate High Very high

Absence of flood 0.93 0.07 0.01 0.00 0.00

Presence of flood 0.18 0.29 0.25 0.14 0.14

Based on the experiments, it was found that the proposed fuzzy discretization 

method shows better performance. This indicates that incorporating the 

proposed fuzzy discretization with the BN model gives better results. The 

results from of performance metrics show that this method performed well 

compared to other discretization methods. Five data discretization techniques 

for modelling the BN were compared, namely Fuzzy Discretization, Equal 

Width, Natural Breaks, Quantile, and Geometrical Interval. The results are 

summarized in Table 10. The performance of the models is based on precision, 

recall, F-measure, and receiver operating characteristic (ROC).

Table 10

Comparison of Average Performance Assessment of BN Models

Technique Precision Recall F-Measure ROC Area Class

Fuzzy 

discretization

0.99

0.89

0.97

0.98

0.98

0.93

0.99

0.99

Flood

No flood

Equal width
0.82

0.81

0.61

0.63

0.68

0.58

0.81

0.81

Flood

No flood

Natural breaks
0.83

0.53

0.60

0.64

0.67

0.58

0.80

0.80

Flood

No flood

Quantile
0.84

0.53

0.58

0.64

0.66

0.58

0.81

0.81

Flood

No flood
Geometrical 

interval

0.82

0.54

0.61

0.63

0.68

0.58

0.81

0.81

Flood

No flood
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The performance assessment of BN strongly depends on the choice of 

the different interval between the compared methods. Good results were 

obtained from the fuzzy discretization with the precision of 0.99, recall of 

0.97, F-measure of 0.98, and receiver operating characteristic of 0.99 for the 

correlation model.

CONCLUSION

Bayesian Network has been widely used to represent the logical relationships 

between variables. However, many of the flood factors consist of continuous 
variables that introduce challenges for the data-mining task. Hence, the 

proposed data discretization method contributes in the process to re-encode 

the continuous variables into discrete variables. Nevertheless, if too many 

intervals are unsuited to the learning process, this will lead to a loss of 

information; and if there are too few intervals, this can lead to the risk of 

losing some interesting information. In brief, incorporating the proposed fuzzy 

discretization with the BN model for the flood event provides better results. 
Thus, the effects of the proposed fuzzy discretization method with continuous 

data lead to data reduction and the simplification of data. Subsequently, this 
process will make learning faster and produce shorter and compact results.
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