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Fuzzy expert system to assess corrosivity of cast/ductile iron pipes 
from backfill properties 

Homayoun Najjaran, Rehan Sadiq, and Balvant Rajani 
Institute for Research in Construction, National Research Council Canada (NRC) 

Ottawa, ON, K1A 0R6; Tel: (613) 993-3806, Fax: (613) 952-8102 
Email: Homayoun.Najjaran@nrc-cnrc.gc.ca 

Abstract – Several factors may contribute to the structural failure of cast and ductile 

iron water mains, the most important of which is considered to be corrosion. The 

ANSI/AWWA C105/A21.5–99 10-point scoring (10-P) method is commonly used to 

predict corrosivity potential of a given soil sample using certain soil properties. The 10-P 

and other scoring methods use binary logic to classify the soil either as corrosive or non-

corrosive. 

Fuzzy logic extends binary logic in this context as it recognizes the real world 

phenomena using a certain degree of membership between 0 and 1. This paper presents a 

fuzzy logic expert system capable of predicting the deterioration of cast and ductile iron 

water mains based on surrounding soil properties. The proposed model consists of two 

modules: a knowledge base and an inference mechanism. The knowledge base provides 

information for better decision-making and is developed in a two-tier fuzzy modeling 

process. First in direct approach, the expert knowledge generates a subjective model to 

describe the characteristics of the system using fuzzy linguistic variables. Later in system 

identification, the field data is used to develop an objective model, which is eventually 

used in conjunction with the subjective model to provide a more reliable knowledge base 

for the expert system. The inference mechanism uses fuzzy approximate reasoning 

methods to process the encoded information of the knowledge base. 

Keywords: Corrosion, soil corrosivity, fuzzy modeling, expert system, pipe 
deterioration, and 10-P method. 
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1 Introduction 

Several factors may contribute directly or indirectly to the structural failure of metallic 

water mains. Factors such as casting and manufacturing defects may have an impact on 

the structural resilience of a pipe, while specific local and environmental conditions may 

act to exacerbate or sometimes alleviate stresses. Approximately 700 water-main breaks 

are reported in North America everyday, which accounts for about $1 billion annually in 

costs incurred (Lary, 2000). A similar study shows that water and sewer main failures 

cost $200 million per annum in Australia (Davis et al., 2003). It is now widely accepted 

that most breaks do not occur only in old pipes, rather corrosion is also found to play a 

major role in the premature failure of water mains (Spickelmire, 2002). 

Water utilities use different criteria to assess the structural deterioration of pipes, 

among which the principal ones are breakage frequency or the growth rate of corrosion 

pits. The predominant deterioration mechanism on the exterior of metallic pipes is 

electro-chemical corrosion with the damage occurring in the form of corrosion pits in 

ductile iron (DI) and graphitized zones in cast iron (CI). Graphitization is a term used to 

describe the network of graphite flakes that remain behind after the iron in the pipe has 

been leached away by corrosion. Either form of metal loss will with time lead to a pipe 

break or leakage. The physical environment in which the pipe is placed has a significant 

impact on the deterioration rate. Factors that accelerate corrosion of metallic pipes are 

stray electrical currents, soil properties such as moisture content, chemical and 

microbiological content, electrical resistivity, aeration, and redox potential. 

Deterioration modeling is an essential element of the decision making process for 

rehabilitation or renewal programs of water mains. Different mathematical and statistical 
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techniques have been developed to model pipe deterioration. Probabilistic models are 

widely used in infrastructure deterioration modeling. Among this class of models, 

significant efforts have been dedicated to Markov and Markov derivative based methods. 

Some researchers have proposed multivariate regression models (Lei, 1997) and the 

Bayesian diagnostic models (Kulkarni et al., 1986).  In recent years, increasing research 

efforts seemed to be dedicated on the use of soft computing methods (e.g., fuzzy logic) 

for deterioration modeling (Sadiq et al., 2004), primarily because field data are usually 

unavailable or, if available, they are usually qualitative, vague, and associated with a 

great deal of uncertainty. 

There is a great deal of literature describing past and ongoing work on decision 

making for repair/renew/replacement of water mains. Rajani and Kleiner (2001) and 

Kleiner and Rajani (2001) provided comprehensive reviews of the published work related 

to physical and statistical models, respectively. It appears that the vast majority of the 

work has focused on relatively small distribution mains using breakage frequency as a 

surrogate measure of deterioration. This approach is only suitable for relatively small 

pipes where a certain number of breaks can be tolerated prior to pipe renewal. Little work 

has been done on making decisions prior to pipe failure, which is desirable in large 

transmission mains where failure consequences can be severe. 

In deterioration modeling, the identification of potentially corrosive environments is 

paramount. If done prior to pipe installation, water utilities can save significant future 

costs and avoid failures by installing externally coated pipes or providing appropriate 

corrosion protection. Also the identification of corrosive environment in an existing water 

distribution network can save resources by concentrating attention on the pipe sections 
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that are at high risk (Seica et al., 2000; Doyle et al., 2003). Corrosion protection 

measures are usually required in backfills (a term synonymously used with soil(s) in this 

paper) with low resistivity, high concentration of anaerobic bacteria, differences in soil 

composition, and differential aeration around the pipe. 

