
Fuzzy Extractors and Cryptography, or
How to Use Your Fingerprints

Yevgeniy Dodis∗. Leonid Reyzin† Adam Smith‡

November 11, 2003

Abstract

We provide formal definitions and efficient secure techniques for

• turning biometric information into keys usable foranycryptographic application, and

• reliably and securely authenticating biometric data.

Our techniques apply not just to biometric information, butto any keying material that, unlike traditional cryp-
tographic keys, is (1) not reproducible precisely and (2) not distributed uniformly. We propose two primitives: a
fuzzy extractorextracts nearly uniform randomnessR from its biometric input; the extraction is error-tolerantin
the sense thatR will be the same even if the input changes, as long as it remains reasonably close to the original.
Thus,R can be used as a key in any cryptographic application. Afuzzy fingerprintproduces public information
about its biometric inputw that does not revealw, and yet allows exact recovery ofw given another value that is
close tow. Thus, it can be used to reliably reproduce error-prone biometric inputs without incurring the security
risk inherent in storing them.

In addition to formally introducing our new primitives, we provide nearly optimal constructions of both prim-
itives for various measures of “closeness” of input data, such as Hamming distance, edit distance, and set differ-
ence.

1 Introduction

Cryptography traditionally relies on uniformly distributed random strings forits secrets. Reality, however, makes
it difficult to create, store, and reliably retrieve such strings. Strings thatare neither uniformly random nor reliably
reproducible seem to be more plentiful. For example, a random person’s fingerprint or iris scan is clearly not a
uniform random string, nor does it get reproduced precisely each time itis measured. Similarly, a long pass-phrase
(or answers to 15 questions [11] or a list of favorite movies [16]) is not uniformly random and is difficult to remember
for a human user. This work is about using such nonuniform and unreliable secrets in cryptographic applications.
Our approach is rigorous and general, and our results have both theoretical and practical value.

To illustrate the use of random strings on a simple example, let us consider the task of password authentication.
A user Alice has a passwordw and wants to gain access to her account. A trusted server stores some information
y = f(w) about the password. When Alice entersw, the server lets Alice in only iff(w) = y. In this simple
application, we assume that it is safe for Alice to enter the password for the verification. However, the server’s long-
term storage is not assumed to be secure (e.g.,y is stored in a publicly readable/etc/passwd file in UNIX [22]).

∗dodis@cs.nyu.edu. New York University, Department of Computer Science, 251 Mercer St., New York, NY 10012 USA.
†reyzin@cs.bu.edu. Boston University, Department of Computer Science, 111 Cummington St., Boston MA 02215 USA.
‡asmith@theory.lcs.mit.edu. MIT, Laboratory for Computer Science, 200 Technology Sq., Cambridge, MA 02139 USA.

1

The goal, then, is to design an efficientf that is hard to invert (i.e., giveny it is hard to findw′ s.t. f(w′) = y), so
that no one can figure out Alice’s password fromy. Recall that such functionsf are calledone-way functions.

Unfortunately, the solution above has several problems when used with passwordsw available in real life. First,
the definition of a one-way function assumes thatw is truly uniform, and guarantees nothing if this is not the
case. However, human-generated and biometric passwords are far from uniform, although they do have some un-
predictability in them. Second, Alice has to reproduce her passwordexactlyeach time she authenticates herself.
This restriction severely limits the kinds of passwords that can be used. Indeed, a human can precisely memorize
and reliably type in only relatively short passwords, which do not provide an adequate level of security. Greater
levels of security are achieved by longer human-generated and biometric passwords, such as pass-phrases, answers
to questionnaires, handwritten signatures, fingerprints, retina scans, voice commands, and other values selected by
humans or provided by nature, possibly in combination (see [14, 10] for surveys). However, two biometric readings
are rarely identical, even though they are likely to be close; similarly, humans are unlikely to precisely remember
their answers to multiple question from time to time, though such answers will likely besimilar. In other words, the
ability to tolerate a (limited) number of errors in the password while retaining security is crucial if we are to obtain
greater security than provided by typical user-chosen short passwords.

The password authentication described above is just one example of a cryptographic application where the issues
of nonuniformity and error tolerance naturally come up. Other examples include any cryptographic application, such
as encryption, signatures, or identification, where the secret key comesin the form of “biometric” data.

OUR DEFINITIONS. We propose two primitives, termedfuzzy fingerprintandfuzzy extractor.

A fuzzy fingerprint addresses the problem of error tolerance. It is a(probabilistic) function outputting a public
valuev about its biometric inputw, that, while revealing little aboutw, allows its exact reconstruction from any
other inputw′ that is sufficiently close. The price for this error tolerance is that the application will have to work
with a lower level of entropy of the input, since publishingv effectively reduces the entropy ofw. However, in a
good fuzzy fingerpint, this reduction will be small, andw will still have enough entropy to be useful, even if the
adversary knowsv. A fuzzy fingerprint, however, does not address nonuniformity of inputs.

A fuzzy extractor addresses both error tolerance and nonuniformity. It reliably extracts a uniformly random string
R from its biometric inputw in an error-tolerant way. If the input changes but remains close, the extractedR remains
the same. To assist in recoveringR fromw′, a fuzzy extractor outputs a public stringP (much like a fuzzy fingerprint
outputsv to assist in recoveringw). However,R remains uniformly random even givenP .

Our approach is general: our primitives can be naturally combined withany cryptographic system. Indeed,R
extracted fromw by a fuzzy extractor can be used as a key in any cryptographic application, but, unlike traditional
keys, need not be stored (because it can be recovered from anyw′ that is close tow). We define our primitives to
be information-theoreticallysecure, thus allowing them to be used in combination with any cryptographic system
without additional assumptions (however, the cryptographic application itself will typically have computational,
rather than information-theoretic, security).

For a concrete example of how to use fuzzy extractors, in the password authentication case, the server can store
〈P, f(R)〉. When the user inputsw′ close tow, the server recovers the actualR and checks iff(R) matches what
it stores. Similarly,R can be used for symmetric encryption, for generating a public-secret key pair, or any other
application. Fuzzy fingerprints and extractors can thus be viewed as providing fuzzy key storage: they allow to
recover the secret key (w or R) from a faulty readingw′ of the passwordw, by using some public information (v
or P). In particular, fuzzy extractors can viewed as error- and nonuniformity-tolerant secret keykey-encapsulation
mechanisms[28].

Because different biometric information has different error patterns, we do not assume any particular notion of
closeness betweenw′ andw. Rather, in defining our primitives, we simply assume thatw comes from some metric
space, and thatw′ is no more that a certain distance fromw in that space. We only consider particular metrics when
building concrete constructions, which are described below.

2

GENERAL RESULTS. Before proceeding to construct our primitives for concrete metrics, wemake some observa-
tions about our definitions. We demonstrate that fuzzy extractors can be built out of fuzzy fingerprints by utilizing
(the usual) strong randomness extractors [24], such as, for example,pairwise-independent hash functions. We also
demonstrate that the existence of fuzzy fingerprints and fuzzy extractors over a particular metric space implies the
existence of certain error-correcting codes in that space, thus producing lower bounds on the best parameters a fuzzy
fingerprint and extractor can achieve. Finally, we define a notion of abiometric embeddingof one metric space
into another, and show that the existence of a fuzzy extractor in the targetspace implies, combined with a biometric
embedding of the source into the target, the existence of a fuzzy extractor inthe source space.

These general results help us in building and analyzing our constructions.

OUR CONSTRUCTIONS. We provide constructions of fuzzy fingerprints and extractors in threemetrics: Hamming
distance, set difference, and edit distance.

Hamming distance (i.e., the number of bit positions that differ betweenw andw′) is perhaps the most natural
metric to consider. We observe that the “fuzzy-commitment” construction of Juels and Wattenberg [15] based on
error-correcting codes can be viewed as a (nearly optimal) fuzzy fingerprint. We then apply our general result to
convert it into a nearly optimal fuzzy extractor. While our results on the Hamming distance essentially use previously
known constructions, they serve as an important stepping stone for the rest of the work.

The set difference metric (i.e., size of the symmetric difference of two input setsw andw′) comes up naturally
whenever the biometric input is represented as a subset of features from a universe of possible features.1 We demon-
strate the existence of optimal (with respect to entropy loss) fuzzy fingerprints (and therefore also fuzzy extractors)
for this metric. However, this result is mainly of theoretical interest, because(1) it relies on optimal constant-weight
codes, which we do not know how construct and (2) it produces fingerprints of length proportional to the universe
size. We then turn our attention to more efficient constructions for this metric, and provide two of them.

