
Fuzzy Edit Sequences in Genetic Improvement

Aymeric Blot

University College London

London, United Kingdom

a.blot@cs.ucl.ac.uk

Abstract—Genetic improvement uses automated search to find
improved versions of existing software. Edit sequences have been
proposed as a very convenient way to represent code modifica-
tions, focusing on the changes themselves rather than duplicating
the entire program. However, edits are usually defined in terms
of practical operations rather than in terms of semantic changes;
indeed, crossover and other edit sequence mutations usually never
guarantee semantic preservation. We propose several changes to
usual edit sequences, specifically augmenting edits with content
data and using fuzzy matching, in an attempt to improve semantic
preservation.

Keywords-GI; genetic improvement; SBSE; search-based soft-
ware engineering; fuzzy matching

I. INTRODUCTION

Genetic improvement (GI) [1], [2] uses automated search in

order to improve existing software. Because it is expected that,

in the search space of all possible programs the evolved ones

stay to some extent close to the original ones (see the “plastic

surgery hypothesis” [3]), many GI work use representations

based on the sequence of modifications applied to the original

software rather than evolving it as a whole [4]–[8].

Edit sequences have many advantages. They are a sparse

representation of the mutated programs and are very close to

the human understanding of which changes are performed,

making them more likely to be adapted into development [9].

Furthermore, they are easily combined, thus greatly facilitating

crossover between different mutants. In addition, they are

abstract enough so that they can be used with both linear

representations (e.g., with the grammars of [6], [8]) and AST-

based representations (e.g., in GenProg [5]).

Edits can be formulated using three pieces of information:

(1) the type of modification (e.g., is the operation a deletion,

an insertion, a replacement, a swap), (2) the place at which

the edit takes place (e.g., which line of code has to be

deleted), and (3) some new content if applicable (e.g., the

content being inserted). The three associated search spaces are

sometimes called operation, fault location, and fix code [10],

[11]. Information about fault location and fix code are usually

given through unique identifiers of modification points in the

original source code. For example, following the notation used

in [7], the edit “i(1,2)” (i.e., the triple “(i,1,2)”) will

represent the insertion at location “1” of the content originally

at location “2”, while “d(3)” will represent a deletion at

location “3”.

II. MOTIVATION

As a motivating example, we consider the transformation

of Listing 1 into Listing 2, in which two modifications

are to be found: (1) as illustrated in Listing 3, the call to

“foo()” should be moved from its original location “a” to

the location “b”; and (2) as illustrated in Listing 4, the call to

“foo()” should be preceded by a call to “setup_foo()”

(already present somewhere in the source code, here at loca-

tion “z”). The ideal edit sequence “i(b,a)d(a)i(b,z)”

unfortunately cannot be directly obtained from the existing

edits, because the insertion “i(a,z)” has to be modified into

“i(b,z)” to follow the reinsertion of line “foo()” to its

new location.

The idea behind our proposal is that a practitioner, being

given two conflicting patches such as the ones of Listing 3 and

Listing 4, may presumably be able to understand the semantic

of the edit “i(a,z)” as “insert the line “setup_foo()”

before the line “foo()”” rather than “insert the content of

line “z” before line “a””, and naturally try to insert it as in

Listing 2. In practice, we can expect to guide the GI process

into automatically considering the variant “i(b,z)” of the

edit “i(a,z)” following the semantic change induced by

“i(b,a)d(a)”—that is, the content of location “a” being

moved to location “b”.

III. PROPOSAL

It has already been shown, using crossover on decoupled

edit sequences [7], that re-using knowledge already present in

existing sequences (here, over all possible modification points

only “a”, “b”, and “z” were used) can positively influence

the creation of new edits. Furthermore, a lot of successful GI

work already have demonstrated the relevance of relying on

code semantic [2].

In the following, we propose to use the content relevant at

the time of creation of an edit as a marker of the initial edit

semantic, in order to generate new variants of the edit when

this semantic is modified.

A. Content-first Edits

In the literature [5]–[8], [10], [11], edits are tradition-

ally based on location first, and content second: in the

edit “i(a,b)”, “a” and “b” refer to modifications points

usually in the original source code, and only through them

the content at these locations. Instead, we propose to base

edits on content first and location second. That is, given f

a lookup function, that associates content with a location,

Listing (1) Original code

...

a: foo();

...

b: bar();

...

z: setup_foo();

...

Listing (2) Ideal code

...

a: // empty line

...

b: setup_foo();

foo();

bar();

...

z: setup_foo();

...

Listing (3) Mutant 1

// edits: i(b,a)d(a)

...

a: // empty line

...

b: foo();

bar();

...

z: setup_foo();

...

Listing (4) Mutant 2

// edit: i(a,z)

...

a: setup_foo();

foo();

...

b: bar();

...

z: setup_foo();

...

α = f(a) and β = f(b) the contents at locations “a”

and “b” at the time of the edit creation, we would like to

use “op(α,β)” rather than using “op(a,b)” and perform

lookup only when the edit is actually applied. Unfortunately,

because the lookup function f cannot be inverted (while

locations are unique, content is not), we propose to use

both content and location, i.e., “op((α,a),(β,b))”. For

example, the edit “i(a,z)” of Listing 4 could be replaced

by “i(("foo();",a),("setup_foo();",z))”.

