
Fuzzy Finite-state Automata Can BeDeterministically Encoded into Recurrent Neural NetworksChristian W. Omlin a, Karvel K. Thornber a, C. Lee Giles a;ba NEC Research Institute, Princeton, NJ 08540b UMIACS, U. of Maryland, College Park, MD 20742Technical Report CS-TR-3599 and UMIACS-96-12AbstractThere has been an increased interest in combining fuzzy systems with neural networks because fuzzyneural systems merge the advantages of both paradigms. On the one hand, parameters in fuzzy systemshave clear physical meanings and rule-based and linguistic information can be incorporated into adaptivefuzzy systems in a systematic way. On the other hand, there exist powerful algorithms for trainingvarious neural network models. However, most of the proposed combined architectures are only ableto process static input-output relationships, i.e. they are not able to process temporal input sequencesof arbitrary length. Fuzzy �nite-state automata (FFAs) can model dynamical processes whose currentstate depends on the current input and previous states. Unlike in the case of deterministic �nite-stateautomata (DFAs), FFAs are not in one particular state, rather each state is occupied to some degreede�ned by a membership function. Based on previous work on encoding DFAs in discrete-time, second-order recurrent neural networks, we propose an algorithm that constructs an augmented recurrent neuralnetwork that encodes a FFA and recognizes a given fuzzy regular language with arbitrary accuracy.We then empirically verify the encoding methodology by measuring string recognition performance ofrecurrent neural networks which encode large randomly generated FFAs. In particular, we examine howthe networks' performance varies as a function of synaptic weight strength.1 Introduction1.1 Fuzzy Systems and Neural NetworksThere has been an increased interest in combining arti�cial neural networks and fuzzy systems (see [4] for acollection of papers). Fuzzy logic [55] provides a mathematical foundation for approximate reasoning; fuzzy1

logic controllers have proven very successful in a variety of applications [6, 23, 24, 34]. The parametersof adaptive fuzzy systems have clear physical meanings which facilitates the choice of their initial values.Furthermore, rule-based information can be incorporated into fuzzy systems in a systematic way.Arti�cial neural networks emulate on a small scale the information processing mechanisms found in bio-logical systems which are based on the cooperation of neurons which perform simple operations and on theirability to learn from examples. Arti�cial neural networks have become valuable computational tools in theirown right for tasks such as pattern recognition, control, and forecasting.Fuzzy systems and multilayer perceptrons are computationally equivalent, i.e. they are both universalapproximators [8, 50]. Recurrent neural networks have been shown to be computationally equivalent withTuring machines [43]; whether or not recurrent fuzzy systems are also Turing equivalent remains an openquestion. While the methodologies underlying fuzzy systems and neural networks are quite di�erent, theirfunctional forms are often similar. The development of powerful learning algorithms for neural networkshas been bene�cial to the �eld of fuzzy systems which adopted some learning algorithms; e.g. there exists abackpropagation training algorithms for fuzzy logic systems which are similar to the training algorithms forneural networks [17, 51].1.2 Fuzzy Knowledge Representation in Neural NetworksIn some cases, neural networks can be structured based on the principles of fuzzy logic [16, 36]. Neuralnetwork representations of fuzzy logic interpolation have also been used within the context of reinforcementlearning [3].A typical fuzzy neural network used for intelligent control is shown in �gure 1. Typically, such networks areinitialized with linguistic rules of the formIF x1 is A1 AND x2 is A3 THEN y1 is C1where A1; A3 and C1 are fuzzy sets and x1; x2, and y1 are linguistic input and output variables, respec-tively. The network has an input layer consisting of real-valued input variables (e.g. linguistic variables), afuzzi�cation layer which maps input values xi to fuzzy sets Ai, an interpolation layer which computes theconjunction of all antecedent conditions in a rule (e.g. di�erential softmin operation), a defuzzi�cation layerwhich computes the output for a given rule (e.g. mean of maximum method), and an output layer whichcombines the recommendations from all fuzzy control rules in the rule base (e.g. weighted sum). Thus, fuzzy2