Several evaluation processes are currently used to assess conditions that are corrosive 

to underground piping. The 10-point scoring (10-P) method was introduced by CIPRA 

(Cast Iron Pipe Research Association, predecessor of DIPRA, Ductile Iron Pipe Research 

Association) in 1964 for cast iron pipes, which was subsequently extended to ductile iron 

pipes (ANSI/AWWA C105/A21.5–99). DIPRA (2000) reported that the method has been 

used to determine soil corrosivity in more than 100 million feet of pipe installations in 

North America. 

In this research, an expert system is developed to estimate pipe deterioration 

(corrosion rates based on maximum pit depth and pipe age) using a fuzzy model that 

relates pipe external corrosion to the backfill (soil) properties. This paper presents two 

aspects of the research: 1) the fuzzy logic expert system, and 2) fuzzy modeling. In the 

remainder of this section, an overview of the scoring methods as well as the basics of 

fuzzy sets and soft computing are provided to understand the difference between two 

approaches.  

1.1 Point-scoring methods 

The 10-P method is based on five soil properties: resistivity, pH, redox potential, 

sulfides, and moisture content. A summary of the method is provided in Table 1. If the 

sum of the scores of all five contributing properties for a given soil sample exceeds 10, 

the soil is considered corrosive to the water mains, requiring corrosion protection 

 
 
 

4



measures usually in the form of polyethylene wraps. The method essentially classifies the 

soil as either corrosive or non-corrosive. The scoring methods are weighted-averaging 

procedures in which the weights are implicit in the specific range of scores assigned to 

each property (attribute or factor). The scoring methods cannot provide information on 

the intensity of corrosivity. For instance, if the score is 10, the soil is classified as 

corrosive; however, if it is only slightly less than 10, say 9.5, the soil is rated as 

non-corrosive whereas in reality the latter is not significantly different from the former. 

Metalogic (1998) proposed another method that takes into account twelve factors 

including: soil type, soil resistivity, water content, pH, buffering capacity, sulfides, 

chloride and sulfate concentrations, groundwater level, horizontal and vertical soil 

homogeneities, and electrochemical potential. The intensity scale used in rating the soil 

corrosivity is different from the 10-P method i.e., soil corrosivity is divided into 4 

categories. Cumulative scores that are less than -10 represent a highly corrosive 

environment whereas positive values (>0) represent virtually not corrosive conditions. 

The remaining two classes, slightly corrosive and corrosive, lie in the intermediate ranges 

(Table 2). 

Spickelmire (2002) proposed a 25-point scoring method that in addition to soil 

properties considers pipe factors such as: pipe location and leak repair difficulty, pipe 

minimum design life, pipe maximum design surge pressure, and pipe size. In this method, 

the soil corrosivity potential is divided into 4 categories: mild, moderate, appreciable, 

and severe as shown in Table 2. 

Although the last two methods address some of the deficiencies of the original 10-P 

method, they still have the intrinsic problem of weighted-averaging methods (with 
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weights implicit in the various score ranges). Furthermore, these methods do not 

explicitly address cases where one or more values of soil properties or other required 

variables are unavailable. A comparison of fuzzy-based method and 10-P method for 

predicting pipe deterioration has been performed by Sadiq et al. (2004) using two criteria, 

breakage rate and corrosion pit depth. The results showed that the fuzzy-based method 

outclasses the predictions of 10-P method for both criteria. The present study offers a 

more systematic fuzzy-based approach including fuzzy modeling and inferencing in an 

expert system that is used to predict pipe deterioration based on soil properties. 

1.2 Fuzzy Sets and Soft Computing  

In recent years, fuzzy-based methods have increasingly been applied to civil and 

environmental engineering problems from evaluation of concrete structures to water 

quality (Bardossy et al., 1995; Dou et al., 1995; Guyonnet et al., 2000; Kleiner et al., 

2004; Najjaran et al., 2004; Provenzano, 2003 and Provenzano et al., 2004). Fuzzy logic 

provides a language with syntax and semantics to translate qualitative knowledge into 

numerical reasoning. In many engineering problems, the available information about the 

probabilities of various risk items is vaguely known or assessed; and hence, the 

information in terms of either measured data or expert knowledge is too imprecise to 

justify the use of crisp numbers. Zadeh (1996) introduced the term computing with words 

(CWW) to explain the notions of reasoning linguistically rather than with numerical 

quantities. In other words, the main contribution of fuzzy logic to modeling process is a 

methodology for computing with words. 

The decision makers such as water utility managers, regulators, and engineers usually 

evaluate and describe systems using imprecise terms that may be translated into linguistic 
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variables (e.g., very high, high, very low, low). On the other hand, there is usually some 

numerical information available for input and output data, although incomplete and 

uncertain in nature. The strength of fuzzy logic is that it can integrate descriptive 

(linguistic) knowledge and imprecise numerical data into a fuzzy model and use 

approximate reasoning algorithms to propagate the uncertainties throughout the decision 

process. A fuzzy model, as described by Zadeh (1973), contains following three 

distinguished features: 

• linguistic variables instead of, or in addition to numerical variables; 

• simple relations between the variables in terms of IF-THEN rules; and 

• an inference mechanism that uses approximate reasoning algorithms to formulate 

complex relationships. 