First, we observe that the “fuzzy vault” construction of Juels and Sudan[16] can viewed as a fuzzy fingerprint in
this metric (and then converted to a fuzzy extractor using our general result). We provide a new, simpler analysis
for this construction, which bounds the entropy lost fromw givenv. Our bound on the loss is quite high unless one
makes the size of the outputv very large. We then provide an improvement to the Juels-Sudan construction to reduce
the entropy loss to near optimal, while keepingv short (essentially as long asw).

Second, we note that in the case of a small universe, a set can be simply encoded as its characteristic vector (1 if
an element is in the set, 0 if it is not), and set difference becomes Hamming distance. However, the length of such
a vector becomes unmanageable as the universe size grows. Nonetheless, we demonstrate that this approach can be
made to work efficiently even for exponentially large universes. This involves a result that may be of independent
interest: we show that BCH codes can be decoded in time polynomial in theweightof the received corrupted word
(i.e., in sublineartime if the weight is small). The resulting fuzzy fingerprint scheme compares favorably to the
modified Juels-Sudan construction: it has the same near-optimal entropy loss, while the public outputv is even
shorter (proportional to the number of errors tolerated, rather than the input length).

Finally, edit distance (i.e., the number of insertions and deletions needed to convert one string into the other)
naturally comes up, for example, when the password is entered as a string,due to typing errors or mistakes made
in handwriting recognition. We construct a biometric embedding from the edit metric into the set difference metric,
and then apply our general result to show such an embedding yields a fuzzy extractor for edit distance, because we
already have fuzzy extractors for set difference. We note that the edit metric is quite difficult to work with, and the
existence of such an embedding is not a priori obvious: for example, low-distortion embeddings of the edit distance
into the Hamming distance are unknown and seem hard [2]. It is the particularproperties of biometric embeddings,

1A perhaps unexpected application of the set difference metric was explored in [16]: a user would like to encrypt a file (e.g., her phone
number) using a small subset of values from a large universe (e.g., her favorite movies) in such a way that those and only those with a similar
subset (e.g., similar taste in movies) can decrypt it.

3

as we define them, that help us construct this embedding.

RELATION TO PREVIOUS WORK. Since our work combines elements of error correction, randomness extraction
and password authentication, there has been a lot of related work. Belowwe provide a few examples that we consider
most relevant.

The need to deal with nonuniform and low-entropy passwords has long been realized in the security community,
and many approaches have been proposed. For example, Kelsey et al[17] suggest usingf(w, r) in place ofw for
the password authentication scenario, wherer is a public random “salt,” to make a brute-force attacker’s life harder.
While practically useful, this approach does not add any entropy to the password, and does not formally address
the needed properties off . Another approach, more closely related to ours, is to add biometric features to the
password. For example, Ellison et al. [9] propose asking the user a series ofn personalized questions, and use these
answers to encrypt the “actual” truly random secretR. A similar approach using user’s keyboard dynamics (and,
subsequently, voice [20, 21]) was proposed by Monrose et al [19]. Of course, this technique reduces the question
to that of designing a secure “fuzzy encryption”. While heuristics approaches were suggested in the above works
(using various forms of Shamir’s secret sharing [27]), no formal analysis was given. Additionally, error tolerance
was addressed only by brute force search.

The most formal approach to error tolerance in biometrics was taken by Juels and Wattenberg [15] (for less formal
solutions, see [8, 19, 9]), who provided a simple way to tolerate errors inuniformly distributedpasswords.2 Almost
the same construction appeared implicitly in earlier, seemingly unrelated, literature on information reconciliation
and privacy amplification (see, e.g., [3, 4, 7]). We further discuss the connections among these works and our work
in Section 4.

Work on privacy amplification [3, 4], as well as work on de-randomizationand hardness amplification [13, 24],
also addressed the need to extract uniform randomness from a randomvariable about which some information has
been leaked. In addition, work on (ordinary, not fuzzy) extractors isrelevant to ours (e.g., [26, 23]), though for our
purposes simple pairwise hashing is a sufficiently good extractor [3, 13]3.

It is also important to note the recent work of Juels and Sudan [16], who provide the first construction for a metric
other than Hamming: they construct a “fuzzy vault” scheme for the set difference metric. The main difference is
that [16] lacks a cryptographically strong definition of the object constructed. In particular, their construction leaks a
significant amount of information about their analog ofR, even though it leaves the adversary with provably “many
valid choices” forR. In retrospect, their notion can be viewed as an (information-theoretically)one-way function,
rather than semantically-secure key encapsulation mechanism, like the one considered in this work. Nonetheless,
their informal notion is very closely related to our fuzzy fingerprints, and we improve their construction in Section 5.

EXTENSIONS. We can relax the error correction properties of fuzzy fingerprints/extractors to allowlist decoding:
instead of outputting one correct secret, we can output a short list of secrets, one of which is correct. For many
applications (e.g., password authentication), this is sufficient, while the advantage is that we can possibly tolerate
many more errors in the password. Not surprisingly, by using list-decodable codes (see [12] and the references
therein) in our constructions, we can achieve this relaxation and considerably improve our error tolerance. Other
similar extensions would be to allow small error probability in error-correction, to ensure correction of onlyaverage-
caseerrors, or to consider nonbinary alphabets. Again, many of our resultswill extend to these settings. Finally, an
interesting new direction is to consider other metrics not considered in this work.

2[11] extended this solution for better practical use, but it still works only for uniformly chosen passwords.
3This is so because optimizing the seed length — the major source of problemsin extractor constructions — will not be crucially important

in most of our applications, as long as one extracts (nearly) all the min-entropy from the source.

4

2 Preliminaries

Unless explicitly stated otherwise, all logarithms below are base2.

ENTROPY. Themin-entropyof a random variableA is H∞(A) = − log(maxa Pr(A = a)). For a pair of (possibly
correlated) random variablesA, B, a conventional notion of “average min-entropy” ofA givenB would beH∞(A |
B) = Eb←B [H∞(A | B = b)]. However, for the purposes of this paper, the following slightly modified notion will
be more robust: we let̃H∞(A | B) = − log

(

Eb←B

[

2−H∞(A|B=b)
])

. Namely, we defineaverage min-entropyof
A given B to be the logarithm of the average probability of the most likely value ofA given B. This definition
is the right one to use when one is interested in the statistical difference fromuniform, as becomes clear, e.g.,
in Lemma 3.2. One can easily verify that ifB is anℓ-bit string, thenH̃∞(A | B) ≥ H∞(A)− ℓ.

STRONG EXTRACTORS. Thestatistical distance betweentwo probability distributionsA andB is SD (A, B) =
1
2

∑

v |Pr(A = v)− Pr(B = v)|. We can now definestrong randomness extractors[24].

Definition 1. An efficient(n, m′, ℓ, ǫ)-strong extractoris a polynomial time probabilistic functionExt : {0, 1}n →
{0, 1}ℓ such that for all min-entropym′ distributionsW , we haveSD (〈Ext(W ; X), X〉, 〈Uℓ, X〉) ≤ ǫ, where
Ext(W ; X) stands for applyingExt to W using (uniformly distributed) randomnessX.

Strong extractors can extract at mostℓ = m′ − 2 log(1/ǫ) + O(1) nearly random bits [25]. Many constructions
match this bound (see Shaltiels’ survey [26] for references). Extractor constructions are often complex since they
seek to minimize the length of the seedX. For our purposes, the length ofX will be less important, so2-wise
independent hash functions will already give us optimalℓ = m′ − 2 log(1/ǫ) [3, 13].

METRIC SPACES. A metric space is a setM with a distance functiondis :M×M→ R
+ = [0,∞) which obeys

various natural properties. In this work,M will always be a finite set, and the distance function will only take on
integer values. The size of theM will always be denotedN = |M|. We will assume that any point inM can be
naturally represented as a binary string of appropriate lengthO(log N).

We will concentrate on the following metrics. (1)Hamming metric. HereM = Fn over some alphabetF (we
will mainly useF = {0, 1}), anddis(w, w′) is the number of positions in which they differ. (2)Set Difference
metric. HereM consists of alls-element subsets in a universeU = [n] = {1, ..., n}. The distance between two sets
A, B is the number of points inA that are not inB. SinceA andB have the same size, the distance is half of the
size of their symmetric difference:dis(A, B) = 1

2 |A△B|. (3) Edit metric. Here againM = Fn, but the distance
betweenw andw′ is defined to be one half of the smallest number of character insertions and deletions needed to
transformw into w′.

As already mentioned, all three metrics seem natural for biometric data.

