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Abstract

We provide formal definitions and efficient secure technifoe

e turning biometric information into keys usable famy cryptographic application, and

e reliably and securely authenticating biometric data.
Our techniques apply not just to biometric information, tmany keying material that, unlike traditional cryp-
tographic keys, is (1) not reproducible precisely and (2)distributed uniformly. We propose two primitives: a
fuzzy extractoextracts nearly uniform randomneBsfrom its biometric input; the extraction is error-toleramt
the sense thak will be the same even if the input changes, as long as it reswaigsonably close to the original.
Thus, R can be used as a key in any cryptographic applicatiofuz&y fingerprinproduces public information
about its biometric inputy that does not reveab, and yet allows exact recovery ofgiven another value that is
close tow. Thus, it can be used to reliably reproduce error-prone btdminputs without incurring the security
risk inherent in storing them.

In addition to formally introducing our new primitives, wegvide nearly optimal constructions of both prim-
itives for various measures of “closeness” of input datahsas Hamming distance, edit distance, and set differ-
ence.

1 Introduction

Cryptography traditionally relies on uniformly distributed random stringstsecrets. Reality, however, makes
it difficult to create, store, and reliably retrieve such strings. Stringsafeaheither uniformly random nor reliably
reproducible seem to be more plentiful. For example, a random persog&rfirint or iris scan is clearly not a
uniform random string, nor does it get reproduced precisely each timenkasured. Similarly, a long pass-phrase
(or answers to 15 questions [11] or a list of favorite movies [16]) is ndbumly random and is difficult to remember
for a human user. This work is about using such nonuniform and ubkelgecrets in cryptographic applications.
Our approach is rigorous and general, and our results have botleticeaband practical value.

To illustrate the use of random strings on a simple example, let us consideskhef fsassword authentication.
A user Alice has a password and wants to gain access to her account. A trusted server stores someaiigo
y = f(w) about the password. When Alice entersthe server lets Alice in only if (w) = y. In this simple
application, we assume that it is safe for Alice to enter the password foetifeeation. However, the server’s long-
term storage is not assumed to be secure (gig.stored in a publicly readabletc/passwd  file in UNIX [22]).
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The goal, then, is to design an efficiefithat is hard to invert (i.e., givenit is hard to findw’ s.t. f(w') = y), so
that no one can figure out Alice’s password frgirRecall that such functions are calledbne-way functions

Unfortunately, the solution above has several problems when used vgglvpedsw available in real life. First,
the definition of a one-way function assumes thats truly uniform, and guarantees nothing if this is not the
case. However, human-generated and biometric passwords arerfaufiform, although they do have some un-
predictability in them. Second, Alice has to reproduce her passexadtlyeach time she authenticates herself.
This restriction severely limits the kinds of passwords that can be usededn@ human can precisely memorize
and reliably type in only relatively short passwords, which do not pewad adequate level of security. Greater
levels of security are achieved by longer human-generated and biomedgwerds, such as pass-phrases, answers
to questionnaires, handwritten signatures, fingerprints, retina saaine,aommands, and other values selected by
humans or provided by nature, possibly in combination (see [14, 100Lfgegs). However, two biometric readings
are rarely identical, even though they are likely to be close; similarly, huntansrdikely to precisely remember
their answers to multiple question from time to time, though such answers will likedintigar. In other words, the
ability to tolerate a (limited) number of errors in the password while retainingggdsicrucial if we are to obtain
greater security than provided by typical user-chosen short pagswo

The password authentication described above is just one example gitagrgphic application where the issues
of nonuniformity and error tolerance naturally come up. Other examplesi@elay cryptographic application, such
as encryption, signatures, or identification, where the secret key darttessform of “biometric” data.

OuR DEFINITIONS. We propose two primitives, termddzzy fingerprinandfuzzy extractar

A fuzzy fingerprint addresses the problem of error tolerance. It(g@babilistic) function outputting a public
value v about its biometric inputv, that, while revealing little aboub, allows its exact reconstruction from any
other inputw’ that is sufficiently close. The price for this error tolerance is that the agijgit will have to work
with a lower level of entropy of the input, since publishingffectively reduces the entropy af. However, in a
good fuzzy fingerpint, this reduction will be small, andwill still have enough entropy to be useful, even if the
adversary knows. A fuzzy fingerprint, however, does not address nonuniformity ofiigp

A fuzzy extractor addresses both error tolerance and nonuniformiglidbly extracts a uniformly random string
R from its biometric inputw in an error-tolerant way. If the input changes but remains close, thaectedR remains
the same. To assist in recoveriRgrom w’, a fuzzy extractor outputs a public strid(much like a fuzzy fingerprint
outputsw to assist in recovering). However,R remains uniformly random even givén

Our approach is general: our primitives can be naturally combinedamitcryptographic system. Indee®,
extracted fromw by a fuzzy extractor can be used as a key in any cryptographic appficatit, unlike traditional
keys, need not be stored (because it can be recovered from’ahwt is close tav). We define our primitives to
be information-theoreticallysecure, thus allowing them to be used in combination with any cryptograpstiensy
without additional assumptions (however, the cryptographic applicatiolfi vtsle typically have computational,
rather than information-theoretic, security).

For a concrete example of how to use fuzzy extractors, in the passwtirengication case, the server can store
(P, f(R)). When the user inputs’ close tow, the server recovers the actualand checks iff (R) matches what
it stores. Similarly,R can be used for symmetric encryption, for generating a public-secygidie or any other
application. Fuzzy fingerprints and extractors can thus be viewed ailinp fuzzy key storage: they allow to
recover the secret keyv(or R) from a faulty readingy’ of the passwordv, by using some public information (
or P). In particular, fuzzy extractors can viewed as error- and nontmifg-tolerant secret kelgkey-encapsulation
mechanism§{28].

Because different biometric information has different error patteresgevnot assume any particular notion of
closeness between’ andw. Rather, in defining our primitives, we simply assume thatomes from some metric
space, and that’ is no more that a certain distance framin that space. We only consider particular metrics when
building concrete constructions, which are described below.



GENERAL RESULTS Before proceeding to construct our primitives for concrete metricsnalee some observa-
tions about our definitions. We demonstrate that fuzzy extractors cauilbeu of fuzzy fingerprints by utilizing
(the usual) strong randomness extractors [24], such as, for exgpapejse-independent hash functions. We also
demonstrate that the existence of fuzzy fingerprints and fuzzy extsaater a particular metric space implies the
existence of certain error-correcting codes in that space, thusg@ngdower bounds on the best parameters a fuzzy
fingerprint and extractor can achieve. Finally, we define a notion lmbmetric embeddingf one metric space
into another, and show that the existence of a fuzzy extractor in the sgrget implies, combined with a biometric
embedding of the source into the target, the existence of a fuzzy extratier source space.

These general results help us in building and analyzing our constructions

OuR CONSTRUCTIONS We provide constructions of fuzzy fingerprints and extractors in thregics: Hamming
distance, set difference, and edit distance.

Hamming distance (i.e., the number of bit positions that differ betweemdw’) is perhaps the most natural
metric to consider. We observe that the “fuzzy-commitment” constructioneif and Wattenberg [15] based on
error-correcting codes can be viewed as a (nearly optimal) fuzzyrfiige We then apply our general result to
convert it into a nearly optimal fuzzy extractor. While our results on the Hamutistance essentially use previously
known constructions, they serve as an important stepping stone forsthaf the work.