Note that there is no reason to actually store content

data inside edits (e.g., α literally being the code fragment

“foo();”), which unnecessarily enlarges edit size. Indeed,

α and β can similarly simply correspond to content through

identifiers to a separate bank of genetic material.

B. Fuzzy Matching

In our motivating example, this means that when appending

the insertion of Listing 4 at the end of the edit sequence of

Listing 3, the GI process now has the opportunity to realise that

the line “foo()” has changed location. In the general case,

when interpreting the edit “op((α,a),(β,b))”, a check

should be made to verify if the two matchings “(α,a)” and

“(β,b)” are still valid. If not, then fuzzy matching can pro-

vide new plausible alternative variants of the edit, by searching

for similar content at the same location (i.e., “(α′,a)”, with

α′ some content related to α) or for the same content at similar

locations (i.e., “(α,a’)”, with “a’” a nearby location).

Possible similarity metrics for content include string or tree

edit distances. As for locations, similarity could be defined

in terms of restriction to the context of the original location

(e.g., the same method body).

This fuzzy matching can be performed every time the

context of edits changes—i.e., whenever an edit in the middle

of an edit sequence is inserted, modified, or deleted, or

whenever a crossover is performed. When a conflict arises,

and one or multiple plausible matches are found, they can

then be used in order to help the GI process with additional

diversity. If no sufficiently plausible match is found, then

it might provide a clue to discard the edit. In any case, it

can be expected that falling back to the current approach

(i.e., applying edits without regard to the original content)

should still be considered to avoid losing potentially useful

edits.

IV. CONCLUSION

Edit sequences have been proven to be a very convenient

and versatile solution representation for a lot of genetic

improvement work. However, edit sequence implementations

usually only focus on practical modifications [5]–[8], [10],

[11] and often overlook semantics in the general GI litera-

ture [2].

We proposed to augment individual edits by the inclusion of

content data. We expect that content data may be used to track

semantic changes, which then, through fuzzy matching, may

lead to the generation of new edits beneficial to the overall GI

process.

REFERENCES

[1] D. R. White, A. Arcuri, and J. A. Clark, “Evolutionary improvement of
programs,” IEEE Transactions on Evolutionary Computation, vol. 15,
no. 4, pp. 515–538, 2011.

[2] J. Petke, S. O. Haraldsson, M. Harman, W. B. Langdon, D. R. White, and
J. R. Woodward, “Genetic improvement of software: A comprehensive
survey,” IEEE Transactions on Evolutionary Computation, vol. 22, no. 3,
pp. 415–432, 2018.

[3] E. T. Barr, Y. Brun, P. T. Devanbu, M. Harman, and F. Sarro, “The plastic
surgery hypothesis,” in Proceedings of the 22nd ACM SIGSOFT Inter-

national Symposium on Foundations of Software Engineering, (FSE-22).
ACM, 2014, pp. 306–317.

[4] T. Ackling, B. Alexander, and I. Grunert, “Evolving patches for software
repair,” in Proceedings of the 13th Genetic and Evolutionary Computa-

tion Conference, GECCO 2011. ACM, 2011, pp. 1427–1434.
[5] C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer, “Genprog: A

generic method for automatic software repair,” IEEE Transactions on

Software Engineering, vol. 38, no. 1, pp. 54–72, 2012.
[6] W. B. Langdon and M. Harman, “Optimizing existing software with ge-

netic programming,” IEEE Transactions on Evolutionary Computation,
vol. 19, no. 1, pp. 118–135, 2015.

[7] V. P. L. Oliveira, E. F. de Souza, C. Le Goues, and C. G. Camilo-
Junior, “Improved representation and genetic operators for linear ge-
netic programming for automated program repair,” Empirical Software

Engineering, vol. 23, no. 5, pp. 2980–3006, 2018.
[8] J. Petke, M. Harman, W. B. Langdon, and W. Weimer, “Specialising soft-

ware for different downstream applications using genetic improvement
and code transplantation,” IEEE Transactions on Software Engineering,
vol. 44, no. 6, pp. 574–594, 2018.

[9] W. Weimer, “Patches as better bug reports,” in Proceedings of the 5th

International Conference on Generative Programming and Component

Engineering, GPCE 2006. ACM, 2006, pp. 181–190.
[10] C. Le Goues, M. Dewey-Vogt, S. Forrest, and W. Weimer, “A systematic

study of automated program repair: Fixing 55 out of 105 bugs for $8
each,” in Proceedings of the 34th International Conference on Software

Engineering, ICSE 2012. IEEE, 2012, pp. 3–13.
[11] C. Le Goues, W. Weimer, and S. Forrest, “Representations and operators

for improving evolutionary software repair,” in Proceedings of the

14th Genetic and Evolutionary Computation Conference, GECCO 2012.
ACM, 2012, pp. 959–966.

	Introduction
	Motivation
	Proposal
	Content-first Edits
	Fuzzy Matching

	Conclusion
	References