CODING. Since we want to achieve error tolerance in various metric spaces, we willuseerror-correcting codes
in the corresponding metric spaceM. A codeC is a subset{w1, . . . , wK} of K elements ofM (for efficiency
purposes, we want the map fromi to wi to be polynomial-time). Theminimum distanceof C is the smallestd > 0
such that for alli 6= j we havedis(wi, wj) ≥ d. In our case of integer metrics, this means that one can detect up
to (d − 1) “errors” in any codeword. Theerror-correcting distanceof C is the largest numbert > 0 such that for
everyw ∈ M there exists at most one codewordwi in the ball of radiust aroundw: dis(w, wi) ≤ t for at most one
i. Clearly, for integer metrics we haved = 2t + 1. Since error correction will be more important in our applications,
we denote the corresponding codes by(M, K, t)-codes. For the Hamming and the edit metrics on strings of length
n over some alphabetF , we will sometimes callk = log|F |K thedimensionon the code, and denote the code itself
as an[n, k, d = 2t + 1]-code, following the standard notation in the literature.

5

3 Definitions and General Lemmas

LetM be a metric space onN points with distance functiondis.

Definition 2. An (M, m, m′, t)-fuzzy fingerprintis a randomized mapFF : M → {0, 1}∗ with the following
properties.

1. There exists a deterministic recovery functionRec allowing to recoverw from its fingerprintFF(w) and any
vectorw′ close tow: for all w, w′ ∈M satisfyingdis(w, w′) ≤ t, we haveRec(w′, FF(w)) = w.

2. For all random variablesW overM with min-entropym, the average min-entropy ofW givenFF(W) is at
leastm′. That is,H̃∞(W | FF(W)) ≥ m′.

The fuzzy fingerprint isefficient if FF andRec run in time polynomial in the representation size of a point inM. We
denote the random output ofFF byFF(W), or byFF(W ; X) when we wish to make the randomness explicit.

We will have several examples of fuzzy fingerprints when we deal with specific metrics. The quantitym−m′ is
called theentropy lossof a fuzzy fingerprint. All of our proofs in fact boundm−m′, and the same bound typically
holds for all values ofm.

Definition 3. An (M, m, ℓ, t, ǫ) fuzzy extractoris a given by two procedures(Gen, Rep).

1. Gen is a probabilistic generation procedure, which on inputw ∈M outputs an “extracted” stringR ∈ {0, 1}ℓ
and a public stringP . We require that for any distributionW onM of min-entropym, if 〈R, P 〉 ← Gen(W),
then we haveSD (〈R, P 〉, 〈Uℓ, P 〉) ≤ ǫ, whereUℓ is the uniform distribution on{0, 1}ℓ sampled independently
fromP .

2. Rep is a deterministic reproduction procedure allowing to recoverR from the corresponding public stringP
and any vectorw′ close tow: for all w, w′ ∈ M satisfyingdis(w, w′) ≤ t, if 〈R, P 〉 ← Gen(w), then we have
Rep(w′, p) = R.

The fuzzy extractor isefficient if Gen andRep run in time polynomial in the representation size of a point inM.

In other words, fuzzy extractors allow one to extract some randomnessR fromW and then successfully reproduce
R from any stringW ′ that is close toW . The reproduction is done with the help of the public stringP produced
during the initial extraction; yetR looks truly random even givenP . To justify our terminology, notice that strong
extractors (as defined in Section 2) can indeed be seen as “nonfuzzy”analogs of fuzzy extractors, corresponding to
t = 0, P = X (andM = {0, 1}n).

CONSTRUCTION OFFUZZY EXTRACTORS FROM FUZZY FINGERPRINTS. Not surprisingly, fuzzy fingerprints
come up very handy in constructing fuzzy extractors. Specifically, we construct fuzzy extractors from fuzzy finger-
prints and strong extractors. For that, we assume that one can naturally represent a pointw inM usingn bits. The
strong extractor we use is the standard pairwise-independent hashing construction, which has (optimal) entropy loss
2 log

(

1
ǫ

)

. The result follows from the “left-over hash” (a.k.a. “privacy amplification”) lemmas of [13, 4].

Lemma 3.1 (Using Hash Functions for Extraction).AssumeFF is a(M, m, m′, t)-fuzzy fingerprint with recovery
procedureRec, and letExt be the(n, m′, ℓ, ǫ)-strong extractor based on pairwise-independent hashing (in particular,
ℓ = m′ − 2 log

(

1
ǫ

)

). Then the following(Gen, Rep) is a (M, m, ℓ, t, ǫ)-fuzzy extractor:

– Gen(W ; X1, X2): setP = 〈FF(W ; X1), X2〉, R = Ext(W ; X2), and output〈R, P 〉.
– Rep(W ′, 〈V, X2〉): recoverW = Rec(W ′, V) and outputR = Ext(W ; X2).

6

Proof. Lemma 3.1 follows directly from the intermediate result below (Lemma 3.2), which explains our choice of
the measurẽH∞(A|B) for the average min-entropy. Lemma 3.2 says that pairwise independent hashing extracts
randomness from the random variableA as if the min-entropy ofA givenB = b were always at least̃H∞(A|B)
(rather than having the inequality hold on average).

Interestingly, the above lemma, combined with fuzzy fingerprints, will often produce nearly optimal fuzzy extractors.

Lemma 3.2. If A, B are random variables such thatA ∈ {0, 1}n and H̃∞(A|B) ≥ m′, and H is a random
pairwise independent hash function fromn bits to ℓ bits, thenSD (〈B, H, H(A)〉 , 〈B, H, Uℓ〉) ≤ ǫ as long as
ℓ ≤ m′ − 2 log

(

1
ǫ

)

.

Proof. The particular extractor we chose has a smooth tradeoff between the entropy of the input and the quality of
the output. For any random variableX, the left-over hash/privacy amplification lemma [3, 13, 4] states:

SD (〈H, H(X)〉 , 〈H, Uℓ〉) ≤
√

2−H∞(X)2ℓ

In our setting we have a bound on theexpectedvalue of2−H∞(A|B=b), namelyE
[

2−H∞A | B)
]

≤ 2−m′
. Using the

fact thatE
[√

Z
]

≤
√

E [Z], we get:

Eb [SD (〈H, H(A|B = b)〉 , 〈H, Uℓ〉)] ≤
√

2ℓ−m′ .

Now the distance of〈B, H, H(A)〉 from 〈B, H, Uℓ〉 is the average over values ofB of the distance of〈H, H(A)〉
from 〈H, Uℓ〉. This average is exactly what was bounded above:

SD (〈B, H, H(A)〉, 〈P, Uℓ〉) = EB [SD (〈H, H(A)〉 , 〈H, Uℓ〉)] ≤
√

2ℓ−m′ .

The extractor we use always hasℓ ≤ m′ − 2 log
(

1
ǫ

)

, and so the statistical difference is at mostǫ.

Remark 1. One can prove an analogous form of Lemma 3.2 using any strong extractor. If the extractor does
not have a convex tradeoff between the input entropy and the distance from uniform of the output, then one can
instead use a high-probability bound on the min-entropy of the input (that is,if H̃∞(X) ≥ m′ then the event
H∞(X) ≥ m′ − log

(

1
ǫ

)

happens with probability1 − ǫ). The resulting reduction leads to fuzzy extractors with
min-entropy loss3 log

(

1
ǫ

)

.

CONSTRUCTIONS FROMBIOMETRIC EMBEDDINGS. We now introduce a general technique that allows one to
build good fuzzy extractors in some metric spaceM1 from good fuzzy extractors in some other metric spaceM2.
Below, we letdis(·, ·)i denote the distance function inMi. The technique is toembedM1 into M2 so as to
“preserve” relevant parameters for fuzzy extraction.

Definition 4. A functionf : M1 → M2 is called a(t1, t2, m1, m2)-biometric embedding if the following two
conditions hold:

• for anyw1, w
′
1 ∈M1 such thatdis(w1, w

′
1)1 ≤ t1, we havedis(f(w1), f(w′1))2 ≤ t2.

• for anyW1 onM1 of min-entropy at leastm1, f(W1) has min-entropy at leastm2.

The following lemma is immediate:

Lemma 3.3. If f is (t1, t2, m1, m2)-biometric embedding ofM1 intoM2 and(Gen1(·), Rep1(·, ·)) is a (M2, m2,
ℓ, t2, ǫ)-fuzzy extractor, then(Gen1(f(·)), Rep1(f(·), ·)) is a (M1, m1, ℓ, t1, ǫ)-fuzzy extractor.

Notice that a similar result does not hold for fuzzy fingerprints, unlessf is injective (and efficiently invertible).

We will see the utility of this particular notion of embedding (as opposed to previously defined notions) in Sec-
tion 6.

7

4 Constructions for Hamming Distance

In this section we consider constructions for the spaceM = {0, 1}n under the Hamming distance metric.