The set difference metric (i.e., size of the symmetric difference of two inpstusandw’) comes up naturally
whenever the biometric input is represented as a subset of featurea frniverse of possible featuresVe demon-
strate the existence of optimal (with respect to entropy loss) fuzzy fingesgand therefore also fuzzy extractors)
for this metric. However, this result is mainly of theoretical interest, bec@l)serelies on optimal constant-weight
codes, which we do not know how construct and (2) it producesriimis of length proportional to the universe
size. We then turn our attention to more efficient constructions for this metdgpeovide two of them.

First, we observe that the “fuzzy vault” construction of Juels and S{ijrcan viewed as a fuzzy fingerprint in
this metric (and then converted to a fuzzy extractor using our generdt)red/e provide a new, simpler analysis
for this construction, which bounds the entropy lost frengivenv. Our bound on the loss is quite high unless one
makes the size of the outputery large. We then provide an improvement to the Juels-Sudan congtrtatisduce
the entropy loss to near optimal, while keepinghort (essentially as long ag.

Second, we note that in the case of a small universe, a set can be siroptiedras its characteristic vector (1 if
an element is in the set, 0 if it is not), and set difference becomes Hammingodistdowever, the length of such
a vector becomes unmanageable as the universe size grows. Norgtiveldemonstrate that this approach can be
made to work efficiently even for exponentially large universes. Thishiegoa result that may be of independent
interest: we show that BCH codes can be decoded in time polynomial imetggntof the received corrupted word
(i.e., insublineartime if the weight is small). The resulting fuzzy fingerprint scheme comparesdhly to the
modified Juels-Sudan construction: it has the same near-optimal entrapymMoibe the public output is even
shorter (proportional to the number of errors tolerated, rather than plaé length).

Finally, edit distance (i.e., the number of insertions and deletions needecdhertone string into the other)
naturally comes up, for example, when the password is entered as a dtretp typing errors or mistakes made
in handwriting recognition. We construct a biometric embedding from the editmieto the set difference metric,
and then apply our general result to show such an embedding yieldgyadutzactor for edit distance, because we
already have fuzzy extractors for set difference. We note that thenetric is quite difficult to work with, and the
existence of such an embedding is not a priori obvious: for exampledistertion embeddings of the edit distance
into the Hamming distance are unknown and seem hard [2]. It is the partprolerties of biometric embeddings,

A perhaps unexpected application of the set difference metric wasregdlo[16]: a user would like to encrypt a file (e.g., her phone
number) using a small subset of values from a large universe lerfavorite movies) in such a way that those and only those with a similar
subset (e.g., similar taste in movies) can decrypt it.



as we define them, that help us construct this embedding.

RELATION TO PREVIOUS WORK. Since our work combines elements of error correction, randomnessgaitr
and password authentication, there has been a lot of related work. Belpwovide a few examples that we consider
most relevant.

The need to deal with nonuniform and low-entropy passwords has leag tealized in the security community,
and many approaches have been proposed. For example, Kelsd§ dtsalggest using (w, r) in place ofw for
the password authentication scenario, wheigea public random “salt,” to make a brute-force attacker’s life harder.
While practically useful, this approach does not add any entropy to trewped, and does not formally address
the needed properties gt Another approach, more closely related to ours, is to add biometric fediurhe
password. For example, Ellison et al. [9] propose asking the useies &én personalized questions, and use these
answers to encrypt the “actual” truly random sedretA similar approach using user’s keyboard dynamics (and,
subsequently, voice [20, 21]) was proposed by Monrose et al [@9Fourse, this technique reduces the question
to that of designing a secure “fuzzy encryption”. While heuristics apgies were suggested in the above works
(using various forms of Shamir’'s secret sharing [27]), no formalysigwas given. Additionally, error tolerance
was addressed only by brute force search.

The most formal approach to error tolerance in biometrics was taken tsahaeWattenberg [15] (for less formal
solutions, see [8, 19, 9]), who provided a simple way to tolerate errarsiformly distributedpasswordg. Aimost
the same construction appeared implicitly in earlier, seemingly unrelated, lim@tuinformation reconciliation
and privacy amplification (see, e.g., [3, 4, 7]). We further discussdhaections among these works and our work
in Section 4.

Work on privacy amplification [3, 4], as well as work on de-randomizatind hardness amplification [13, 24],
also addressed the need to extract uniform randomness from a rasdiatnle about which some information has
been leaked. In addition, work on (ordinary, not fuzzy) extractorslevant to ours (e.g., [26, 23]), though for our
purposes simple pairwise hashing is a sufficiently good extractor [3, 13]

Itis also important to note the recent work of Juels and Sudan [16], wévade the first construction for a metric
other than Hamming: they construct a “fuzzy vault” scheme for the setréifte metric. The main difference is
that [16] lacks a cryptographically strong definition of the object corestai In particular, their construction leaks a
significant amount of information about their analogityfeven though it leaves the adversary with provably “many
valid choices” forR. In retrospect, their notion can be viewed as an (information-theoreticailgyway function,
rather than semantically-secure key encapsulation mechanism, like the rgidered in this work. Nonetheless,
their informal notion is very closely related to our fuzzy fingerprints, aedmprove their construction in Section 5.

EXTENSIONS We can relax the error correction properties of fuzzy fingerprintssetors to allowlist decoding
instead of outputting one correct secret, we can output a short listcodtse one of which is correct. For many
applications (e.g., password authentication), this is sufficient, while thentayais that we can possibly tolerate
many more errors in the password. Not surprisingly, by using list-dddedades (see [12] and the references
therein) in our constructions, we can achieve this relaxation and coablgemprove our error tolerance. Other
similar extensions would be to allow small error probability in error-correctmensure correction of onverage-
caseerrors, or to consider nonbinary alphabets. Again, many of our rasillsxtend to these settings. Finally, an
interesting new direction is to consider other metrics not considered in this wor

2[11] extended this solution for better practical use, but it still works oatyuhiformly chosen passwords.
3This is so because optimizing the seed length — the major source of prablemigactor constructions — will not be crucially important
in most of our applications, as long as one extracts (nearly) all the ntiopggnfrom the source.



2 Preliminaries

Unless explicitly stated otherwise, all logarithms below are Rase

ENTROPY. Themin-entropyof a random variablel is Ho(A) = — log(max, Pr(A = a)). For a pair of (possibly
correlated) random variable§ B, a conventional notion of “average min-entropy”4fyiven B would beH (A |

B) = E,_p[Hx(A | B =b)|. However, for the purposes of this paper, the following slightly modifiettbnowill

be more robust: we |6l (A | B) = —log (Ey_p [27H=(AIB=Y)]) Namely, we defin@verage min-entropgf

A given B to be the logarithm of the average probability of the most likely valuel @fiven B. This definition

is the right one to use when one is interested in the statistical differenceuntiorm, as becomes clear, e.g.,
in Lemma 3.2. One can easily verify thathfis an/-bit string, thenH.. (A | B) > Ho,(A) — £.

STRONG EXTRACTORS Thestatistical distance betwedwo probability distributionsA and B is SD (A, B) =
>, |Pr(A =v) — Pr(B = v)|. We can now definstrong randomness extractoji24].