A linguistic variable can be regarded as a variable whose value is a fuzzy number, but 

fuzzy numbers can also represent numerical variables without being firmly connected to 

linguistic terms. A fuzzy number is a normal and convex fuzzy set in a continuous 

universe of discourse U . Finally, a fuzzy set is a collection of ordered pairs  

that describe the relationship between an uncertain quantity 

{ })(, xxA µ=

x  and a membership 

function )(xµ , where ]1,0[)( ∈xµ . An excellent introduction to the fuzzy set theory and 

fuzzy logic can be found in (Klir and Yuan, 1995; Lee, 1990a, b).  

The fuzzy set theory is an extension of the traditional set theory (based on binary 

logic) in which x  is either a member of set  with A 1)( =xµ  or not a member of  with A

0)( =xµ . Fuzzy logic helps to address the inherent deficiencies of binary logic to 

account for uncertainties. Fuzzy models formulate the information on an intensity scale. 
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For example, soil with a score of 9.5 in the 10-P method would be rated non-corrosive, 

but a fuzzy model might assign the soil as being 0.8 corrosive and 0.2 non-corrosive 

(depending on predefined qualitative scales of corrosivity). It is anticipated that corrosion 

protection measures can be selected more efficiently if the degree of soil corrosivity is 

considered. Further, the qualitative determination of corrosion (deterioration) rates can 

improve risk assessment. 

2 Fuzzy Logic Expert System 

A fuzzy expert system is proposed to estimate the deterioration rate of metallic pipes 

using backfill properties. The expert system consists of two modules: a fuzzy knowledge 

base and an inference mechanism. The former is essentially a fuzzy model, which has 

two sources of information: expert knowledge, and field data obtained during the 

inspection, repair, or renewal of pipelines. The inference mechanism uses the knowledge 

base to deduce an output that corresponds to observed inputs. The modularized design of 

the expert system enables it to maintain a generic processing structure that is capable of 

dealing with various systems in different application domains (e.g., physical, medical, 

financial) as long as the knowledge base is constructed in a compatible format described 

later in Section 4.2. Another advantage of the modular design is that the expert system 

can be updated simply by expanding the knowledge base using new information, as it 

becomes available.  

2.1 Knowledge Base 

A fuzzy model determines the relationships between the inputs and outputs of a 

system using linguistic antecedent and consequent propositions in a set of IF-THEN 
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rules. The fuzzy model of a multi-input single-output (MISO) system may be formulated 

in a set of IF-THEN rules as follows: 

 : IF is  AND is  AND … is  THEN iR 1x 1iA 2x 2iA jx ijA y is  ,  i  (1) iB n,,1K=

where  represents the iiR
th rule,  is the total number of rules, are the input 

variables, is the only output variable,  are input fuzzy sets defined in the input space 

specified by 

n ),,1( rjx j K=

y ijA

r  universes of discourse U , and  is the output fuzzy set 

defined in the output universe of discourse V . Thus, every rule is a local fuzzy 

relationship in U  that maps a part of the multidimensional input space U  into a 

certain part of the output space V . 

rUU ××= L1 iB

V×

The rule base of a complex system usually requires a large number of rules to describe 

the behavior of a system for all possible values of the input variables, referred to as 

“completeness”. Hence, the appropriate number of rules depends on the complexity of the 

system in which the number of fuzzy rules corresponds to the order of a conventional 

model. This characteristic is similar to the traditional modeling approaches, where 

optimal model minimizes both the error and the number of rules (Sugeno and Yasukawa, 

1993). The aggregation of the rules of equation 1 forms a rule base that is valid over the 

entire application domain and is given by, 

   ALSO  ALSO … ALSO  (2) U
n

i

iRR
1=

== 1R 2R nR

2.2 Inference Mechanism 

Fuzzy inference consists of three connectives: aggregation of antecedents in each rule 

(AND connectives); aggregation of the rules (ALSO connectives); and an inference based 
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on implication relation (i.e. IF-THEN connectives). The type of operators performing 

these three connectives distinguishes fuzzy inference methods. The AND and ALSO 

connectives are chosen from a family of t-norm and t-conorm operators, respectively. 

Comprehensive discussions on t-norm (e.g. minimum and product operators) and 

t-conorm (e.g. maximum and sum operators) can be found in (Lee, 1990a, b; Lin, 1994; 

Emami, 1998). The IF-THEN connectives also use t-norm operators, not necessarily 

identical to the ones used for the AND connectives. 