THE CODE-OFFSET CONSTRUCTION. Juels and Wattenberg [15] considered a notion of “fuzzy commitment.”4

Given a binary[n, k, 2t + 1] error-correcting codeC (not necessarily linear), they fuzzy-commit toX by publishing
W ⊕ C(X). Their construction can be rephrased in our language to give a very simple construction of fuzzy
fingerprints: for randomX ← {0, 1}k, set

FF(W ; X) = W ⊕ C(X) .

(Note that ifW is uniform, this fuzzy fingerprint direcly yields a fuzzy extractor withR = X).

When the codeC is linear, this is equivalent to revealing the syndrome of the inputw, and so we do not need the
randomnessX. Namely, in this case we could have setFF(w) = synC(w) (as mentioned in the introduction, this
construction also appears implicitly in the information reconciliation literature, e.g.[3, 4, 7]: when Alice and Bob
hold secret values which are very close in Hamming distance, one way to correct the differences with few bits of
communication is for Alice to send to Bob thesyndromeof her wordw with respect to a good linear code.)

Since the syndrome of ak-dimensional linear code isn− k bits long, it is clear thatFF(w) leaks onlyn− k bits
aboutw. In fact, we show the same is true even for nonlinear codes.

Lemma 4.1. For any [n, k, 2t + 1] codeC and anym, FF above is a(M, m, m + k − n, t) fuzzy fingerprint. It is
efficient if the codeC allows decoding errors in polynomial time.

Proof. Let D be the decoding procedure of our codeC. SinceD can correct up tot errors, ifv = w ⊕ C(x) and
dis(w, w′) ≤ t, thenD(w′ ⊕ v) = x. Thus, we can setRec(w′, v) = v ⊕ C(D(w′ ⊕ v)).

Let A be the joint variable(X, W). Together, these have min-entropym + k whenH∞(W) = m. Since
FF(W) ∈ {0, 1}n, we haveH̃∞(W, X | FF(W)) ≥ m + k − n. Now givenFF(W), W andX determine each
other uniquely, and sõH∞(W | FF(W)) ≥ m + k − n as well.

In Appendix A, we present some generic lower bounds on fuzzy fingerprints and extractors. LetA(n, d) denote
the maximum number of codewords possible in a code of distanced in {0, 1}n. Then Lemma A.1 implies that the
entropy loss of a fuzzy fingerprint for the Hamming metric is at leastn− log A(n, 2t+1), when the input is uniform
(that is, whenm = n). This means that the code-offset construction above is optimal for the case of uniform inputs.
Of course, we do not know the exact value ofA(n, d), never mind of efficiently decodable codes which meet the
bound, for most settings ofn andd. Nonetheless, the code-offset scheme gets as close to optimality as is possible in
coding.

GETTING FUZZY EXTRACTORS. As a warm-up, consider the case whenW is uniform (m = n) and look at the
code-offset fingerprint construction:V = W ⊕C(X). SettingR = X, P = V andRep(W ′, V) = D(V ⊕W ′), we
clearly get an(M, n, k, t, 0) fuzzy extractor, sinceV is truly random whenW is random, and therefore independent
of X. In fact, this is exactly the usage proposed by Juels-Wattenberg, except they viewed the above fuzzy extractor
as a way to useW to “fuzzy commit” toX, without revealing information aboutX.

Unfortunately, the above construction settingR = X only works for uniformW , since otherwiseV would leak
information aboutX. However, by using the construction in Lemma 3.1, we get

Lemma 4.2. Given any[n, k, 2t + 1] codeC and anym, ǫ, we can get an(M, m, ℓ, t, ǫ) fuzzy extractor, where
ℓ = m + k − n− 2 log(1/ǫ). The recoveryRep is efficient ifC allows decoding errors in polynomial time.

4In their interpretation, one commits toX by picking a randomW and publishingFF(W ; X).

8

5 Constructions for Set Difference

Consider the collection of all sets of a particular sizes in a universeU = [n] = {1, ..., n}. The distance between two
setsA, B is the number of points inA that are not inB. SinceA andB have the same size, the distance is half of the
size of their symmetric difference:12dis(A, B) = |A△B|. If A andB are viewed asn-bit characteristic vectors over
[n], this metric is the same as the Hamming metric (scaled by1/2). Thus, the set difference metric can be viewed
as a restriction of the binary Hamming metric to all the strings with exactlys nonzero components. However, one
typically assumes thatn is much larger thans, so that representing a set byn bits is much less efficient than, say
writing down a list of elements, which requires(s log n) bits.

LARGE VERSUSSMALL UNIVERSES. Most of this section studies situations where the universe sizen is super-
polynomial in the set sizes. We call this the large universe setting. By contrast, the small universe setting refers to
situations in whichn = poly(s). We want our various constructions to run in polynomial time and use polynomial
storage space. Thus, the large universe setting is exactly the setting in which then-bit string representation of a set
becomes too large to be usable. We consider the small-universe setting first,since it appears simpler (Section 5.1).
The remaining subsections consider large universes.

5.1 Small Universes

When the universe size is polynomial ins, there are a number of natural constructions. Perhaps the most direct one,
given previous work, is the construction of Juels and Sudan [16]. Unfortunately, that scheme achieves relatively
poor parameters (see Section 5.2).

We suggest two possible constructions: first, to represent sets asn-bit strings and use the constructions of the
previous section (with the caveat that Hamming distance is off by a factor of 2from set difference). The second
construction, presented below, goes directly through codes for set difference, also called “constant-weight” codes.

In order to be able to compare the constructions, and for consistency with the coding theory literature, we will in
fact work with the Hamming metric here. Thus, codes which correct anyt errors in set difference will have minimum
distance at least4t + 1.

FINGERPRINTS FORTRANSITIVE METRIC SPACES. The code-offset construction suggests a general technique for
building fuzzy fingerprints in other metric spaces, using any code and particular sets of permutations. A permutation
π on a metric spaceM is an isometryif it preserves distances, i.e.dis(a, b) = dis(π(a), π(b)). A family of
permutationsΠ = {πi}i∈I actstransitivelyonM if for any two elementsa, b ∈ M, there existsπi ∈ Π such
thatπi(a) = b. Suppose we have a familyΠ of transitive isometries forM (we will call suchM transtive). For
example, in the Hamming space, the set of all shiftsπx(w) = w ⊕ x is such a family. Then a natural fingerprinting
scheme, given a passworda ∈ M, is to pick a random elementb from the code, pick a random permutationπ ∈ Π
such thatπ(a) = b, and outputFF(A) = π. Given a potential passworda′ and the fingerprintπ, we can find the
closest codeword toπ(a′) (call that elementb′), and outputπ−1(b′). If the code has high minimum distance anda′

is sufficiently close toa, thenb′ will be exactlyb, and we will recovera.

The entropy loss of this scheme will depend on several parameters, but ifthe code has many elements, and if
π can be described using few bits, then counting entropies can yield an interesting bound. (For the scheme to be
usable, we also need the operations on the code, as well asπ andπ−1, to be implementable reasonably efficiently.)

FINGERPRINTING FORSET DIFFERENCE. We illustrate this general approach for set difference. The family of
permutations we use is simply the one induced by the set of all permutations on theuniverse[n]. Let C ⊆ {0, 1}n
be any[n, k, d] code (nonlinear) in which all words have weight exactlys, and view elements of the code as sets of
sizes. We obtain the following scheme, which produces a fingerprint of lengthn log n:

Algorithm 1 (Permutation-based fingerprint). Input: a setA ⊆ U = [n] of sizes.

9

1. ChooseB ⊆ [n] at random from the codeC.

2. Choose a random permutationπ : [n]→ [n] such thatπ(A) = B:
(That is, choose a random matching betweenA andB and a random matching between[n]−A and[n]−B.)

3. OutputFF(A) = π (say, by listingπ(1), ..., π(n)).

Lemma 5.1. Suppose thatC is a [n, k, d] constant-weight-s code (for Hamming distance), then:

1. If d ≥ 4t+1, there is an algorithmRec() such thatRec(A′, FF(A)) = A for any setsA, A′ such that12 |A△A′| ≤
t. The algorithm is efficient ifC has an efficient decoding algorithm.

2. The left-over entropy is̃H∞(A | FF(A)) ≥ H∞(A) + k − log
(

n
s

)

.

Proof. (1) Givenπ andA′, we can computeB′ = π−1(A′). The intersection ofB andB′ is the same size asA∩A′,
and so the Hamming distance between the characteristic vectors ofB andB′ is at most2t. Since the code has
minimum distanced ≥ 4t + 1, it can correct2t errors, and so the closest codeword isB = π−1(A). All operations
aren log n-time except for (possibly) the random choice ofB in the algorithm and the decoding.