Inputs Antecedent
 Labels

Rules
Labels

Consequent Action

x
1

x 2

A

A

A

A

R

R

R

R

C

C

C

y

y

y

1

2

3

4

1

2

3

4

1

2

3

1

2

3

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5Figure 1: Fuzzy Feedforward Network: A feedforward network used in intelligent control is initializedwith rules of the form IF x1 is A1 AND x2 is A3 THEN y1 is C1. The operations performed by the di�erentlayers are: layer 1: real-valued input variables x1 and x2, layer 2: mapping input variables into fuzzy sets(fuzzi�cation), layer 3: compute conjunction of all antecedent conditions in a rule, layer 4: compute valuesfor consequent labels (defuzzi�cation), and label 5: combine recommendations from all fuzzy control rulesin the rule baseneural networks play the role of fuzzy logic interpolation engines. 1 The rules are then �ne tuned using astandard training algorithm for multilayer perceptrons. The extraction of fuzzy if-then-rules from trainedmultilayer perceptrons has also been investigated [16, 20, 29, 30].There exist applications where the variables of linguistic rules are recursive, i.e. the rules are of the formIF x(t� 1) is � AND u(t� 1) is � THEN x(t) is where u(t� 1) and x(t� 1) represent input and state variables, respectively. The value of the state variablex(t) depends on both the input u(t�1) and the previous state x(t�1). Clearly, feedforward neural networksdo not have the computational capabilities to represent such recursive rules when the depth of the recursionis not known a priori. Recurrent neural networks have the ability to store information over inde�nite periodsof time and are thus potentially useful for representing recursive linguistic rules.1The term fuzzy inference is also often used to describe the function of a fuzzy neural network. We choose the term fuzzylogic interpolation in order to distinguish between the function of fuzzy neural networks and fuzzy logic inference where theobjective is to obtain some properties of fuzzy sets B1; B2; : : : from properties of fuzzy sets A1; A2; : : : with the help of aninference scheme A1;A2; : : :! B1;B2; : : : which is governed by a set of rules [45, 46].3

A large class of problems where the current state depends on both the current input and the previous statecan be modeled by �nite-state automata or their equivalent grammars. It has been shown that recurrentneural networks can represent �nite-state automata [5, 7, 9, 11, 12, 15, 33, 37, 47, 48, 53, 56]. Thus, it isonly natural to ask whether recurrent neural networks can also represent fuzzy �nite-state automata (FFAs)and thus be used to implement recognizers of fuzzy regular grammars.Fuzzy grammars have been found to be useful in a variety of applications such as in the analysis ofX-rays [35], in digital circuit design [27], and in the design of intelligent human-computer interfaces [41].The fundamentals of FFAs have been in discussed in [14, 40, 54] without presenting a systematic method formachine synthesis. Neural network implementations of fuzzy automata have been proposed in the literature[18, 19, 25, 49]. The synthesis method proposed in [18] uses digital design technology to implement fuzzyrepresentations of states and outputs. In [49], the implementation of a Moore machine with fuzzy inputsand states is realized by training a feedforward network explicitly on the state transition table using amodi�ed backpropagation algorithm. The fuzzi�cation of inputs and states reduces the memory size that isrequired to implement the automaton in a microcontroller, e.g. antilock braking systems. In related work, analgorithm for implementing weighted regular languages in neural networks with probabilistic logic nodes wasdiscussed in [26]. A general synthesis method for synchronous fuzzy sequential circuits has been discussedin [52]. A synthesis method for a class of discrete-time neural networks with multilevel threshold neuronswith applications to gray level image processing has been proposed in [42].1.3 Outline of PaperThe purpose of this paper is to show that recurrent networks that can represent DFAs can be easily modi�edto accommodate FFAs. We briey review deterministic, �nite-state automata and their implementation inrecurrent neural networks in section 2. The extension of DFAs to FFAs is discussed in section 3. In section4, we show how FFAs can be implemented in recurrent networks based on previous work on the encoding ofDFAs [32, 31, 33]. In particular, our results show that FFAs can be encoded into recurrent networks suchthat a constructed network assigns membership grades to strings of arbitrary length with arbitrary accuracy.Notice that we do not claim that such a representation can be learned. Simulation results in section 5 validateour theoretical analysis. A summary and directions for future work in section 6 conclude this paper.2 Finite-state Automata and Recurrent Neural NetworksHere we discuss the relationship between �nite-state automata and recurrent neural networks necessary tomapping fuzzy automata into recurrent networks. Most of this can be found in detail in [31] and briey withexperimental veri�cation in [33]. 4