An efficient method of reasoning involves first inferring from individual rules, and 

then aggregating the results, called first-infer-then-aggregate (FITA). Among all FITA 

fuzzy reasoning methods, two types of fuzzy reasoning methods are most common in 

fuzzy logic control and modeling applications. Two inferencing methods are used in the 

proposed expert system, namely Mamdani’s approximation reasoning (Mamdani, 1977) 

and Larsen’s product operation rule (see Appendix A).  

Defuzzification is a process to obtain a crisp value  that is the best representative of 

the fuzzy output. The fuzzy output (a possibility distribution) is analogous to a 

probability distribution function under monotonicity and identity conditions (Filev and 

Yager, 1991). Numerous defuzzification techniques have been introduced in the 

literature, but a more practical and generic defuzzification technique, height method, is 

implemented in the proposed expert system. In this technique, the elements of the fuzzy 

output with a membership value of less than 

*y

α  are disregarded, and the defuzzified value 

is calculated using the center of area of the elements that have a membership grade of not 

less than α : 
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 (3)  

The center of area (COA) and middle of maximum (MOM) defuzzification techniques 

become special cases of Height method, when 0=α  and , respectively. )(max yµα =

3 Fuzzy Logic Modeling 

Two basic approaches namely direct approach and system identification are used for 

fuzzy logic modeling (Yager and Filev, 1994a). In the direct approach, the information 

extracted from experts’ knowledge is used to: 

• specify the input, state, and output variables; 

• determine the partitions of input and output variables in their universes of 

discourse, and may label the partitions with appropriate linguistic terms; 

• define a set of linguistic (IF-THEN) rules that represent the relationships between 

the system variables; 

• select an appropriate reasoning method; and  

• evaluate the model adequacy. 

Although direct approach is simple, it has inherent limitations because quantitative 

observations of the performance of the system are not explicitly used in the determination 

of the structure or parameters of the model. Thus, the adequacy of the model is restricted 

to the boundaries of the expert knowledge; if the expert knowledge about the system is 

faulty, then so is the model. 
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The system identification approach involves the use of input-output data of systems to 

introduce new knowledge and increase the objectivity of fuzzy modeling (Zadeh, 1991). 

System identification is divided into two components: structure identification, and 

parameter identification (Sugeno and Yasukawa, 1993). Similar to the direct approach, 

structure identification involves the determination of input and output variables, 

partitions of input and output variables (fuzzy sets), relationships between the input and 

output variables (IF-THEN rules) through the number of rules. Parameter identification 

involves the adjustment of the input and output membership functions.  

The input variables are selected from a number of input candidates that most likely 

affect the output. Typically, there is no systematic way to specify the input candidates, so 

a heuristic method based on experience or common sense is often recommended. Given a 

finite number of input candidates, the input variables are selected based on the regularity 

criterion in the group method of data handling (Ihara, 1980) using the system input-

output data. 

The most important step to establish the fuzzy model is to generate the rules. 

Clustering of the input-output data is an intuitive approach to objective rule generation. 

The idea of clustering is to divide the output data into a certain number of fuzzy 

partitions. The appropriate number of clusters is determined so that the sum of the 

Euclidian distance of the output data from the center of the clusters is minimized. The 

determination of the number of rules is another important step for fuzzy modeling. A 

large number of rules, similar to a high order of a model, will bias the model towards 

specific data that are usually imprecise and subject to noise. On the other hand, less 

number of rules will likely increase the output error that is essentially equivalent to 
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disregarding some valuable information. Thus, the optimal number of rules, , is 

obtained so that both the output error and  are minimized. 

n

n

4 Pipe Deterioration Knowledge Base 

Figure 1 shows the structure of the expert system used to determine the deterioration 

rate of ductile and cast iron water mains using backfill soil properties. The inference 

mechanism is the generic inference tool that was discussed earlier. A two-tier fuzzy 

modeling process that involves both approaches of fuzzy modeling, namely, direct 

approach and system identification introduced in the previous sections, provides the 

knowledge base of the expert system.  

Direct approach yields a subjective model based on expert knowledge. The subjective 

model adopts the qualitative aspect of fuzzy modeling. Input variables are selected from 

pertinent soil properties such as soil resistivity, pH, etc. The output is a soil corrosiveness 

criterion named corrosivity potential (CoP) that is a real number between 0 and 1, 

referring to non-corrosive and most-corrosive soil, respectively. The expert knowledge 

was established from published work on the condition assessment of water mains and 

then revised based on the results of a survey submitted to distinguished corrosion experts 

worldwide. The survey was conducted in the Internet where corrosion specialists were 

asked a variety of questions on how different soil properties influence corrosion of cast 

and ductile iron water mains. 

The expert knowledge is used to select the input variables, determine the input 

partitions, and assign linguistic variables. It is also used to define the IF-THEN rules 

relating the soil properties to CoP. The subjectivity of the model is related to the 

descriptive basis of CoP and the fact that experts cannot always provide a quantitative 

 
 
 

13



relationship between the input and output variables in the model. Specifically, experts 

describe the severity of corrosion based on backfill soil properties but cannot quantify the 

deterioration of buried pipes, which is the result of an extremely random phenomenon, 

even if accurate measurements of the properties are available.  