(2) Let X be the randomness used by the fingerprinting algorithm. There ares! possibilities for the matching
from A to B and(n− s)! possibilities for the matching from[n]−A to [n]−B. Hence, the min-entropy of the pair
(A, X) is H∞(A) + log(s!(n− s)!). There aren! possibilities for the fingerprintπ, and so the average min-entropy
of (A, X) givenFF(A) is at leastH∞(A) + log(s!(n − s)!) − log(n!) = H∞(A) − log

(

n
s

)

. GivenA andFF(A)

we can recoverX exactly, and sõH∞(A | FF(A)) is the same as̃H∞(A, X | FF(A)).

COMPARING THE HAMMING SCHEME WITH THE PERMUTATION SCHEME. In order to get a feeling for how the
random permutation technique compares to simply using Hamming-based schemesdirectly, we recall some notation
from the coding theory literature. LetA(n, d, s) denote the maximum size of a binary code for which all codewords
have weight exactlys. Heren is the length of the code andd is the minimum distance. LetA(n, d) denote the
maximum size of an (unrestricted) binary code of lengthn and minimum distanced. In all cases, we’re interested in
codes with minimum distanced ≥ 4t + 1, since we want to correctt errors in the set difference metric.

The code-offset construction was shown to have entropy lossn − log A(n, d) if an optimal code is used; the
random permutation scheme can have entropy losslog

(

n
s

)

− log A(n, d, s) for an optimal code. The Bassalygo-
Elias inequality (see [18]) shows that the bound on the random permutation scheme is always at least as good as
the bound on the code offset scheme:A(n, d) · 2−n ≤ A(n, d, s) ·

(

n
s

)−1
. This implies thatn − log A(n, d) ≥

log
(

n
s

)

− log A(n, d, s). Moreover, standard packing arguments give better constructions of constant-weight codes
than they do of ordinary codes.5 In fact, the random permutations scheme is optimal for this metric, just as the
code-offset scheme is optimal for the Hamming metric: Lemma A.1 shows that the min-entropy loss of a fuzzy
fingerprint must be at leastlog

(

n
s

)

− log A(n, d, s), in the case of a uniform secret setA. Thus in principle, it is
better to use the random permutation scheme. Nonetheless, there are caveats. First, we do not know ofexplicitly
constructed constant-weight codes that beat the Elias-Bassalygo inequality and would thus lead to better entropy loss
for the random permutation scheme than for the Hamming scheme (see [6] for more on construcionts of constant-
weight codes and [1] for upper bounds). Second, much more is knownabout efficient implementation of decoding
for ordinary codes than for constant-weight codes; for example, onecan find off-the-shelf hardware and software for
decoding many binary codes. In practice, the Hamming-based scheme is likelyto be more useful.

5This comes from the fact that the intersection of a ball of radiusd with the set of all words of weights is much smaller than the ball of
radiusd itself.

10

5.2 Modifying the Construction of Juels and Sudan

We now turn to the large universe setting, wheren is super-polynomial ins. Juels and Sudan [16] proposed a fuzzy
fingerprinting protocol for the set difference metric (called a “fuzzy vault” in that paper). They assume for simplicity
thatn = |U| is a prime power and work over the fieldF = GF (n). On input setA, the fingerprint they produce is a
set ofr pairs of points(xi, yi) in F , with s < r ≤ n.

Algorithm 2 (Juels-Sudan Fuzzy Fingerprint). Input: a setA ⊆ U .

1. Choosep() at random from the set of polynomials of degree at mostk = s− 2t− 1 overF .
Write A = {x1, ..., xs}, and letyi = p(xi) for i = 1, ..., s.

2. Chooser − s distinct pointsxs+1, ..., xr at random fromF −A.

3. Fori = s + 1, ..., r, chooseyi ∈ F at random such thatyi 6= p(xi).

4. OutputFF(A) = {(x1, y1), ..., (xr, yr)} (in lexicographic order ofxi).

The parameterr dictates the amount of storage necessary, one on hand, and also the security of the scheme (that
is, for r = s the scheme leaks all information and for larger and largerr there is less information aboutA). Juels and
Sudan actually propose two analyses for the scheme. First, they analyze the case where the secretA is distributed
uniformly over all subsets of sizes. Second, they provide an analysis of a nonuniform password distribution, but
only for the caser = n (that is, their analysis only applies in the small universe setting, whereΩ(n) storage is
acceptable). Here we give a simpler analysis which handles nonuniformity and anyr ≤ n. We get the same results
for a broader set of parameters.

Lemma 5.2. The entropy loss of the Juels-Sudan schemeFF() above is at most2t log n + log
(

n
r

)

− log
(

n−s
r−s

)

.

Proof. As for the code-offset, we can simply count entropies. LetX denote the random bits used by the algorithm
to generateFF(A). Choosing the polynomialp requiress−2t random choices fromF . The choice of the remaining
xi’s requireslog

(

n−s
r−s

)

bits, and choosing they′is requiresr−s random choices fromF (we will ignore the difference
betweenF andF − {xi} here since it doesn’t affect the result significantly). The min-entropy of the pairA, X is
thusH̃∞(A, X) = H̃∞(A) + (r − 2t) log(n) + log

(

n−s
r−s

)

. The output can be described inlog
((

n
r

)

nr
)

bits, and

hence we get that̃H∞(A, X | FF(A)) = H̃∞(A)− 2t log n + log
(

n−s
r−s

)

− log
(

n
r

)

. Finally, note thatX is entirely
determined byA andFF(A), so the entropy ofA, X givenFF(A) is the same as the entropy ofA givenFF(A).

In the large universe setting, we will haver ≪ n (since we wish to have storage polynomial ins). In that setting,
the bound on the entropy loss of the Juels-Sudan scheme is in fact very large. We can rewrite the entropy loss as
2t log n− log

(

r
s

)

+ log
(

n
s

)

, using the identity
(

n
r

)(

r
s

)

=
(

n
s

)(

n−s
r−s

)

. Now the entropy ofA is at most
(

n
s

)

, and so our
lower bound on the remaining entropy is(log

(

r
s

)

− 2t log n). To make this quantity large requires makingr very
large.

MODIFIED JS FINGERPRINTS. We suggest a modification of the Juels-Sudan scheme with entropy loss at most
2t log n and storages log n. Our scheme has the advantage of being even simpler to analyze. As before, we assume
n is a prime power and work overF = GF (n). An intuition for the scheme is that the numbersys+1, ..., yr from
the JS scheme need not be chosen at random. One can instead evaluate them asyi = p′(xi) for some polynomialp′.
One can then represent the entire list of pairs(xi, yi) using only the coefficients ofp′.

Algorithm 3 (Modified JS Fuzzy Fingerprint). Input: a setA ⊆ U .

1. Choosep() at random from the set of polynomials of degree at mostk = s− 2t− 1 overF .

2. Letp′() be the unique monic polynomial of degree exactlys such thatp′(x) = p(x) for all x ∈ A.
(Write p′(x) = xs +

∑s−1
i=0 aix

i. Solve fora0, ..., as−1 using thes linear constraintsp′(x) = p(x), x ∈ A.)

11

3. Output the list of coefficients ofp′(), that isFF(A) = (a0, ..., as−1).

First, observe that solving forp′() in Step 2 is always possible, since thes constraints
∑s−1

i=0 aix
i = p(x) − xs

are in fact linearly independent (this is just polynomial interpolation).

Second, this fingerprint scheme can toleratet set difference errors. Suppose we are given a setB ⊆ U which
agrees withA in at leasts − t positions. Givenp′ = FF(A), one can evaluatep′ on all the points in the setB. The
resulting vector agrees withp on at leasts− t positions, and using the decoding algorithm for Reed-Solomon codes,
one can thus reconstructp exactly (sincek = s− 2t− 1). Finally, the setA can be recovered by finding the roots of
the polynomialp′ − p : sincep′ − p is not identically zero and has degree exactlys, it can have at mosts roots and
sop′ − p is zero only onA.

We now turn to the entropy loss of the scheme. The fingerprinting scheme invests(s−2t) log n bits of randomness
to choose the polynomialp. The number of possible outputsp′ is ns. If X is the invested randomness, then the
(average) min-entropy(A, X) givenFF(A) is at leastH̃∞(A)−2t log n. The randomnessX can be recovered from
A andFF(A), and so we havẽH∞(A | FF(A)) ≥ H̃∞(A)− 2t log n. We have proved:

Lemma 5.3 (Analysis of Modified JS).The entropy loss of the modified JS scheme is at most2t log n. The scheme
has storage(s+1) log n for sets of sizes in [n], and both the fingerprint generationFF() and the recovery procedure
Rec() run in polynomial time.