Definition 1. An efficient(n, m’, ¢, €)-strong extractors a polynomial time probabilistic functiobxt : {0,1}" —
{0,1}* such that for all min-entropyn’ distributions W, we haveSD ((Ext(W; X), X), (U, X)) < ¢, where
Ext(W; X) stands for applyindext to W using (uniformly distributed) randomne3s

Strong extractors can extract at mést m’' — 2log(1/¢) + O(1) nearly random bits [25]. Many constructions
match this bound (see Shaltiels’ survey [26] for references). Extraotustructions are often complex since they
seek to minimize the length of the se&d For our purposes, the length af will be less important, s@-wise
independent hash functions will already give us optifal m’ — 21og(1/¢) [3, 13].

METRIC SPACES A metric space is a se¥! with a distance functiodis : M x M — R* = [0, co) which obeys
various natural properties. In this workg will always be a finite set, and the distance function will only take on
integer values. The size of thet will always be denotedv = | M|. We will assume that any point ifv can be
naturally represented as a binary string of appropriate lefglbg V).

We will concentrate on the following metrics. (Hamming metric Here M = F" over some alphabef (we
will mainly use # = {0,1}), anddis(w, w’) is the number of positions in which they differ. (8pt Difference
metric. Here M consists of alk-element subsets in a univedde= [n] = {1, ..., n}. The distance between two sets
A, B is the number of points il that are not inB. SinceA and B have the same size, the distance is half of the
size of their symmetric differencetis(4, B) = 3|AAB|. (3) Edit metric Here againM = F", but the distance
betweenw andw’ is defined to be one half of the smallest number of character insertionsetetébds needed to
transformw into w’.

As already mentioned, all three metrics seem natural for biometric data.

CoODING. Since we want to achieve error tolerance in various metric spaces, wase#irror-correcting codes

in the corresponding metric spage. A codeC is a subsef{w;,...,wx} of K elements ofM (for efficiency
purposes, we want the map frano w; to be polynomial-time). Theninimum distancef C is the smallestl > 0

such that for alt # j we havedis(w;, w;) > d. In our case of integer metrics, this means that one can detect up
to (d — 1) “errors” in any codeword. Therror-correcting distancef C is the largest number > 0 such that for
everyw € M there exists at most one codewargdin the ball of radiug aroundw: dis(w, w;) < t for at most one

i. Clearly, for integer metrics we havie= 2t 4 1. Since error correction will be more important in our applications,
we denote the corresponding codes(B, K, t)-codes. For the Hamming and the edit metrics on strings of length
n over some alphabef, we will sometimes calk = log|F| K thedimensioron the code, and denote the code itself
as anjn, k,d = 2t + 1]-code, following the standard notation in the literature.



3 Definitions and General Lemmas

Let M be a metric space oN points with distance functiodis.

Definition 2. An (M, m,m’, t)-fuzzy fingerprintis a randomized mapF : M — {0,1}* with the following
properties.

1. There exists a deterministic recovery functRet allowing to recoverw from its fingerprintFF(w) and any
vectorw’ close tow: for all w, w’ € M satisfyingdis(w, w’) < t, we haveRec(w’, FF(w)) = w.

2. For all random variablesV over M with min-entropym, the average min-entropy & givenFF (W) is at
leastm/. Thatis,H. (W | FF(W)) > m/.

The fuzzy fingerprint isfficientif FF and Rec run in time polynomial in the representation size of a poinhh We
denote the random output BF by FF(1V), or by FF(W; X') when we wish to make the randomness explicit.

We will have several examples of fuzzy fingerprints when we deal wigicifip metrics. The quantity, — m’ is
called theentropy losof a fuzzy fingerprint. All of our proofs in fact bound — m’, and the same bound typically
holds for all values ofn.

Definition 3. An (M, m, ¢, t, €) fuzzy extractoiis a given by two procedurd&en, Rep).

1. Gen is a probabilistic generation procedure, which on inputc M outputs an “extracted” string? € {0, 1}
and a public stringP. We require that for any distributiol” on M of min-entropym, if (R, P) «— Gen(W),
then we havéD ((R, P), (U, P)) < ¢, whereU, is the uniform distribution or{0, 1}* sampled independently
from P.

2. Rep is a deterministic reproduction procedure allowing to reco¥&from the corresponding public string
and any vector’ close tow: for all w,w’ € M satisfyingdis(w,w’) < t, if (R, P) <« Gen(w), then we have
Rep(w’, p) = R.

The fuzzy extractor isfficientif Gen andRep run in time polynomial in the representation size of a pointih

In other words, fuzzy extractors allow one to extract some randonidéssn 1 and then successfully reproduce
R from any stringl¥’ that is close tdV. The reproduction is done with the help of the public stringproduced
during the initial extraction; yeR looks truly random even giveR. To justify our terminology, notice that strong
extractors (as defined in Section 2) can indeed be seen as “nonfaizaldgs of fuzzy extractors, corresponding to
t=0,P =X (andM = {0,1}").

CONSTRUCTION OFFUZZY EXTRACTORS FROMFUzzY FINGERPRINTS Not surprisingly, fuzzy fingerprints
come up very handy in constructing fuzzy extractors. Specifically, wstoact fuzzy extractors from fuzzy finger-
prints and strong extractors. For that, we assume that one can natupaigent a pointv in M usingn bits. The
strong extractor we use is the standard pairwise-independent hashistguction, which has (optimal) entropy loss
2log (%) The result follows from the “left-over hash” (a.k.a. “privacy amplifioa”) lemmas of [13, 4].

Lemma 3.1 (Using Hash Functions for Extraction). AssuméF is a (M, m, m’, t)-fuzzy fingerprint with recovery
procedureRec, and letExt be the(n, m’, ¢, €)-strong extractor based on pairwise-independent hashing (in particula
¢ =m/ —2log (1)). Then the followingGen, Rep) is a (M, m, ¢, ¢, €)-fuzzy extractor:

— Gen(W; X1, Xo): setP = (FF(W; X1), Xs), R = Ext(W; X32), and output R, P).

— Rep(W’,(V, X3)): recoverWW = Rec(W’, V') and outputR = Ext(W; X3).



Proof. Lemma 3.1 follows directly from the intermediate result below (Lemma 3.2), whipka@s our choice of
the measurd. (A|B) for the average min-entropy. Lemma 3.2 says that pairwise independshinaxtracts
randomness from the random variableas if the min-entropy ofA given B = b were always at IeasﬁIOO(A\B)
(rather than having the inequality hold on average). O

Interestingly, the above lemma, combined with fuzzy fingerprints, will oftedpce nearly optimal fuzzy extractors.

Lemma 3.2. If A, B are random variables such that € {0,1}" and H,,(A|B) > m/, and H is a random
pairwise independent hash function frembits to ¢ bits, thenSD ((B, H, H(A)) , (B, H,Uy;)) < € as long as
¢ <m/—2log ().

Proof. The particular extractor we chose has a smooth tradeoff between thpyeafrihe input and the quality of
the output. For any random variahlg, the left-over hash/privacy amplification lemma [3, 13, 4] states:

SD ((H, H(X)) , (H,Up)) < V27 Hx(X)2f
In our setting we have a bound on tsepectedzalue of2~Hee(A15=0) namelyE [2~H=4 | B)] < 27, Using the
fact thatE [\/?} < +/E[Z], we get:

E,[SD ((H, H(A|B = b)) , (H,Up))] < V20

Now the distance of B, H, H(A)) from (B, H,U,) is the average over values &f of the distance of H, H(A))
from (H, Uy). This average is exactly what was bounded above:

SD (B, H, H(A)),(P,Ur)) = Ep [SD ((H, H(A)) , (H,Up)] < V2=,
The extractor we use always héas. m’ — 2log (1), and so the statistical difference is at mast O

Remark 1. One can prove an analogous form of Lemma 3.2 using any strong extrdttibre extractor does
not have a convex tradeoff between the input entropy and the distesroeuhiform of the output, then one can
instead use a high-probability bound on the min-entropy of the input (théft M., (X) > m’ then the event
Ho(X) > m' —log (%) happens with probability — ¢). The resulting reduction leads to fuzzy extractors with

min-entropy loss log (1).