2.1 Deterministic Finite-state AutomataRegular languages represent the smallest class of formal languages in the Chomsky hierarchy [21]. Regularlanguages are generated by regular grammars.De�nition 2.1 A regular grammar G is a quadruple G =< S;N; T; P > where S is the start symbol, N andT are non-terminal and terminal symbols, respectively, and P are productions of the form A! a or A! aBwhere A;B �N and a � T .The regular language generated by G is denoted L(G).Associated with each regular language L is a deterministic �nite-state automaton (DFA) M which is anacceptor for the language L(G), i.e. L(G) = L(M). DFA M accepts only strings which are a member of theregular language L(G).De�nition 2.2 A DFA M is a 5-tuple M =< �; Q;R; F; � > where � = fa1; : : : ; amg is the alphabet of thelanguage L, Q = fq1; : : : ; qng is a set of states, R�Q is the start state, F � Q is a set of accepting statesand � : Q� �! Q de�nes state transitions in M .A string x is accepted by the DFA M and hence is a member of the regular language L(M) if an acceptingstate is reached after the string x has been read by M . Alternatively, a DFA M can also be considered agenerator which generates the regular language L(M).2.2 Network ConstructionVarious methods have been proposed for implementing DFAs in recurrent neural networks [1, 2, 12, 13, 22,28, 32]. We use discrete-time, second-order recurrent neural networks with sigmoidal discriminant functionswhich update their current state according to the following equations:S(t+1)i = h(�i(t)) = 11 + e��i(t) ; �i(t) = bi +Xj;k WijkS(t)j I(t)k ; (1)where bi is the bias associated with hidden recurrent state neurons Si; Ik denotes the input neuron forsymbol ak. The product S(t)j I(t)k directly corresponds to the state transition �(qj; ak) = qi.We have recently proven that DFAs can be encoded in discrete-time, second-order recurrent neural net-works with sigmoidal discriminant functions such that the DFA and constructed network accept the sameregular language [31]. The desired �nite-state dynamics are encoded into a network by programming a smallsubset of all available weights to values +H and �H leading to a nearly orthonormal internal DFA staterepresentation where only one state neuron that corresponds to the current DFA state has a output signal� 1; all other state neurons have output signal � 0. Similarly, the weights of a network's output neuron5

S0 are programmed to +H or �H for correct string classi�cation. The network construction algorithm de-pends on this nearly orthonormal internal DFA state representation for programming DFA state transitions.Instability of the internal representation leads to misclassi�cation of strings.The encoding algorithm leads to the following special form of the equation governing the network dynamics:S(t+1)i = h(x;H) = 11 + eH(1�2x)=2 (2)where x is the input to neuron Si.2.3 Network StabilityThere exist only two kinds of signals in a constructed neural network that models a DFA: Recurrent stateneurons have high output signals only when they correspond to the current DFA state; all other recurrentneurons have low output signals. The stability of the internal DFA representation depend on the value of theweight strength H used to program the state transitions. If H is chosen too small, then the internal DFArepresentation becomes unstable, i.e. state neurons Si which do not correspond to the current DFA state qino longer have output signals � 0. Since our goal is to have a constructed neural network exactly model thestate transitions of some DFA, the problem is to �nd a value H0 such that for H > H0, the internal DFAstate representation remains stable for strings of arbitrary length. We achieve this goal by proving that thereexist appropriate upper and lower bounds for low and high signals, respectively which, if su�ciently tight,guarantee the stability of low and high signals.In the remainder of this section, we state results which establish that stability of the internal represen-tation can be achieved. The proofs of these results can be found in [31].The terms principal and residual inputs will be useful for the following discussion:De�nition 2.3 Let Si be a neuron with low output signal Sti and Sj be a neuron with high output signalStj . Furthermore, let fSlg and fSl0g be sets of neurons with output signals fStl g and fStl0g, respectively, forwhich Wilk 6= 0 and Wil0k 6= 0 for some input symbol ak and assume Sj 2 fSlg. Then, neurons Si and Sjreceive principal inputs of opposite signs from neuron Sj and residual inputs from all other neurons Sl andSl0 , respectively, when the network executes the state transition �(qj; ak) = qi.Low signals are particularly sensitive to becoming corrupted because even though a neuron Sl may notcorrespond to a DFA state qi when a network executes a DFA state transition �(qj; ak) = qi, it may stillreceive residual inputs from other neurons if state transitions �(qx; ak) = ql exist. Over several time steps,neuron Sl then computes an iteration of residual inputs which can ultimately lead to the situation where thelow signal Stl converges toward a high output. Similarly, high signals can become corrupted.The following lemma establishes an upper bound for low signals in a constructed network:6