On the other hand, system identification provides an objective model that is 

exclusively based on field data, which may be obtained from nondestructive inspection of 

buried pipes or examination of exhumed pipes. The inputs to the objective model are 

identical to the subjective model, but the output cannot be the same because the model 

now requires a measurable quantity, such as breakage frequency or maximum pit depth. 

It is worth noting that traditional modeling techniques, such as linear regression, are 

inappropriate for this application because of high uncertainties associated with inaccurate 

field data. Above all, the data are scarce, which makes it too hard to establish an efficient 

outlier rejection procedure or use of statistical analysis. Fuzzy modeling provides a 

synergy between the subjective and objective models and augment the expert knowledge 

using the “imprecise” filed data, as well as simplify system identification that is usually 

an ill-defined process and not amenable to automated techniques.  

Consequently, there is a need for a strategy to fuse the information of the subjective 

and objective models to generate the knowledge base. The difficulty in fusing the two 

models is that the outputs of the two models are not commensurate because experts 

cannot always explain the effect of soil properties on deterioration of pipes in a manner 

that is similar to that obtained from measurements (using instruments and sensors). Thus, 

it is proposed that the subjective model be used to aggregate multiple input parameters 

(i.e., soil properties) into a single entity, CoP. The latter is then used as an intermediate 
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input parameter to generate the rules of the objective model, which is now reduced to a 

model of a single-input-single-output (SISO) system.  

The fundamental idea of aggregating properties of fuzzy rules and their determination 

from input-output data were put forward by Zadeh (1971). Yager and Filev (1994b) 

provided background to these ideas to what they call template-based methods. This 

approach combines the expert knowledge and data. The expert knowledge provides 

templates for linguistic variables that are used to partition the input-output space, the 

fuzzy subsets (numbers) are given a priori. These template values are used to define the 

potential rules for the fuzzy system model. Input-output data are then used to generate 

weights or probabilities associated with the importance of the potential rules. Thus, the 

emphasis is on learning the weights (or credibility) of the rules. 

The proposed expert system is developed in two parts. The first part focuses on the 

structure of the expert system and develops a subjective fuzzy model using the direct 

approach (i.e., based on expert knowledge). The application of the expert system for the 

determination of corrosivity potential (CoP) is illustrated via two examples in Subsection 

4.1. The second part, the development of system identification to generate the objective 

model and subsequent fusion of the subjective and objective models will be described in 

subsequent publications. 

4.1 Determination of Corrosivity Potential (CoP) 

Two examples for the determination of CoP of cast iron mains using the proposed 

expert system are presented. Ductile iron pipes were not analyzed because sufficient field 

data were not available; nonetheless, the approach described here is equally applicable. 
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The first example demonstrates a knowledge base that consists of three input 

variables: soil resistivity, pH, and redox potential. Figure 2 shows the rule base that is 

based on expert knowledge. The input and output fuzzy sets, specified by the four edges 

of the trapezoids, are derived from the ranges used in the 10-P method. All input 

variables are partitioned by three fuzzy numbers low (L), medium (M), and high (H). The 

output has five fuzzy numbers very low (VL), low (L), medium (M), high (H), and very 

high (VH). Each fuzzy number is specified by four edges of a trapezoid. The rule base 

includes thirteen rules where the fuzzy numbers of the input variables in some of the 

antecedent propositions are concatenated to reduce the number of the rules. For example, 

the fuzzy number MH in soil pH shows that the rules 2, 12 and 13 correspond to both 

medium and high pH. As a result, the number of rules for the three 3-partition inputs is 

reduced to 13 (instead of 27 rules originally required). It is noted that the fuzzy set MH 

{3, 5, 12, 12} for pH is somewhat greater than the union of M {3, 5, 8, 10} and H {8, 10, 

12, 12}; and hence, the concatenated rules may infer greater values in the areas between 

the two fuzzy sets (the shaded area of the pH fuzzy number in Figure 2). However, 

concatenation is justifiable under a reasonable assumption that a valid rule for both M 

and H is most likely valid for the values between them. The concatenation of the input 

fuzzy sets reduces the number of rules significantly, especially in rule bases with a large 

number of input variables. Finally, the linguistic variable LMH of an input variable in a 

rule implies that the input variable is ineffective; the output is specified regardless of the 

value of the input variable.  

The universes of discourse of the input variables are determined based on the 

minimum and maximum values of the soil properties, induced by the definition (e.g., pH) 
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or obtained from published data. Naturally, the maximum and minimum values of a 

parameter with an infinite range cast into a range in which the parameter has an effect on 

the output. For example, a soil resistivity of greater than 5000 Ω-cm is unlikely to have 

an effect on CoP, so the maximum value of resistivity is considered to be 5000 Ω-cm. 

Although CoP is defined in the interval [0, 1], one cannot expect a defuzzified value 

for CoP greater than 0.774 (i.e., the center of area of the VH fuzzy number) and less than 

0.033 (i.e., the center of area of the VL fuzzy number). It is noted that the defuzzified 

value is only a representative of the fuzzy output interval and this is not the limitation of 

the rules. More precisely, when the inferred fuzzy output is VH it means that CoP is in 

the interval [0.5, 1], and the best representative of this interval is 0.774. 