CONSTRUCTIONS FROMBIOMETRIC EMBEDDINGS. We now introduce a general technigue that allows one to
build good fuzzy extractors in some metric spaefs from good fuzzy extractors in some other metric spade.
Below, we letdis(-, ), denote the distance function itv;. The technique is tembedM; into M, so as to
“preserve” relevant parameters for fuzzy extraction.

Definition 4. A functionf : M; — My is called a(ty,t2, m1, ms)-biometric embedding if the following two
conditions hold:

e foranyw;,w| € My such thatdis(w;, w}), < t1, we havedis(f(w1), f(w])), < to.
e for anyW; on M; of min-entropy at leastr;, f(W;) has min-entropy at leasts.

The following lemma is immediate:

Lemma 3.3. If fis (¢1, t2, m1, m2)-biometric embedding of1; into M3 and (Gen;(-), Rep;(-,-)) is a(Ma, ma,
¢, t9, €)-fuzzy extractor, thefGen(f(-)), Rep; (f(+),-)) is a (M1, m, ¥, t1, €)-fuzzy extractor.

Notice that a similar result does not hold for fuzzy fingerprints, unfeissinjective (and efficiently invertible).

We will see the utility of this particular notion of embedding (as opposed to puskiaefined notions) in Sec-
tion 6.



4 Constructions for Hamming Distance

In this section we consider constructions for the sp&te= {0, 1}" under the Hamming distance metric.

THE CODE-OFFSETCONSTRUCTION Juels and Wattenberg [15] considered a notion of “fuzzy commitmént.”
Given a binaryn, k, 2t + 1] error-correcting cod€’ (not necessarily linear), they fuzzy-commitXoby publishing
W @ C(X). Their construction can be rephrased in our language to give a veryesgopstruction of fuzzy
fingerprints: for randonX « {0, 1}*, set

FF(W: X) =W @ C(X).

(Note that if W is uniform, this fuzzy fingerprint direcly yields a fuzzy extractor with= X).

When the cod€’ is linear, this is equivalent to revealing the syndrome of the impwEnd so we do not need the
randomness{. Namely, in this case we could have §&t(w) = syn-(w) (as mentioned in the introduction, this
construction also appears implicitly in the information reconciliation literature,[8,dt, 7]: when Alice and Bob
hold secret values which are very close in Hamming distance, one wayrerttre differences with few bits of
communication is for Alice to send to Bob tegndromeof her wordw with respect to a good linear code.)

Since the syndrome of/adimensional linear code is — k bits long, it is clear thakF(w) leaks onlyn — k bits
aboutw. In fact, we show the same is true even for nonlinear codes.

Lemma 4.1. For any[n, k, 2t + 1] codeC and anym, FF above is a M, m, m + k — n,t) fuzzy fingerprint. It is
efficient if the cod€"' allows decoding errors in polynomial time.

Proof. Let D be the decoding procedure of our cade SinceD can correct up to errors, ifv = w & C(z) and
dis(w,w’) < t, thenD(w' @ v) = z. Thus, we can sec(w’,v) = v & C(D(w' & v)).

Let A be the joint variablg X, W). Together, these have min-entropy + k£ whenH., (W) = m. Since
FF(W) € {0,1}", we haveH (W, X | FF(W)) > m 4 k — n. Now givenFF(W), W and X determine each
other uniquely, and sBl.,(W | FF(W)) > m + k — n as well. O

In Appendix A, we present some generic lower bounds on fuzzy fimges and extractors. Let(n, d) denote
the maximum number of codewords possible in a code of distdmeg0,1}". Then Lemma A.1 implies that the
entropy loss of a fuzzy fingerprint for the Hamming metric is at leastog A(n, 2t + 1), when the input is uniform
(that is, whenn = n). This means that the code-offset construction above is optimal for geeafainiform inputs.

Of course, we do not know the exact valueA(n, d), never mind of efficiently decodable codes which meet the
bound, for most settings of andd. Nonetheless, the code-offset scheme gets as close to optimality as ideivssib
coding.

GETTING Fuzzy EXTRACTORS. As a warm-up, consider the case wHé&his uniform ¢n = n) and look at the
code-offset fingerprint constructiol: = W & C(X). SettingR = X, P = V andRep(W', V) = D(Va& W'), we
clearly getan( M, n, k, t, 0) fuzzy extractor, sinc& is truly random whe is random, and therefore independent
of X. In fact, this is exactly the usage proposed by Juels-Wattenberg,teRegpiewed the above fuzzy extractor
as a way to usél’ to “fuzzy commit” to X, without revealing information about .

Unfortunately, the above construction settiRg= X only works for uniformi¥, since otherwis&” would leak
information aboutX . However, by using the construction in Lemma 3.1, we get

Lemma 4.2. Given any[n, k, 2t + 1] codeC' and anym, ¢, we can get aniM,m, ¢, t, ) fuzzy extractor, where
¢ =m+k—n—2log(1/¢). The recoverRep is efficient ifC' allows decoding errors in polynomial time.

“In their interpretation, one commits 6 by picking a randoni¥ and publishingF(W; X).
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5 Constructions for Set Difference

Consider the collection of all sets of a particular sidze a universé/ = [n] = {1, ..., n}. The distance between two
setsA, B is the number of points id that are not inB. SinceA and B have the same size, the distance is half of the
size of their symmetric differencedis(A4, B) = |AAB|. If A andB are viewed as-bit characteristic vectors over
[n], this metric is the same as the Hamming metric (scaled/y. Thus, the set difference metric can be viewed
as a restriction of the binary Hamming metric to all the strings with exactignzero components. However, one
typically assumes that is much larger tham, so that representing a set hybits is much less efficient than, say
writing down a list of elements, which requiréslog n) bits.

LARGE VERSUSSMALL UNIVERSES Most of this section studies situations where the universersizesuper-
polynomial in the set size. We call this the large universe setting. By contrast, the small univetsegseefers to
situations in whichn = poly(s). We want our various constructions to run in polynomial time and use polyhomia
storage space. Thus, the large universe setting is exactly the setting imtivic-bit string representation of a set
becomes too large to be usable. We consider the small-universe settingjriizstjt appears simpler (Section 5.1).
The remaining subsections consider large universes.

5.1 Small Universes

When the universe size is polynomialdnthere are a number of natural constructions. Perhaps the most disgct o
given previous work, is the construction of Juels and Sudan [16].oftnfately, that scheme achieves relatively
poor parameters (see Section 5.2).

We suggest two possible constructions: first, to represent setsasstrings and use the constructions of the
previous section (with the caveat that Hamming distance is off by a factorfroin® set difference). The second
construction, presented below, goes directly through codes for gmteti€e, also called “constant-weight” codes.

In order to be able to compare the constructions, and for consistency witlotting theory literature, we will in
fact work with the Hamming metric here. Thus, codes which correct amprs in set difference will have minimum
distance at leastt + 1.