Lemma 2.1 The low signals are bounded from above by the �xed point �f of the function f8<: f0 = 0f t+1 = h(r � f t) (3)This lemma can be proven by induction on t. It is assumed that each neuron receives residual inputs fromno more than r other neurons. Such an upper bound r obviously exists for any constructed network.It is easy to see that the function to be iterated in equation (3) is f(x; r) = 11 + e(H=2)(1�2rx) . The graphsof the function f(x; r) are shown in �gure 2 for di�erent values of the parameter r.The function f(x; r) has some desirable properties [31]:Lemma 2.2 For any H > 0, the function f(x; r) has at least one �xed point �0f .If f(x; r) has only one �xed point for chosen r and H, then the accumulation of residual inputs in neuronswith initial output signals S0l = 0 causes the iteration f t to converge toward a value � 1. This can causeinstability of the internal DFA state representation since this convergence happens simultaneously for allrecurrent state neurons.The following lemma states that more desirable �xed points may exist:Lemma 2.3 There exists a value H�0 (r) such that for any H > H�0 (r), f(x; r) has three �xed points0 < ��f < �0f < �+f < 1.The following lemma shows the convergence property of iterations of the function f(x; r):Lemma 2.4 If f(x; r) has three �xed points ��f ; �0f , and �+f , thenlimt!1 f t = 8>>><>>>: ��f x0 < �0f�0f x0 = �0f�+f x0 > �0f (4)The above lemma can be proven by de�ning an appropriate Lyapunov function L and showing that L hasminima at ��f and �+f and that f t converges toward one of these minima. Notice that the �xed point �0f isunstable.Iteration towards a �xed point is only a necessary condition for the stability of low signals. In addition,convergence must occur monotonically:Lemma 2.5 Let f0; f1; f2; : : : denote the �nite sequence computed by successive iteration of the function f .Then we have f0 < f1 < : : : < ��f . 7