The short length of the fingerprint makes this scheme feasible for essentially any ratio of set size to universe size
(we only needlog n to be polynomial ins). Moreover, for large universes the entropy loss2t log n is essentially
optimal for the uniform casem = log

(

n
s

)

. Lemma A.1 shows that for a uniformly distributed input, the best possible
entropy loss ism−m′ ≥ log

(

n
s

)

− log A(n, s, 4t + 1), whereA(n, s, d) is the maximum size of a code of constant
weights and minimum Hamming distanced. Using a bound of Agrellet al([1], Theorem 12), the entropy loss is at
least:

m−m′ ≥ log

(

n

s

)

− log A(n, s, 4t + 1) ≥ log

(

n

s

)

− log

((

n

s− 2t

)

/

(

s

s− 2t

))

= log

(

n− s + 2t

2t

)

Whenn ≥ s, this last quantity is roughly2t log n, as desired.

5.3 Set Difference via the Hamming Metric: Sublinear-Time Decoding

In this section, we show that code-offset construction can in fact be adapted for small sets in large universe, using
specific properties of algebraic codes. We will show that BCH codes, which contain Hamming and Reed-Solomon
codes as special cases, have these properties.

SYNDROMES OFL INEAR CODES. For a[n, k, d] linear codeC with parity check matrixH, recall that the syndrome
of a wordw ∈ {0, 1}n is syn(w) = Hw. The syndrome has lengthn − k, and the code is exactly the set of words
c such thatsyn(c) = 0n−k. The syndrome captures all the information necessary for decoding. That is, suppose a
codewordc is sent through a channel and the wordw = c⊕ e is received. First, the syndrome ofw is the syndrome
of e: syn(w) = syn(c)⊕ syn(e) = 0⊕ syn(e) = syn(e). Moreover, for any valueu, there is at most one worde of
weight less thand/2 such thatsyn(e) = u (the existence of a pair of distinct wordse1, e2 would mean thate1 + e2

is a codeword of weight less thand). Thus, knowing syndromesyn(w) is enough to determine the error patterne if
not too many errors occurred.

As mentioned before, we can reformulate the code-offset construction interms of syndrome:FF(w) = syn(w).
The two schemes are equivalent: givensyn(w) one can sample fromw⊕C(X) by choosing a random stringv with
syn(v) = syn(w); conversely,syn(w ⊕ C(X)) = syn(w). This reformulation gives us no special advantage when
the universe is small: storingw+C(X) is not a problem. However, it’s a substantial improvement whenn≫ n−k.

12

SYNDROME MANIPULATION FOR SMALL -WEIGHT WORDS. Suppose now that we have a small setA ⊆ [n] of
sizes, wheren ≫ s. Let xA ∈ {0, 1}n denote the characteristic vector ofA. If we want to usesyn(xA) as the
fingerprint ofA, then we must choose a code withn− k ≤ log

(

n
s

)

≈ s log n, since the fingerprint has entropy loss
(n− k) and the maximum entropy ofA is log

(

n
s

)

.

Binary BCH codes are a family of[n, k, d] linear codes withd = 4t + 1 andk = n − 2t log n (assumingn + 1
is a power of 2) (see, e.g. [18]). These codes are optimal fort ≪ n by the Hamming bound, which implies that
k ≤ n− log

(

n
2t

)

[18]. Using the code-offset fingerprint with a BCH codeC, we get entropy lossn− k = 2t log n,
just as we did for the modified Juels-Sudan scheme (recall thatd ≥ 4t+1 allows us to correctt set difference errors).

The only problem is that the scheme appears to require computation timeΩ(n), since we must computesyn(xA) =
HxA and, later, run a decoding algorithm to recoverxA. For BCH codes (including Hamming codes), this difficulty
can be overcome. A word of small weightx can be described by listing the positions on which it is nonzero. We call
this description thesupportof x and writesupp(x) (that issupp(xA) = A)).

Lemma 5.4. For a [n, k, d] binary BCH codeC one can compute:

1. syn(x), givensupp(x), and

2. supp(x), givensyn(x) (whenx has weight at most(d− 1)/2),

in time polynomial in|supp(x)| = weight(x) · log(n) and|syn(x)| = n− k.

The proof of Lemma 5.4 mainly requires a careful reworking of the standard BCH decoding algorithm. The
details of BCH codes and Lemma 5.4 are presented in Appendix B. For now, we present the resulting fingerprinting
scheme for set difference. The algorithm works in the fieldGF (2m) = GF (n + 1), and assumes a generatorα for
GF (2m) has been chosen ahead of time.

Algorithm 4 (BCH-based Fuzzy Fingerprint). Input: a setA ∈ [n] of sizes, wheren = 2m − 1.
(Hereα is a generator for the fieldGF (2m) which is fixed ahead of time.)

1. Letp(x) =
∑

i∈A xi.

2. OutputFF(A) = (p(α), p(α3), p(α5), ..., p(α4t+1)) (computations done inGF (2m)).

The algorithmRec() which recoversA from FF(A) and any set which intersectsA in at leasts − t points is
explained in Appendix B. However, the bound on entropy loss is easy to see: the output is2t log n bits long, and
hence the entropy loss is at most2t log n. We obtain:

Theorem 5.5. The BCH scheme above is a[m, m − 2t log n, t] fuzzy fingerprint scheme for set difference with
storage2t log n. The algorithmsFF andRec both run in polynomial time.

6 Constructions for Edit Distance

First we note that simply applying the same approach as we took for the transitive metric spaces before (the Hamming
space and the set difference space for small universe sizes) does not work here, because the edit metric does not seem
to be transitive. Indeed, it is unclear how to build a permutationπ such that for anyw′ close tow, we also have
π(w′) close tox = π(w). For example, settingπ(y) = y ⊕ (x ⊕ w) is easily seen not to work with insertions
and deletions. Similarly, ifI is some sequence of insertions and deletions mappingw to x, it is not true that
applyingI to w′ (which is close tow) will necessarily result in somex′ close tox. In fact, then we could even get
dis(w′, x′) = 2dis(w, x) + dis(w, w′).

Perhaps one could try to simply embed the edit metric into the Hamming metric using known embeddings, such
as conventionally used low-distorion embdeddings, which provide that all distances are preserved up to some small

13

“distortion” factor. However, there are no known nontrivial low-distortion embeddings from the edit metric to the
Hamming metric. Moreover, it was recently proved by Andoni et al [2] thatno such embedding can have distortion
less than3/2, and it was conjectured that a much stronger lower bound should hold.

Thus, as the previous approaches don’t work, we turn to the embdeddings we defined specifically for fuzzy
extractors: biometric embeddings. Unlike low-distortion embeddings, biometric embeddings do not care about
relative distances, as long as points that were “close” (closer thant1) do not become “distant” (farther apart thant2).
The only additional requirement of biometric embeddings is that they preserve some min-entropy: we do not want
too many points to collide together, although collisions are allowed, even collisions of distant points. We will build
a biometric embedding from the edit distance to the set difference.

A c-shingle[5], which is a length-c consecutive substring of a given stringw. A c-shingling [5] of a stringw
of lengthn is the set (ignoring order or repetition) of all(n − c + 1) c-shingles ofw. Thus, the range of thec-
shingling operation consists of all nonempty subsets of size at mostn − c + 1 of {0, 1}c. To simplify our future
computations, we will always arbitrarily pad thec-shingling of any stringw to contain preciselyn distinct shingles
(say, by adding the firstn − |c-shingling| elements of{0, 1}c not present in the givenc-shingling). Thus, we can
define a deterministic mapSHc(w) which mapsw into n substrings of{0, 1}c, where we assume thatc ≥ log2 n.
Let Edit(n) stand for the edit metric over{0, 1}n, andSDif(N, s) stand for the set difference metric over[N] where
the set sizes ares. We now show thatc-shingling yields pretty good biometric embeddings for our purposes.

Lemma 6.1. For anyc > log2 n, SHc is a (t1, t2 = ct1, m1, m2 = m1 − n log
2

n
c)-biometric embedding ofEdit(n)

into SDif(2c, n).

Proof. Assumedis(w1, w
′
1)ed ≤ t1 and thatI is the smallest set of2t1 insertions and deletions which transformsw

into w′. It is easy to see that each character deletion or insertion affects at mostc shingles, and thus the symmetric
difference betweenSHc(w1) andSHc(w

′
1) ≤ 2ct1, which implies thatdis(SHc(w1), SHc(w

′
1))sd ≤ ct1, as needed.