FINGERPRINTS FORTRANSITIVE METRIC SPACES The code-offset construction suggests a general technique for
building fuzzy fingerprints in other metric spaces, using any code anidyar sets of permutations. A permutation
7T on a metric spaceV is anisometryif it preserves distances, i.edis(a,b) = dis(w(a),n(b)). A family of
permutationd] = {7;},.; actstransitivelyon M if for any two elements:, b € M, there existsr; € II such
thatm;(a) = b. Suppose we have a family of transitive isometries foM (we will call such.M transtive. For
example, in the Hamming space, the set of all shift&w) = w @ z is such a family. Then a natural fingerprinting
scheme, given a passwatide M, is to pick a random elementfrom the code, pick a random permutatiore TI
such thatr(a) = b, and outpufFF(A) = 7. Given a potential password and the fingerprintr, we can find the
closest codeword ta(a’) (call that element’), and outputr—1(#'). If the code has high minimum distance arid
is sufficiently close ta, thend’ will be exactlydb, and we will recover.

The entropy loss of this scheme will depend on several parameters, thetébde has many elements, and if
m can be described using few bits, then counting entropies can yield anstinigréound. (For the scheme to be
usable, we also need the operations on the code, as wekadr !, to be implementable reasonably efficiently.)

FINGERPRINTING FORSET DIFFERENCE We illustrate this general approach for set difference. The family of
permutations we use is simply the one induced by the set of all permutations onivkese[n|. LetC' C {0,1}"

be any[n, k, d] code (nonlinear) in which all words have weight exaatlynd view elements of the code as sets of
sizes. We obtain the following scheme, which produces a fingerprint of lenddl n:

Algorithm 1 (Permutation-based fingerprint). Input: a setd C U = [n] of sizes.
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1. ChooseB C [n| at random from the cod€.

2. Choose a random permutation [n] — [n] such thatr(A4) = B:
(That is, choose a random matching betweleand B and a random matching betwepn — A and[n] — B.)

3. OutputFF(A) = 7 (say, by listingr (1), ..., m(n)).
Lemma 5.1. Suppose that’ is a[n, k, d] constant-weight code (for Hamming distance), then:

1. Ifd > 4t+1, there is an algorithnRRec() such thaRec(A’, FF(A)) = A forany setsA, A’ suchthat [AAA'| <
t. The algorithm is efficient if’ has an efficient decoding algorithm.

2. The left-over entropy Bl (A | FF(A)) > Hoo(A) + k — log (7).

Proof. (1) Givenm andA’, we can computd’ = 7~ 1(A’). The intersection o and B’ is the same size a$N A’,
and so the Hamming distance between the characteristic vectd?sanid B’ is at most2¢. Since the code has
minimum distancel > 4t + 1, it can correc®t errors, and so the closest codewordsis= 7~1(A). All operations
aren log n-time except for (possibly) the random choicef®in the algorithm and the decoding.

(2) Let X be the randomness used by the fingerprinting algorithm. There! gressibilities for the matching
from A to B and(n — s)! possibilities for the matching frorim] — A to [n] — B. Hence, the min-entropy of the pair
(A, X)isHx (A) +log(s!(n — s)!). There aren! possibilities for the fingerprint, and so the average min-entropy
of (4, X) givenFF(A) is at leastt . (A4) + log(s!(n — s)!) — log(n!) = Hoo(A4) — log (7). GivenA andFF(A)
we can recoveX exactly, and s, (A | FF(A)) is the same aBl ., (A, X | FF(A)). O

COMPARING THE HAMMING SCHEME WITH THE PERMUTATION SCHEME. In order to get a feeling for how the
random permutation technique compares to simply using Hamming-based sclierotg we recall some notation
from the coding theory literature. Let(n, d, s) denote the maximum size of a binary code for which all codewords
have weight exactly. Heren is the length of the code andlis the minimum distance. Lel(n,d) denote the
maximum size of an (unrestricted) binary code of lengind minimum distanceé. In all cases, we're interested in
codes with minimum distancé> 4t + 1, since we want to correc¢terrors in the set difference metric.

The code-offset construction was shown to have entropynosslog A(n, d) if an optimal code is used; the
random permutation scheme can have entropy]hngé’;) — log A(n,d, s) for an optimal code. The Bassalygo-
Elias inequality (see [18]) shows that the bound on the random permutatieme is always at least as good as
the bound on the code offset schem#(n,d) - 27" < A(n,d, s) - (Z)*l. This implies thatr — log A(n,d) >
log (Z) —log A(n, d, s). Moreover, standard packing arguments give better constructiormefant-weight codes
than they do of ordinary codes. In fact, the random permutations scheme is optimal for this metric, just as the
code-offset scheme is optimal for the Hamming metric.: Lemma A.1 shows that thentiopy loss of a fuzzy
fingerprint must be at leasbg (Z) — log A(n,d, s), in the case of a uniform secret sét Thus in principle, it is
better to use the random permutation scheme. Nonetheless, there ats.chirsg we do not know oéxplicitly
constructed constant-weight codes that beat the Elias-Bassalygalityegnd would thus lead to better entropy loss
for the random permutation scheme than for the Hamming scheme (see [6] ferom@onstrucionts of constant-
weight codes and [1] for upper bounds). Second, much more is kabaut efficient implementation of decoding
for ordinary codes than for constant-weight codes; for examplecandénd off-the-shelf hardware and software for
decoding many binary codes. In practice, the Hamming-based scheme iddikelymore useful.

5This comes from the fact that the intersection of a ball of radiusth the set of all words of weight is much smaller than the ball of
radiusd itself.
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5.2 Modifying the Construction of Juels and Sudan

We now turn to the large universe setting, whers super-polynomial is. Juels and Sudan [16] proposed a fuzzy
fingerprinting protocol for the set difference metric (called a “fuzzyl¥an that paper). They assume for simplicity
thatn = |U{| is a prime power and work over the fiefd= GF'(n). On input set4, the fingerprint they produce is a
set ofr pairs of pointgx;, y;) in F, with s < r < n.

Algorithm 2 (Juels-Sudan Fuzzy Fingerprint). Input: a setA C U.

1. Choose() at random from the set of polynomials of degree at nkosts — 2t — 1 overF.
Write A = {x1, ..., x5}, and lety; = p(z;) fori =1, ..., s.

2. Choose" — s distinct pointsrg4.1, ..., x, at random fromF — A.
3. Fori = s+1,...,r, choosey; € F at random such that, # p(z;).
4. OutputFF(A) = {(z1,v1), ..., (zr, yr) } (in lexicographic order of;).

The parameter dictates the amount of storage necessary, one on hand, and alsoutity eé¢he scheme (that
is, forr = s the scheme leaks all information and for larger and larggere is less information aboui). Juels and
Sudan actually propose two analyses for the scheme. First, they anadyeasi where the secrétis distributed
uniformly over all subsets of size Second, they provide an analysis of a nonuniform password distnityuiid
only for the caser = n (that is, their analysis only applies in the small universe setting, whiérg storage is
acceptable). Here we give a simpler analysis which handles nonuniforntitgrayr < n. We get the same results
for a broader set of parameters.

Lemma 5.2. The entropy loss of the Juels-Sudan sche&ff@ above is at mos2t logn + log (') — log (7~%).