Figure 3 shows the knowledge base of the second example that is based on five soil 

properties: soil resistivity, pH, % clay fines by weight (diameter < 0.002 mm), redox 

potential, and sulfide content. The rules are defined based on expert knowledge. The 

input and output fuzzy sets were derived from the ranges used in the 10-P method. All 

properties, except the percentage of clay fines, are similar to the parameters considered in 

the 10-P method. The percentage of clay fines replaces moisture content in the 10-P 

method in view of the fact that it reflects moisture retention capacity. Soil types are 

defined in Table 3 in broad categories ranging from gravel to clay in terms of percentage 

of clay fines present. Again, all input variables are defined using three fuzzy numbers 

(linguistic partitions), and the output, CoP, is defined using five fuzzy numbers. 

Concatenation reduces the number of rules to 45 (instead of 243 rules originally required 

for five 3-partition inputs). A comparison between the results obtained from the 3-input 

and 5-input knowledge bases is presented in the next section. 
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4.2 Deterioration Rate vs. Corrosivity Potential 

The validation of the proposed expert system and knowledge base is carried out using 

the measurements of pipe age, soil properties, and maximum pit depth available from a 

previous study on cast iron mains (Rajani et al., 2000). It is expected that a correlation 

between the CoP and corresponding deterioration rate will show that the hypothetical 

CoP calculated by the expert system is an appropriate indicator of the corrosion process. 

The soil properties and pit depth measurements were a snapshot of current conditions, 

and thus deterioration rates (DR) obtained from maximum pit depth and pipe age 

represent an average rather than instantaneous values. Table 4 shows the CoP values that 

are calculated by the expert system for a series of soil samples using the 3-input and 5-

input knowledge base. Figure 4 shows the relationship between DR and CoP obtained 

using the 3-input and 5-input knowledge bases. The relationship shown in Figure 4 helps 

define the proposed strategy for the fusion of objective and subjective models. Figure 4 

suggests that the deterioration rate is reasonably correlated with CoP obtained using the 

5-input knowledge base; i.e., the higher the CoP the higher the deterioration rate. 

However, the CoP values obtained from the 3-input knowledge base do not follow any 

trend and show a poor correlation. Figure 4 shows that the DR versus CoP data points 

mostly fall in a region bounded between the two dashed lines, but the scatter occurs due 

to two reasons. 

First, the subjective model of the fuzzy knowledge base is imprecise for a certain 

range of CoP. This may hint that either the number of fuzzy rules in the rule base are 

insufficient (i.e., the rule base does not satisfy the “completeness” condition), or the input 

and output partitions are not appropriately tuned in some range of their respective 
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universe of discourse. Tuning up the model using field data, which will be addressed in 

future research, can alleviate these issues. Further, it could also mean that one or more 

input variables can become more dominant in certain ranges of CoP, but these variables 

have not been taken into account. The identification of the other input variables is 

challenging because measurements of a variety of input parameters must be available 

before selecting the most pertinent ones. This issue may be addressed to certain degree 

using the expert survey1 to be more selective on possible inputs. 

Second, obvious outliers among the field data exist that must be excluded from the 

database used in objective modeling. An accurate pipe deterioration rate is typically 

unavailable because the deterioration rate is determined under the debatable assumption 

of an average (constant) corrosion rate from the installation to exhumation of the pipe. 

Also, the corrosion rate is obtained by measuring the maximum pit depth in a few pipe 

sections that are randomly selected. Consequently, the choice of the pit as well as the 

measurement techniques imposes a great deal of uncertainty on the measurements. Issues 

such as manufacturing defects, changing water table, backfill chemistry (e.g., addition of 

salt during winter) and disturbance of backfill soil have an impact on the reliable 

determination of deterioration rates. For example, the first two rows of Table 4 refer to 

identical soil samples roughly, yet the corresponding deterioration rates are significantly 

different. These points are highlighted within Figure 4. 

The uncertainty management in the proposed expert system relies on the fusion of the 

objective and subjective models. Research on the uncertainty management and its 

impacts on the assessment of corrosivity potential are ongoing, and therefore related 

issues will only be briefly addressed here.  
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The uncertainty of the deterioration model can be described by upper and lower values 

for deterioration rates with respect to CoP. The simplest example is a linear function 

between the deterioration rate, DR, and CoP that is given by: 

  (4) dCPmDR +⋅=

where  and  are the slope and intercept of the line, respectively. If the assumed 

expected values of the slope and intercept are 

m d

)(mEm =  and )(dEd =  then the 

estimated values are as follows:  

 
d

m

dd

mm

ε

ε

+=

+=
 (5) 

where and  are the slope and intercept disturbances, which are normally distributed 

with zero mean. Thus, for the linear relationship of equation 4, the uncertainty of the 

deterioration rate can be estimated by a linear combination of the normal distributions of 

and . Thus, it is possible to define a confidence level for the values obtained from 

the linear relationship between DR and CoP. The issues related to parameter 

identification and relationship between the deterioration rate and CoP will be examined 

in detail as more field data become available.  