Now, assumew1 is any string. Definegc(w1) as follows. One computesSHc(w1), and storesn resulting shingles
in lexicographic orderh1 . . . hn. Next, one naturally partitionsw1 into n/c disjoint shingles of lengthc, call them
k1 . . . kn/c. Next, for1 ≤ j ≤ n/c, one setspc(j) to be the indexi ∈ {1 . . . n} such thatkj = hi. Namely, it tells the
index of thej-th disjoint shingle ofw1 in the orderedn-setSHc(w1). Finally, one setsgc(w1) = (pc(1) . . . pc(n/c)).
Notice, the length ofgc(w1) is n

c · log2 n, and also thatw1 can be completely recovered fromSHc(w1) andgc(w1).

Now, assumeW1 is any distribution of min-entropy at leastm1 onEdit(n). Sincegc(W) has length(n log2 n/c),
its min-entropy is at most this much as well. But since min-entropy ofW1 drops to0 when givenSHc(W1) and
gc(W1), it means that the min-entropy ofSHc(W1) must be at leastm2 ≥ m1 − (n log2 n)/c, as claimed.

We can now optimize the valuec. By either Lemma 5.3 or Theorem 5.5, for arbitrary universe size (in our case2c)
and distance thresholdt2 = ct1, we can construct a fuzzy fingerprint for the set difference metric withmin-entropy
loss2t2 log2(2

c) = 2t1c
2, which leaves us total min-entropym′2 = m2 − 2t1c

2 ≥ m1 − n log n
c − 2t1c

2. Applying
further Lemma 3.1, we can convert it into a fuzzy extractor overSDif(2c, n) for the min-entropy levelm2 with errorǫ,
which can extract at leastℓ = m′2−2 log

(

1
ǫ

)

≥ m1− n log n
c −2t1c

2−2 log
(

1
ǫ

)

bits, while still correctingt2 = ct1 of

errors inSDif(2c, n). We can now apply Lemma 3.3 to get an(Edit(n), m1, m1− n log n
c − 2t1c

2− 2 log
(

1
ǫ

)

, t1, ǫ)-

fuzzy extractor. Let us now optimize for the value ofc ≥ log2 n. We can setn log n
c = 2t1c

2, which givesc =

(n log n
2t1

)1/3. We getℓ = m1 − (2t1n
2 log2 n)1/3 − 2 log

(

1
ǫ

)

and therefore

Theorem 6.2. There exists an efficient(Edit(n), m1, m1 − (2t1n
2 log2 n)1/3 − 2 log

(

1
ǫ

)

, t1, ǫ) fuzzy extractor.

Settingt1 = m3
1/(16n2 log2 n), we get an efficient(Edit(n), m1,

m1

2 − 2 log
(

1
ǫ

)

,
m3

1

16n2 log2 n
, ǫ) fuzzy extractor. In

particular, if m1 = Ω(n), one can extractΩ(n) bits while toleratingΩ(n/ log2 n) insertions and deletions.

14

Acknowledgments

We thank Piotr Indyk for discussions about embeddings and for his help inthe proof of Lemma 6.1. We are also
thankful to Madhu Sudan for helpful discussions about the construction of [16] and the uses of error-correcting
codes. Finally, we thank Rafi Ostrovsky for discussions in the initial phases of this work.

The work of the first author was partly funded by the National Science Foundation under CAREER Award No.
CCR-0133806 and Trusted Computing Grant No. CCR-0311095, and bythe New York University Research Chal-
lenge Fund 25-74100-N5237. The work of the second author was partly funded by the National Science Foundation
under Grant No. CCR-0311485. The work of the third author was partlyfunded by US A.R.O. grant DAAD19-00-
1-0177 and by a Microsoft Fellowship.

References

[1] E. Agrell, A. Vardy, and K. Zeger. Upper bounds for constant-weight codes.IEEE Transactions on Information
Theory, vol. 46, no. 7, pp. 2373–2395, 2000.

[2] A. Andoni, M. Deza, A. Gupta, P. Indyk, S. Raskhodnikova. Lower bounds for embedding edit distance into
normed spaces. InProc. of SODA, pp. 523–526, 2003.

[3] C. Bennett, G. Brassard, and J. Robert. Privacy Amplification by Public Discussion. InSIAM J. on Computing,
17(2), pp. 210–229, 1988.

[4] C. Bennett, G. Brassard, C. Crépeau, and U. Maurer. Generalized Privacy Amplification. InIEEE Trans. Info.
Theory, 41(6), pp. 1915-1923, 1995.

[5] A. Broder. On the resemblence and containment of documents. InCompression and Complexity of Sequences
(SEQUENCES), 1997.

[6] A. E. Brouwer, J. B. Shearer, N. J. A. Sloane, and W. D. Smith, “Anew table of constant weight codes,” IEEE
Trans. Inform. Theory, vol. 36, pp. 1334–1380, Nov. 1990.

[7] C. Crépeau. Efficient Cryptographic Protocols Based on Noisy Channels. In Eurocrypt 1997, pp. 306–317,
1997.

[8] G. Davida, Y. Frankel, B. Matt. On enabling secure applications through off-line biometric identification. In
Proc. Symp. on Security and Privacy, pp. 148–157, 1998.

[9] C. Ellison, C. Hall, R. Milbert, B. Schneier. Protecting Keys with Personal Entropy. Future Generation
Computer Systems, 16:311–318, 2000.

[10] N. Frykholm. Passwords: Beyond the Terminal Interaction Model.Master’s Thesis, Umea University. Avail-
able athttp://www.cs.umu.se/˜niklasf/exjobb/ .

[11] N. Frykholm, A. Juels. Error-Tolerant Password Recovery. In Proc. of ACM Conference on Computer and
Communications Security, pp. 1–8, 2001.

[12] V. Guruswami, M. Sudan. Improved Decoding of Reed-Solomon andAlgebraic-Geometric Codes. InProc. of
FOCS, pp. 28–39, 1998.

[13] J. Håstad, R. Impagliazzo, L. Levin, M. Luby. A Pseudorandom generatorfrom any one-way function. InProc.
of STOC, 1989.

15

[14] A. Juels, B. Mannal. Survey of Biometric Authentication Technologies. Available at
http://www.rsalabs.com/staff/ajuels/ .

[15] A. Juels, M. Wattenberg. A Fuzzy Commitment Scheme. InProc. of ACM Conference on Computer and
Communications Security, pp. 28–36, 1999.

[16] A. Juels and M. Sudan. A Fuzzy Vault Scheme.IEEE International Symposium on Information Theory, 2002.

[17] J. Kelsey, B. Schneier, C. Hall, D. Wagner. Secure Applications of Low-Entropy Keys. InProc. of Information
Security Workshop, pp. 121–134, 1997.

[18] J.H. van Lint.Introduction to Coding Theory.Springer-Verlag, 1992, 183 pp.

[19] F. Monrose, M. Reiter, S. Wetzel. Password Hardening Based onKeystroke Dynamics. InProc. ACM Confer-
ence on Computer and Communications Security, pp. 73–82, 1999.

[20] F. Monrose, M. Reiter, Q. Li, S. Wetzel. Cryptographic key generation from voice. InProc. IEEE Symposium
on Security and Privacy, 2001.

[21] F. Monrose, M. Reiter, Q. Li, S. Wetzel. Using voice to generate cryptographic keys. InProc. of Odyssey 2001,
The Speaker Verification Workshop, 2001.

[22] R. Morris, K. Thomson. Password Security: a case history. InCommunications of the ACM, 22(11):594–597,
1979.

[23] N. Nisan, A. Ta-Shma. Extracting Randomness: a survey and new constructions. InJCSS, 58(1):148–173,
1999.

[24] N. Nisan, D. Zuckerman. Randomness is Linear in Space. InJCSS, 52(1):43–52, 1996.

[25] J. Radhakrishnan and A. Ta-Shma. Tight bounds for depth-two superconcentrators. In Proc. of FOCS, pp.
585–594, 1997.

[26] R. Shaltiel. Recent developments in Explicit Constructions of Extractors. Bulletin of the EATCS, 77:67–95,
2002.

[27] A. Shamir. How to share a secret. InCommunic. of the ACM, 22:612-613, 1979.

[28] V. Shoup. A Proposal for an ISO Standard for Public Key Encryption. Available at
http://eprint.iacr.org/2001/112 , 2001.

A Lower Bounds from Coding

Recall that an(M, K, t) code is a subset of the metric spaceM which cancorrectt errors (this is slightly different
from the usual notation of the coding theory literature.

Let K(M, t) be the largestK for which there exists and(M, K, t)-code. Given any setS of 2m points in
M, we let K(M, t, S) be the largestK such that there exists an(M, K, t)-code all of whoseK points belong
to S. Finally, we letL(M, t, m) = log(min|S|=2m K(n, t, S)). Of course, whenm = log |M| = log N , we
get L(M, t, n) = log K(M, t). The exact determination of quantitiesK(M, t) andK(M, t, S) form the main
problem of coding theory, and is typically very hard. To the best of our knowledge, the quantityL(M, t, m) was not
explicitly studied in any of three metrics that we study, and its exact determinationseems very hard as well.