Proof. As for the code-offset, we can simply count entropies. Xedenote the random bits used by the algorithm
to generatéF(A). Choosing the polynomial requiress — 2¢ random choices fronf. The choice of the remaining
x;'s requiredog (’7}:5) bits, and choosing thg s requires-— s random choices front (we will ignore the difference
betweenF andF — {x;} here since it doesn't affect the result significantly). The min-entrdghepair A, X is
thusHoo (A, X) = Hoo(A) + (r — 2t) log(n) + log ("~%). The output can be describedlisg ((")n") bits, and

hence we get thdl (4, X | FF(A)) = Hoo(A) — 2tlogn + log ("~%) — log (*). Finally, note thatX is entirely

n
r—Ss

determined byd andFF(A), so the entropy ofi, X givenFF(A) is the same as the entropy 4dfgivenFF(A4). O

In the large universe setting, we will hawve< n (since we wish to have storage polynomiak)n In that setting,
the bound on the entropy loss of the Juels-Sudan scheme is in fact vgey \e can rewrite the entropy loss as
2tlogn —log (1) +log (7), using the identity") (7) = () (*~2). Now the entropy ofd is at most("!), and so our
lower bound on the remaining entropy(isg (73") — 2tlogn). To make this quantity large requires makingery
large.

MoDIFIED JS ANGERPRINTS We suggest a modification of the Juels-Sudan scheme with entropy losstat mo
2t log n and storage log n. Our scheme has the advantage of being even simpler to analyze. As,lveécsissume

n is a prime power and work ovef = GF'(n). An intuition for the scheme is that the numbets 1, ..., y, from

the JS scheme need not be chosen at random. One can instead evainasuthe p’(z;) for some polynomiap’.

One can then represent the entire list of pé&irsy;) using only the coefficients of .

Algorithm 3 (Modified JS Fuzzy Fingerprint). Input: a setd C U.

1. Choose() at random from the set of polynomials of degree at ntosts — 2t — 1 overF.

2. Letp/() be the unique monic polynomial of degree exastbuch thap’(z) = p(x) forall z € A.
(Write p/(x) = 2® + Zf;é a;x'. Solve foray, ..., as_1 using thes linear constraintg’(z) = p(z), z € A.)
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3. Output the list of coefficients ¢f (), that isFF(A) = (ao, ..., as—1).

First, observe that solving fgr () in Step 2 is always possible, since theonstraintszf;g a;xt = p(z) — 2

are in fact linearly independent (this is just polynomial interpolation).

Second, this fingerprint scheme can toleraget difference errors. Suppose we are given aBs&t U/ which
agrees withA in at leasts — ¢ positions. Giverp’ = FF(A), one can evaluatg on all the points in the sg8. The
resulting vector agrees withon at least — ¢ positions, and using the decoding algorithm for Reed-Solomon codes,
one can thus reconstrueexactly (sincek = s — 2t — 1). Finally, the setd can be recovered by finding the roots of
the polynomialpy’ — p : sincep’ — p is not identically zero and has degree exastlit can have at most roots and
sop’ — pis zero only onA.

We now turn to the entropy loss of the scheme. The fingerprinting schenststwe 2t) log n bits of randomness
to choose the polynomial. The number of possible outputsis n°. If X is the invested randomness, then the
(average) min-entropyA, X ) givenFF(A) is at leastH, (A4) — 2t log n. The randomnesX can be recovered from
A andFF(A), and so we havél (A | FF(A)) > H(A) — 2tlog n. We have proved:

Lemma 5.3 (Analysis of Modified JS).The entropy loss of the modified JS scheme is at 2adsg n. The scheme
has storagé s+ 1) log n for sets of size in [n], and both the fingerprint generatidit () and the recovery procedure
Rec() run in polynomial time.

The short length of the fingerprint makes this scheme feasible for edbeatip ratio of set size to universe size
(we only needogn to be polynomial ins). Moreover, for large universes the entropy |@s$og n is essentially
optimal for the uniform case: = log (Z) Lemma A.1 shows that for a uniformly distributed input, the best possible
entropy loss isn — m’ > log () — log A(n, 5,4t + 1), whereA(n, s, d) is the maximum size of a code of constant
weights and minimum Hamming distaneg Using a bound of Agrelét al([1], Theorem 12), the entropy loss is at
least:

— 2t
s ny > ny n S _ n—s+
m—m' > log <5> log A(n, s, 4t + 1) > log (s) log ((s Y / Y log o

Whenn > s, this last quantity is roughlgt log n, as desired.

5.3 Set Difference via the Hamming Metric: Sublinear-Time Deoding

In this section, we show that code-offset construction can in fact bptad for small sets in large universe, using
specific properties of algebraic codes. We will show that BCH codeghwdontain Hamming and Reed-Solomon
codes as special cases, have these properties.

SYNDROMES OFLINEAR CODES For ajn, k, d] linear code” with parity check matrix¥{, recall that the syndrome
of awordw € {0,1}" issyn(w) = Hw. The syndrome has length— k, and the code is exactly the set of words
c such thasyn(c) = 0"~*. The syndrome captures all the information necessary for decodirag.i§;suppose a
codeworde is sent through a channel and the ward= ¢ @ e is received. First, the syndrome ofis the syndrome
of e: syn(w) = syn(c) @ syn(e) = 0 @ syn(e) = syn(e). Moreover, for any value, there is at most one workdof
weight less thar /2 such thatyn(e) = u (the existence of a pair of distinct words, es would mean that; + e

is a codeword of weight less thaf). Thus, knowing syndromsyn(w) is enough to determine the error patterif
not too many errors occurred.

As mentioned before, we can reformulate the code-offset constructi@nnis of syndromeFF(w) = syn(w).
The two schemes are equivalent: giwgn(w) one can sample frome & C(X) by choosing a random stringwith
syn(v) = syn(w); converselysyn(w & C(X)) = syn(w). This reformulation gives us no special advantage when
the universe is small: storing+ C(X) is not a problem. However, it's a substantial improvement when n — k.
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SYNDROME MANIPULATION FOR SMALL -WEIGHT WORDS Suppose now that we have a small deC [n] of
sizes, wheren > s. Letxzy € {0,1}" denote the characteristic vector 4f If we want to useyn(z4) as the
fingerprint of A, then we must choose a code with- & < log (Z) ~ slogn, since the fingerprint has entropy loss
(n — k) and the maximum entropy of is log (Z)
Binary BCH codes are a family df, k, d] linear codes withl = 4¢ + 1 andk = n — 2tlogn (assuming: + 1
is a power of 2) (see, e.g. [18]). These codes are optimal tar n by the Hamming bound, which implies that
k<n-—log (2"t) [18]. Using the code-offset fingerprint with a BCH co@ewe get entropy loss — k& = 2tlogn,
just as we did for the modified Juels-Sudan scheme (recalthatt + 1 allows us to correct set difference errors).
The only problem is that the scheme appears to require computatiofdfimesince we must computgn(x4) =
Hzx 4 and, later, run a decoding algorithm to recoxgr For BCH codes (including Hamming codes), this difficulty
can be overcome. A word of small weightan be described by listing the positions on which it is nonzero. We call
this description thsupportof = and writesupp(z) (that issupp(z.4) = A)).

Lemma 5.4. For a [n, k, d] binary BCH code”' one can compute:
1. syn(z), givensupp(z), and
2. supp(z), givensyn(z) (whenz has weight at mogid — 1) /2),

in time polynomial insupp(z)| = weight(z) - log(n) and|syn(z)| = n — k.

The proof of Lemma 5.4 mainly requires a careful reworking of the stahB&H decoding algorithm. The
details of BCH codes and Lemma 5.4 are presented in Appendix B. For represent the resulting fingerprinting
scheme for set difference. The algorithm works in the f@&l(2™) = GF'(n + 1), and assumes a generatofor
GF(2™) has been chosen ahead of time.