mε

dε

dε

mε

The expert system facilitates the uncertainty management process by providing not 

only a defuzzified crisp value for CoP but also an output fuzzy set that specifies 

memberships for all CoP values. Figure 5 presents the defuzzified value and CoP 

memberships of a soil sample corresponding to the marked point in Figure 4. The 

membership values may be represented by a membership function )(CPµ , or converted 

to a probability distribution under the identity and monotonic conditions. Either the 
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membership function or probability distribution can provide a reliability measure for 

CoP, which is now the independent variable. Recently, Davis et al. (2003) developed a 

relationship between the average failure rate of cast iron pipes and the point scores 

obtained from the 10-P method. The major shortcoming of their approach is that the 10-P 

method cannot provide an uncertainty measure for the soil score. Thus, it is impossible to 

determine the reliability of the soil scores required for uncertainty management. The 

other problem with their approach is that the average failure rate or breakage frequency 

can be affected by many other distressing factors besides soil properties. However, in the 

approach proposed here, only the influence of soil properties on deterioration rate as a 

result of external corrosion is considered. 

It is anticipated that an enhanced fuzzy knowledge base of the proposed expert system 

will yield corrosivity potentials that are strongly correlated to deterioration rates. Hence, 

the predictions through this expert system can lead us to estimate the minimum remaining 

wall thickness of the pipes given the surrounding soil properties and predict the time of 

failure. Unlike the binary states of the corrosivity (corrosive vs. non-corrosive) obtained 

from the 10-P method, corrosivity potential can also be used to gauge the level of 

required corrosion protection. Specifically, the interval [0, 1] of the corrosivity potential 

can correspond to the six levels of corrosion protection measures recommended for 

ferrous pipe materials (Dechant and Smith, 2004). A more rigorous approach to match 

the corrosivity potential with a specific corrosion protection measure would require 

performing cost-benefit analysis.  
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5 Conclusions 

A fuzzy expert system is proposed to determine the deterioration rate of cast and 

ductile iron water mains based on the backfill soil properties. The expert system consists 

of two modules: inference mechanism and knowledge base. The former is a generic 

inference tool based on the fuzzy set theory that can process the knowledge base of an 

arbitrary application as long as the encoded information is provided in an appropriate 

format. The knowledge base is developed in a twofold fuzzy modeling process. First, a 

subjective fuzzy model is developed using the direct approach of fuzzy modeling based 

on the information obtained from published literature and an online expert survey. 

Second, the system identification approach is used to develop an objective model based 

on the field data. 

The subjective model provides a fuzzy relationship between a number of soil 

properties, perceived as the most significant contributors to the corrosion of cast and 

ductile iron pipes, and a proposed corrosiveness criterion (viz., corrosivity potential, 

CoP). It is shown that corrosivity potential is correlated with the deterioration rate, 

according to the field data. More precisely, the objective model refers to the deterioration 

rate as a function of corrosivity potential that is independently determined by the 

subjective model. As a result, the deterioration analysis is simplified significantly by 

considering only one parameter affecting the deterioration of the pipes. Further, 

corrosivity potential can be used to establish a cost-benefit analysis and determine the 

optimal level of corrosion protection required in municipal infrastructure based on the 

soil properties. 
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Future research will establish a relationship between the deterioration rate of 

cast/ductile iron pipes and corrosivity potential based on the field data. The relationship 

will link the objective model with the subjective model to enhance the knowledge base. 

The fusion of the two models will predict the deterioration rate more accurately and 

provide uncertainty measures. This will also help to explore the implicit weights and 

threshold values of 10-P method comprehensively, which are used as base line in the 

present research. 
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Table 1  Scores of soil properties used in the 10-P scoring method 

 

Soil Values and characteristics Points 

< 1,500 10 

≥ 1,500 - 1,800 8 

> 1,800 - 2,100 5 

> 2,100 - 2,500 2 

> 2,500 - 3,000 1 

Resistivity 

(Ω-cm) 

> 3,000 0 

0 - 2 5 

2 - 4 3 

4 - 6.5 0 

6.5 - 7.5 0 

7.5 - 8.5 0 

pH 

>8.5 3 

> +100 0 

+50 - +100 3.5 

0 - +50 4 

Redox potential  
(mV) 

< 0 5 

Positive 3.5 

Trace 2 Sulfides 

Negative 0 

Poor drainage (continuously wet) 2 

Fair drainage (generally moist) 1 Moisture 

Good drainage (generally dry) 0 
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Table 2  Other point scoring methods 

 

Metalogic (1998)  Spickelmire (2002) 

Soil Corrosivity ∑12

i ir  
 Soil Corrosivity ∑15

j js
 

Virtually not corrosive > 0  Mild 0 to 14.5 

Slightly corrosive -1 to -4  Moderate 15 to 19.5 

Corrosive -5 to -10  Appreciable 20 to 24.5 

Highly corrosive <-10  Severe > 25 
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Table 3  Percentage clay fines for different soil types 