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

y

x

r=1

r=2

r=4

r=10

u=0.0

u=0.1

u=0.4

u=0.9Figure 2: Fixed Points of the Sigmoidal Discriminant Function: Shown are the graphs of thefunction f(x; r) = 11+eH(1�2rx)=2 (dashed graphs) for H = 8 and r = f1; 2; 4; 10g and the functionp(x; u) = 11+eH(1�2(x�u))=2 (dotted graphs) for H = 8 and u = f0:0; 0:1; 0:4;0:9g. Their intersection withthe function y = x shows the existence and location of �xed points. In this example, f(x; r) has three�xed points for r = f1; 2g, but only one �xed point for r = f4; 10g and p(x; u) has three �xed points foru = f0:0; 0:1g, but only one �xed point for u = f0:6; 0:9g.With these properties, we can quantify the value H�0 (r) such that for any H > H�0 (r), f(x; r) has three�xed points. The larger r, the larger H must be chosen in order to guarantee the existence of three �xedpoints. If H is not chosen su�ciently large, then f t converges to a unique �xed point 0:5 < �f < 1. Thefollowing lemma expresses a quantitative condition which guarantees the existence of three �xed points:Lemma 2.6 The function f(x; r) = 11 + e(H=2)(1�2rx) has three �xed points 0 < ��f < �0f < �+f < 1 if H ischosen such that H > H�0 (r) = 2(1 + (1� x) log(1�xx))1� xwhere x satis�es the equation r = 12x(1 + (1� x) log(1�xx))The contour plots in �gure 3 show the relationship between H and x for various values of r. If H is chosensuch that H > H0(r), then three �xed points exist; otherwise, only a single �xed point exists. The numberand the location of �xed points depends on the values of r and H. Thus, we write ��f (r;H), �0f (r;H), and�+f (r;H), to denote the stable low, the unstable, and the stable high �xed point, respectively. We will use�f as a generic name for any �xed point of a function f .Similarly, we can obtain a lower bound for high signals in a constructed network:Lemma 2.7 Let �f denote the �xed point of the recursive function f , i.e. limt!1 f t = �f . Then the high sig-nals in a constructed recurrent neural network are bounded from below by the �xed point �+g of the recursively8

0

2

4

6

8

10

12

14

16

18

20

0 0.2 0.4 0.6 0.8 1

H

x

r=1

r=1

r=1.05

r=1.05

r=1.5

r=1.5

r=0.95

r=0.95

r=0.9

r=0.9

r=0.8

r=0.8

r=0.7

r=0.7

r=2

r=2

r=3

r=3

r=5

r=5

r=10

r=10

H (r)0

Figure 3: Existence of Fixed Points: The contour plots of the function h(x; r) = x (dotted graphs) showthe relationship between H and x for various values of r. If H is chosen such that H > H0(r) (solid graph),then a line parallel to the x-axis intersects the surface satisfying h(x; r) = x in three points which are the�xed points of h(x; r).de�ned function g 8<: g0 = 1gt+1 = h(gt � ��f) (5)This can be proven by induction on t. Notice that we assume that the iteration f t converges toward ��f .The graphs of the function g(x; u) = g(x; ��f) for some values of u are shown in �gure 2.We can apply the same technique for �nding conditions for the existence of �xed points of g(x; u) as inthe case of f(x; r). In fact, the function that when iterated generates the sequence g0; g1; g2; : : : is de�nedby g(x; u) = g(x; �f) = 11 + e(H=2)(1�2(x���f)) = 11 + e(H0=2)(1�2r0x)) (6)with H 0 = H(1 + 2�f); r0 = 11 + 2�f (7)Since we can iteratively compute the value of �f for given parameters H and r, we can repeat the originalargument with H0 and r0 in place of H and r to �nd the conditions under which g(r; x) has three �xedpoints. This results in the following lemma:Lemma 2.8 The function g(x; ��f) = 11 + e(H=2)(1�2(x���f)) has three �xed points 0 < ��g < �0g < �+g < 1 ifH is chosen such that 9

H > H+0 (r) = 2(1 + (1 � x) log(1�xx))(1 + 2��f)(1� x)where x satis�es the equation 11 + 2��f = 12x(1 + (1 � x) log(1�xx))We now de�ne stability of recurrent networks constructed from DFAs:De�nition 2.4 An encoding of DFA states in a second-order recurrent neural network is called stable if allthe low signals are less than �0f (r;H), and all the high signals are greater than �0g(r;H).The following result states conditions under which a constructed recurrent network implements a given DFAcan be obtained by assuming a worst case where all neurons are assumed to contribute to the instability oflow and high signals:Theorem 2.1 For some given DFA M with n states and m input symbols, let r denote the maximum num-ber of transitions to any state over all input symbols of M . Then, a sparse recurrent neural network withn+ 1 sigmoidal state neurons and m input neurons can be constructed from M such that the internal staterepresentation remains stable if the following three conditions are satis�ed:(1) ��f (r;H) < 1r (12 + �0f (r;H)H)(2) �+g (r;H) > 12 + ��f (r;H) + �0g(r;H)H(3) H > max(H�0 (r);H+0 (r))Furthermore, the constructed network has at most 3mn second-order weights with alphabet �w = f�H; 0;+Hg,n+ 1 biases with alphabet �b = f�H=2g, and maximum fan-out 3m.The number of weights and the maximum fan-out follow directly from the DFA encoding algorithm.The above conditions implicitly put lower bounds on the magnitude of H which guarantee stable �nite-state dynamics for a network of given size. As such, they represent worst cases, i.e. the �nite-state dynamicsof a given neural network implementation may remain stable for smaller values of H even for very largenetworks [33].Since deterministic and fuzzy �nite-state automata share a common underlying structure expressed in termsof state transitions, we will be able to use the result on the stability of the network dynamics for DFAs toimplement fuzzy �nite-state automata. 10