Algorithm 4 (BCH-based Fuzzy Fingerprint). Input: a setd € [n] of sizes, wheren = 2™ — 1.
(Herea is a generator for the fiel@ F'(2™) which is fixed ahead of time.)

1. Letp(z) = 3,04 2"
2. OutputFF(A) = (p(a),p(a?), p(a®), ..., p(a**1)) (computations done iV F'(2™)).

The algorithmRec() which recovers4d from FF(A) and any set which intersectt in at leasts — ¢ points is
explained in Appendix B. However, the bound on entropy loss is easyetotise output it logn bits long, and
hence the entropy loss is at m@sfiog n. We obtain:

Theorem 5.5. The BCH scheme above is[@, m — 2tlogn,t] fuzzy fingerprint scheme for set difference with
storage2t log n. The algorithmd-F and Rec both run in polynomial time.

6 Constructions for Edit Distance

First we note that simply applying the same approach as we took for the tvamséiric spaces before (the Hamming
space and the set difference space for small universe sizes)atoesrk here, because the edit metric does not seem
to be transitive. Indeed, it is unclear how to build a permutaticgsuch that for anyv’ close tow, we also have
m(w') close tox = w(w). For example, setting(y) = y ¢ (z & w) is easily seen not to work with insertions
and deletions. Similarly, iff is some sequence of insertions and deletions mappinig z, it is not true that
applying! to w’ (which is close tav) will necessarily result in some’ close toz. In fact, then we could even get
dis(w’, ") = 2dis(w, z) + dis(w, w').

Perhaps one could try to simply embed the edit metric into the Hamming metric usingn lemoleddings, such
as conventionally used low-distorion embdeddings, which provide thatstdirtes are preserved up to some small
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“distortion” factor. However, there are no known nontrivial low-distmm embeddings from the edit metric to the
Hamming metric. Moreover, it was recently proved by Andoni et al [2] titasuch embedding can have distortion
less thar8/2, and it was conjectured that a much stronger lower bound should hold.

Thus, as the previous approaches don’t work, we turn to the embdgddia defined specifically for fuzzy
extractors: biometric embeddings. Unlike low-distortion embeddings, biometrieddings do not care about
relative distances, as long as points that were “close” (closertihawo not become “distant” (farther apart thian.
The only additional requirement of biometric embeddings is that they peeseme min-entropy: we do not want
too many points to collide together, although collisions are allowed, even coflisifodistant points. We will build
a biometric embedding from the edit distance to the set difference.

A c-shingle[5], which is a lengthe consecutive substring of a given string A c-shingling[5] of a stringw
of lengthn is the set (ignoring order or repetition) of &k — ¢ + 1) c-shingles ofw. Thus, the range of the-
shingling operation consists of all nonempty subsets of size at mest + 1 of {0, 1}¢. To simplify our future
computations, we will always arbitrarily pad theshingling of any stringv to contain precisely. distinct shingles
(say, by adding the first — |c-shingling elements of 0, 1}¢ not present in the givea-shingling). Thus, we can
define a deterministic mapH.(w) which mapsw into n substrings of 0, 1}¢, where we assume that> log, n.
Let Edit(n) stand for the edit metric ovel, 1}", andSDif (NN, s) stand for the set difference metric ové¥] where
the set sizes are We now show that-shingling yields pretty good biometric embeddings for our purposes.

Lemma 6.1. For anyc > log, n, SH. is a (t1,ty = cty, m1, mg = mq — "lo%)-biometric embedding didit(n)
into SDif(2¢, n).

Proof. Assumedis(w:, w}),, < t1 and that/ is the smallest set oft; insertions and deletions which transforms
into w’. It is easy to see that each character deletion or insertion affects atstuisigles, and thus the symmetric
difference betweeBH,(w;) andSH.(w}) < 2ct;, which implies thatlis(SH.(w1 ), SH.(w)),,; < ct1, as needed.
Now, assumev; is any string. Defing.(w; ) as follows. One computé&sH.(w, ), and stores resulting shingles
in lexicographic ordeh; ... h,. Next, one naturally partitiong, into n/c disjoint shingles of lengtla, call them
k... kpse. Next, forl <j <n/c, one setp.(j) tobe theindex € {1...n} suchthak; = h;. Namely, it tells the
index of thej-th disjoint shingle ofv; in the orderech-setSH.(w ). Finally, one setg.(wi) = (pe(1) ... pe(n/c)).
Notice, the length of.(w) is 2 - log, n, and also thatv; can be completely recovered frdshl. (w1 ) andg.(w:).
Now, assuméV is any distribution of min-entropy at least; onEdit(n). Sinceg.(W') has length{n log, n/c),
its min-entropy is at most this much as well. But since min-entropj#efdrops to0 when givenSH.(W;) and
g.(W1), it means that the min-entropy 8H.(W;) must be at leastiy > m; — (nlog, n)/c, as claimed. O

We can now optimize the value By either Lemma 5.3 or Theorem 5.5, for arbitrary universe size (in asgXt)
and distance threshotd = ct;, we can construct a fuzzy fingerprint for the set difference metric mitirentropy
loss2t; log, (2€) = 2t1¢2, which leaves us total min-entropy), = mg — 2t1¢% > my ”1"% — 2t1¢%. Applying
further Lemma 3.1, we can convert it into a fuzzy extractor G\Ehnf( , n) for the min-entropy level, with errore,
which can extract at leaét= mj —2log (1) > m; — “1%8% 2, 2 210g (1) bits, while still correctlng2 = ct; of
errors inSDif (2¢, n). We can now apply Lemma 3.3 to get @mdit(n), m1, mi — 8% —2t1¢% — 2log (1), t1, €)-
fuzzy extractor. Let us now optimize for the value ©of> log, n. We can sel’% = 2t,¢%, which givesc =

(ngﬁn)lﬁ We getl = my — (2t;n? log? n)1/3 — 2log (%) and therefore

Theorem 6.2. There exists an efficiefEdit(n), my,m; — (27§1n2 log?n)Y/3 — 2log (1) ,t1,¢€) fuzzy extractor.
m}

Settingt; = m$/(16n*log”n), we get an efficientEdit(n), mi, 2L — 2log (1), T e
particular, if m; = Q(n), one can extracf2(n) bits while toleratlngﬁ(n/ log? n) insertions and deletions.

,€) fuzzy extractor. In
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A Lower Bounds from Coding

Recall that ari M, K, t) code is a subset of the metric spaeewhich cancorrectt errors (this is slightly different
from the usual notation of the coding theory literature.

Let K (M,t) be the largest< for which there exists an@M, K, t)-code. Given any sef of 2™ points in
M, we let K(M,t,S) be the largesfS such that there exists go\V, K, t)-code all of whosel points belong
to S. Finally, we letL(M,t,m) = log(min|g—om K(n,t,S5)). Of course, whenn = log| M| = log N, we
get L(M,t,n) = log K(M,t). The exact determination of quantitiés(M, t) and K (M, t,.S) form the main
problem of coding theory, and is typically very hard. To the best of oonkedge, the quantity.(M, ¢, m) was not
explicitly studied in any of three metrics that we study, and its exact determirsgams very hard as well.
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We give two simple lower bounds (one for fuzzy fingerprints, the othefupzy extractors) which, somewhat
surprisingly, show that our constructions for the Hamming and Set Difterenetrics are essentially optimal, at
least when the original input distribution is uniform.