16

We give two simple lower bounds (one for fuzzy fingerprints, the other for fuzzy extractors) which, somewhat
surprisingly, show that our constructions for the Hamming and Set Difference metrics are essentially optimal, at
least when the original input distribution is uniform.

Lemma A.1. The existence of(M, m, m′, t) fuzzy fingerprint implies thatm′ ≤ L(M, t, m). In particular, when
m = log N (i.e., when the password is truly uniform),m′ ≤ log K(M, t).

Proof. AssumeFF is such fuzzy fingerprint. LetS be any set of size2m in M, and letW be uniform overS.
Then we must havẽH∞(W | FF(W)) ≥ m′. In particular, there must be some particular valuev such that
H∞(W | FF(W) = v) ≥ m′. But this means that conditioned onFF(W) = v, there are at least2m′

points
w in S (call this setT) which could produceFF(W) = v. We claim that these2m′

values ofw form a code
of error-correcting distancet. Indeed, otherwise there would be a pointw′ ∈ M such thatdis(w0, w

′) ≤ t and
dis(w1, w

′) ≤ t for somew0, w1 ∈ T . But then we must have thatRec(w′, v) is equal to bothw0 andw1, which is
impossible. Thus, the setT above must form an(M, 2m′

, t)-code insideS, which means thatm′ ≤ log K(M, t, S).
SinceS was arbitrary, the bound follows.

Lemma A.2. The existence of(M, m, ℓ, t, ǫ)-fuzzy extractors implies thatℓ ≤ L(M, t, m)− log(1− ǫ). In partic-
ular, whenm = log N (i.e., when the password is truly uniform),ℓ ≤ log K(M, t)− log(1− ǫ).

Proof. Assume(Gen, Rep) is such a fuzzy extractor. LetS be any set of size2m inM, and letW be uniform over
S. Then we must haveSD (〈R, P 〉, 〈Uℓ, P 〉) ≤ ǫ. In particular, there must be some particular valuep of P such
thatR is ǫ-close toUℓ conditioned onP = p. In particular, this means that conditioned onP = p, there are at least
(1− ǫ)2ℓ pointsr ∈ {0, 1}ℓ (call this setT) which could be extracted withP = p. Now, map everyr ∈ T to some
arbitraryw ∈ S which could have producedr with nonzero probability givenP = p, and call this mapC. We claim
thatC must define a code with error-correcting distancet. Indeed, otherwise there would be a pointw′ ∈ M such
thatdis(C(r1), w

′) ≤ t anddis(C(r2), w
′) ≤ t for somer1 6= r2. But then we must have thatRep(w′, p) is equal to

bothr1 andr2, which is impossible. Thus, the mapC above must form an(M, 2ℓ+log(1−ǫ), t)-code insideS, which
means thatℓ ≤ log K(M, t, S)− log(1− ǫ). SinceS was arbitrary, the bound follows.

Observe that, as long asǫ < 1/2, we have0 < − log(1 − ǫ) < 1, so the lowerbounds on fuzzy fingerprints and
fuzzy extractors differ by less than a bit.

B Syndrome Decoding in Sublinear Time

We show that the standard decoding algorithm for BCH codes can be modified to run in time polynomial in the length
syndrome. This works for BCH codes over any fieldGF (q), which include Hamming codes in the binary case and
Reed-Solomon for the caseq > n. BCH codes are handled in detail in many textbooks (e.g., [18]); our presentation
here is quite terse. For simplicity, we only discuss primitive, narrow-sense BCH codes here; the discussion extends
easily to the general case.

Definition 5. Let n = qm − 1. The narrow-sense, primitive BCH code of designed distanceδ and lengthn over
GF (q) is given by the set of vectors(c0, ..., cn−1) ∈ GF (q)n such that0 = c(α1) = c(α2) = · · · = c(αδ−1), where
c(x) =

∑n−1
i=0 cix

i is a polynomial overGF (qm) andα is a fixed generator forGF (qm).

Readers may be used to seeing a different definition of these codes: onecan also take the set of vectors(p(α), . . . ,
p(αn−1)) given by polynomials with coefficients inGF (qm) all of whose values lie inGF (q) ⊆ GF (qm). The
equivalence of the various definitions is standard.

Returning to Definition 5, we can see that some coniditions are redundant. Specifically, becauseci ∈ GF (q),
we havec(xq) = (c(x))q. Thus, we discard a1/q fraction of the conditions onc without changing the code. The

17

syndrome of a wordw can thus be computed as the vector of valuesw(αi), where1 ≤ i < δ andq 6 | i and the
polynomialw() is given byw(x) =

∑n−1
i=0 wix

i. Each constraintc(αi) = 0 on codewords results in at mostm
constraints (in the fieldGF (q)) over the vectorc.

Fact B.1. Theq-ary BCH code of lengthn and designed distanced has dimensionk ≥ n−m(δ−1)+(1/q)m ⌊δ/q⌋
and minimum distanced ≥ δ.

The parity check matrix for a BCH code is given by:

H =

α α2 · · · αn−1

α2 α4 · · · α2(n−1)

...
αδ−1 α2(δ−1) · · · α(n−1)(δ−1)

As mentioned above, all rows forαi with q|i are redundant. Nevertheless, the first part of Lemma 5.4 is clear:
to compute the syndrome of a low-weight word, one need only be able to computeany given column of the parity
check matrix in time polynomial in the length of the column. In fact, the computation time is almost linear, since
one only needs to do one exponentiation andδ multiplications to compute any particular row.

A low-weight word p ∈ GF (q)n can be represented either as a long string or, more compactly, as a list of
positions where it is nonzero and its values at those points. We call this representation the support list ofx and
denote itsupp(p) = {(i, pi)}i:pi 6=0.

Lemma B.2. For a q-ary BCH codeC of designed distanceδ, one can compute:

1. syn(p), givensupp(p), and

2. supp(p), givensyn(p) (whenp has weight at most(δ − 1)/2),

in time polynomial in|supp(p)| = weight(p) · log(n) · log(q) and|syn(p)| = (n− k) log q.

Proof. Recall thatsyn(p) = (p(α), ..., p(αδ−1)) wherep(x) =
∑n−1

i=0 pi. Part (1) is easy, since any column of the
parity check matrixH can be computed with one exponentiation andδ − 1 multiplications inGF (qm). For (2), we
carefully analyze the various steps of the standard BCH decoding algorithm, based on its presentation in [18]. Let
M = {i|pi 6= 0}, and define

σ(z) =
∏

i∈M

(1− αiz) and ω(z) = σ(z)
∑

j∈M

pjα
j

(1− αjz)

Since(1 − αjz) divides σ(z) for j ∈ M , we see thatω(z) is in fact a polynomial of degree at most|M | =
weight(p) ≤ (δ − 1)/2. The polynomialsσ(z) andω(z) are known as the error locator polynomial and evaluator
polynomial, respectively. If we now consider formal power series overGF (qm), we get:

ω(z)

σ(z)
=

∑

j∈B

pjα
jz

(1− αjz)
=
∞

∑

ℓ=1

zℓp(αℓ)

We are givenSℓ = p(αℓ) for ℓ = 1, ..., δ. Let S(z) =
∑δ−1

ℓ=1 Sℓz
ℓ. The equation above implies thatS(z)σ(z) ≡

ω(z) mod zδ. The solutionω(), σ() is “unique” in the following sense: any other solutionω′(z), σ′(z) satisfies
w′(z)/σ′(z) = ω(z)/σ(z). Multiplying the initial congruence byσ′() yields ω(z)σ′(z) ≡ σ(z)ω′(z) mod zδ.
Since the both sides of the congruence have degree at mostδ − 1, they are in fact equal as polynomials.

18

Thus it is sufficient to find any solutionσ′(), ω′() to the congruenceS(z)σ′(z) = ω′(z) mod zδ and reduce the
resulting fractionω′(z)/σ′(z) to botain a solutionω(), σ() of minimal degree. Finally, the roots ofσ(z) are the points
α−i for i ∈M , and the exact value ofpi can be recovered using the equationω(α−i) = pi

∏

j∈M,j 6=i(1− αj−i).

Solving the congruence only requires solving a system ofδ− 1 linear equations, which is certainly polynomial in
δ log q. The reduction of the fractionω′(z)/σ′(z) requires only running Euclid’s algorithm for finding the g.c.d. of
two polynomials. Finally, finding the roots ofσ() can be done in time polynomial in the degree ofσ(), which is at
mostδ/2.

19