 

Soil Type 
% clay (soil particles < 

0.002 mm)  fines by weight  

Granular material (gravel) 15 

Sand 22 

Silty sand 25 

Silt 30 

Silty clay 35 

Clay >40 
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Table 4  Field data and calculated corrosivity potential (CoP)  

 

Corrosivity 
Potential (CoP) 

No of inputs 
R 

•-cm 
pH 

  
Clay fines 

% 

Redox 
potential 

mV 

Sulfide 
presence 

  

DR 
mm/yr 

3 5 

590 7.7 30 -29 1 0.025 0.467 0.774 
580 7.7 30 -30 1 0.042 0.467 0.774 

470 7.7 30 -39 1 0.022 0.467 0.774 
1163 7.8 30.00 250 1 0.054 0.450 0.439 

1575 5.8 22 309 -1 0.044 0.392 0.339 

634 8.2 22 -103 -1 0.046 0.467 0.774 

5417 7.4 42 -42 -1 0.090 0.133 0.133 

… … … … … … … … 

3100 6.3 42 306 0 0.033 0.033 0.199 

12929 4.6 22 268 0 0.027 0.033 0.185 

14126 5.2 22 171 0 0.035 0.033 0.133 
1640 5.7 42 177 0 0.048 0.381 0.321 

1560 5.2 42 203 0 0.067 0.395 0.336 

1300 7.6 22 -166 0 0.059 0.415 0.702 

6700 5.5 22 -88 0 0.055 0.133 0.300 
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Figure 1  Structure of the fuzzy expert system 
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  Rule Base 

I1: Soil Resistivity (Ω-cm)  

Rule 
No I1 I2 I3 O 

L 500 500 1000 2500  1 L L LMH VH 
M 1000 2000 2500 4000  2 L MH LMH H 
H 2500 4000 5000 5000  3 M L LM H 

 4 M L H M 
 … … … … … 
 11 H L H VL 
 12 H MH L L 

 

 13 H MH MH VL 

I2: pH   

L 0 0 3 5  O: Corrosivity Potential (CoP) 

M 3 5 8 10  VL 0 0 0 0.1 
H 8 10 12 12  L 0 0.1 0.1 0.3 

 M 0.1 0.2 0.4 0.5 
 H 0.3 0.5 0.5 0.6 
 VH 0.5 0.6 1 1 
 

 

 
I3: Redox Potential (mV)  

L -50 -50 -20 0  
M -20 25 50 100  
H 50 100 150 150  

 

  
  
  
  

 

  

500 2000 2500 5000

1 

0 

0 4

0.75

8 12 

1 

-50 150 0 

1 

50 100 

1

0.5 1 0.25

 

Figure 2 Fuzzy knowledge base with 3-input variables
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      Rule Base 

I1: Soil Resistivity (Ω-cm)  

Rule 
No I1 I2 I3 I4 I5 O 

L 500 500 1000 2500  1 L L LMH LM LMH VH 
M 1000 2000 2500 4000  2 L L LMH H LMH H 
H 2500 4000 5000 5000  3 L MH LMH LM LMH VH 

 4 L MH LMH H LMH H 
 5 M L LM L LMH VH 
 6 M L LM MH L H 
 7 M L LM MH MH VH 

 

 … … … … … … … 
I2: pH  41 H MH L MH MH L 

L 0 0 3 5  42 H MH MH L L L 
M 3 5 8 10  43 H MH MH L MH M 
H 8 10 12 12  44 H MH MH MH L VL 

 45 H MH MH MH MH L 

        
        
  I5: Sulfide  

 

  L -1 -1 -1 0  

I3: % Clay Fines   M -1 0 0 1  

L 0 0 20 30   H 0 1 1 1  
M 20 30 30 45    
H 30 45 60 60    

   
   
  

 

 
  O: Corrosivity Potential (CoP)  

 
  VL 0 0 0 0.1  

I4: Redox Potential (mV)   L 0 0.1 0.1 0.3  

L -50 -50 -20 0   M 0.1 0.2 0.4 0.5  
M -20 25 50 100   H 0.3 0.5 0.5 0.6  
H 50 100 150 150   VH 0.5 0.6 1 1  

   
   
   
   

 

  

 

 

500 2000 2500 5000 

1 

12 

1 

0 4 8 

-1 

1

-50 0 

1 

50 100 150 

0 15 

0 1 

1 

30 45 60 

0 

1

0.5 1 0.25 0.75 

 

Figure 3 Fuzzy knowledge base with 5-input variables
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Figure 4  Correlation of deterioration rate with corrosivity potential
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Example: 5-input …  

Resistivity Ω-cm 2145 

pH   7.9 

Soil fines % 30 

Redox potential mV 354 

Sulfide   1 

Corrosivity potential (CoP) 
0.31 

 

 

Figure 5  Defuzzified value and memberships of corrosivity potential (CoP) for a soil 
sample 
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Appendix A 

 
FITA approximate reasoning using a) Mamdani’s minimum operation rule and b) 
Larsen’s product operation rule as the implication rule 
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