Lemma A.1. The existence dfM, m,m’,t) fuzzy fingerprint implies that'’ < L(M,t, m). In particular, when
m = log N (i.e., when the password is truly uniformy), < log K (M, ).

Proof. AssumeFF is such fuzzy fingerprint. Lef be any set of siz€™ in M, and letW be uniform oversS.
Then we must hav#l,.(W | FF(W)) > m/. In particular, there must be some particular valusuch that
H. (W | FF(W) = v) > m'. But this means that conditioned & (17) = v, there are at least™ points
w in S (call this setT’) which could producéF(W) = v. We claim that these™ values ofw form a code
of error-correcting distance Indeed, otherwise there would be a pairit € M such thatdis(wp, w’) < ¢ and
dis(wy,w’) < t for somewy, w1 € T. But then we must have th&ec(w’, v) is equal to bothuy andwy, which is
impossible. Thus, the sétabove must form aoM, 2", t)-code insideS, which means thai’ < log K (M, t, S).
SinceS was arbitrary, the bound follows. O

Lemma A.2. The existence dfM, m, ¢, t, e)-fuzzy extractors implies thét< L(M,t,m) —log(1 — ¢€). In partic-
ular, whenm = log N (i.e., when the password is truly unifornd)< log K (M, t) — log(1 — ¢€).

Proof. Assume(Gen, Rep) is such a fuzzy extractor. L&t be any set of size™ in M, and letiWW be uniform over
S. Then we must havBD ((R, P), (U, P)) < e. In particular, there must be some particular vaghusf P such
that R is e-close tolU, conditioned onP = p. In particular, this means that conditioned Bn= p, there are at least
(1 — €)2¢ pointsr € {0, 1}* (call this setT") which could be extracted witP = p. Now, map every- € T to some
arbitraryw € S which could have producedwith nonzero probability give® = p, and call this mag’. We claim
thatC' must define a code with error-correcting distancindeed, otherwise there would be a pairite M such
thatdis(C(r1),w") < t anddis(C(r2),w’) < t for somer; # ro. But then we must have thRep(w’, p) is equal to
bothr; andry, which is impossible. Thus, the mapabove must form a), 2¢+1°8(1-¢) ¢)-code insideS, which
means that < log K (M,t,S) — log(1 — €). SinceS was arbitrary, the bound follows. O

Observe that, as long as< 1/2, we haved < —log(1 — ¢) < 1, so the lowerbounds on fuzzy fingerprints and
fuzzy extractors differ by less than a bit.

B Syndrome Decoding in Sublinear Time

We show that the standard decoding algorithm for BCH codes can be naddifien in time polynomial in the length
syndrome. This works for BCH codes over any fi€ld'(¢), which include Hamming codes in the binary case and
Reed-Solomon for the cage> n. BCH codes are handled in detail in many textbooks (e.g., [18]); oueptason
here is quite terse. For simplicity, we only discuss primitive, narrow-se@3¢ &des here; the discussion extends
easily to the general case.

Definition 5. Letn = ¢™ — 1. The narrow-sense, primitive BCH code of designed distaraed lengthn over
GF(q) is given by the set of vectofsy, ..., ¢, 1) € GF(q)" such thal = c(a!) = c(a?) = --- = ¢(a®~1), where
c(x) = Zf;ol c;z' is a polynomial oveti F(¢™) and« is a fixed generator fo& F'(¢™).

Readers may be used to seeing a different definition of these codesamatso take the set of vectdiga), . . .,
p(a™~1)) given by polynomials with coefficients i&'F(¢™) all of whose values lie it F(q) € GF(¢™). The
equivalence of the various definitions is standard.

Returning to Definition 5, we can see that some coniditions are redundaetifigplly, because; € GF(q),
we havec(z?) = (¢(x))?. Thus, we discard &/q fraction of the conditions on without changing the code. The

17



syndrome of a wordv can thus be computed as the vector of valuésa®), wherel < i < § andq / i and the
n—1

polynomialw() is given byw(z) = Y.""; w;z’. Each constraint(a’) = 0 on codewords results in at most
constraints (in the fieldF'(¢)) over the vector.

Fact B.1. Theg-ary BCH code of length and designed distaneéhas dimensiot > n—m(5—1)+(1/q)m [§/¢]
and minimum distancé > 9.

The parity check matrix for a BCH code is given by:

a a2 L. anfl
o2 ot L. a2(n—1)
H =
aé—l a2(6—1) L a(n—l)(é—l)

As mentioned above, all rows feor’ with q|i are redundant. Nevertheless, the first part of Lemma 5.4 is clear:
to compute the syndrome of a low-weight word, one need only be able to commputgven column of the parity
check matrix in time polynomial in the length of the column. In fact, the computation time issalimear, since
one only needs to do one exponentiation amdultiplications to compute any particular row.

A low-weight wordp € GF(q)" can be represented either as a long string or, more compactly, as a list of
positions where it is nonzero and its values at those points. We call thissesgation the support list of and
denote itsupp(p) = {(4, 1)}, 20-

Lemma B.2. For a ¢g-ary BCH codeC of designed distancg one can compute:

1. syn(p), givensupp(p), and
2. supp(p), givensyn(p) (whenp has weight at mosi — 1)/2),

in time polynomial insupp(p)| = weight(p) - log(n) - log(q) and|syn(p)| = (n — k) log q.

Proof. Recall thatsyn(p) = (p(a), ..., p(a®~1)) wherep(z) = Z?:’Ol p;. Part (1) is easy, since any column of the
parity check matrixt/ can be computed with one exponentiation and 1 multiplications inGF'(¢™). For (2), we
carefully analyze the various steps of the standard BCH decoding algotitised on its presentation in [18]. Let
M = {i|p; # 0}, and define

o(z) = H (1—a'z) and w(z)=o0(z) Z Py

: £~ (1—adz)
ieM jEM

Since (1 — o’z) divideso(z) for j € M, we see thatv(z) is in fact a polynomial of degree at most/| =
weight(p) < (6 — 1)/2. The polynomialsr(z) andw(z) are known as the error locator polynomial and evaluator
polynomial, respectively. If we now consider formal power series 6€(¢"™), we get:

jgz; - Z (1piao;z) - Z #'p(af)

jeB (=1

We are givenSy = p(ay) for £ =1,...,9. Let S(z) = zg;i Spz*. The equation above implies théitz)o(z) =
w(z) mod 2°. The solutionw(), o() is “unique” in the following sense: any other solutief(z), o’(z) satisfies
w'(2)/0'(z) = w(z)/o(z). Multiplying the initial congruence by’() yields w(z)o’(z) = o(z)w’(z) mod 2°.
Since the both sides of the congruence have degree atmosf they are in fact equal as polynomials.
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Thus it is sufficient to find any solutios (), w’() to the congruencé(z)o’(z) = w'(z) mod 2° and reduce the
resulting fraction.’(z) /o’ (z) to botain a solution(), o () of minimal degree. Finally, the roots ef ») are the points
a~"fori € M, and the exact value gf; can be recovered using the equatiof ) = p; [T;cps ji(1 — o/ 7).

Solving the congruence only requires solving a system-ofl linear equations, which is certainly polynomial in
d log q. The reduction of the fraction’(z)/o’(z) requires only running Euclid’s algorithm for finding the g.c.d. of
two polynomials. Finally, finding the roots of() can be done in time polynomial in the degrees¢f, which is at
mostd /2. O
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