3 Fuzzy Finite-state AutomataHere we formally de�ne fuzzy �nite-state automata (FFA) and give a simple example.3.1 De�nitions and PropertiesWe begin by de�ning the class of fuzzy automata for which we develop a synthesis method for recurrentneural networks:De�nition 3.1 A fuzzy regular grammar eG is a quadruple eG =< S;N; T; P > where S is the start symbol,N and T are non-terminal and terminal symbols, respectively, and P are productions of the form A �! a orA �! aB where A;B �N , a � T and 0 � � � 1.Unlike in the case of DFAs where strings either belong or do not belong to some regular language, strings ofa fuzzy language have graded membership:De�nition 3.2 Given a regular fuzzy grammar eG, the membership grade �G(x) of a string x 2 T in theregular language L(eG) is the maximum value of any derivation of x, where the value of a speci�c derivationof x is equal to the minimum weight of the productions used:�G(x) = �G(S �) x) = maxS �)x min[�G(S ! �1); �G(�1 ! �2); : : : ; �G(�m ! x)]This is akin to the de�nition of stochastic regular languages [38] where the min-and max-operators arereplaced by the product- and sum-operators, respectively. Both fuzzy and stochastic regular languages areexamples of weighted regular languages [39].De�nition 3.3 A fuzzy �nite-state automaton (FFA) fM is a 6-tuple fM =< �; Q; Z; eR; �; ! > where �, Q,and q0 are the same as in DFAs; Z is a �nite output alphabet, eR is the fuzzy initial state, � : ��Q�[0; 1]! Qis the fuzzy transition map and ! : Q! Z is the output map.In this paper, we consider a restricted type of fuzzy automaton whose initial state is not fuzzy, and ! is afunction from F to Z, where F is a non fuzzy subset of states, called �nal states. Any fuzzy automaton asdescribed in de�nition 3.3 is equivalent to a restricted fuzzy automaton [10]. Notice that a FFA reduces toa conventional DFA by restricting the transition weights to 1.As in the case of DFAs and regular grammars, there exist a correspondence between FFAs and fuzzy regulargrammars [10]:Theorem 3.1 For a given fuzzy grammar eG, there exists a fuzzy automaton fM such that L(eG) = L(fM).11

Our goal is to use only continuous (sigmoidal and linear) discriminant functions for the neural networkimplementation of FFAs. The following results greatly simpli�es the encoding of FFAs in recurrent networkswith continuous discriminant functions:Theorem 3.2 Given a regular fuzzy automaton fM , there exists a deterministic �nite-state automaton Mwith output alphabet Z � f� : � is a production weightg [f0g which computes the membership function� : �� ! [0; 1] of the language L(fM).The constructive proof can be found in [44]. An immediate consequence of this theorem is the followingcorollary:Corollary 3.1 Given a regular fuzzy grammar eG, there exist an equivalent unambiguous grammar G inwhich productions have the form A 1:0! aB or A �! a:3.2 ExampleConsider a fuzzy regular grammar with non-terminal symbols N = fA;Bg, terminal symbols T = f0; 1g andthe following production rules:S 0:3! 0S S 0:5! 0A S 0:7! 0B S 0:3! 1S S 0:2! 1A A 0:5! 1 B 0:4! 1The FFA which accepts the strings generated by the above grammar is shown in �gure 2a. Only transitionswhich correspond to the production rules are shown; implicitly, all other transitions leads to a rejectinggarbage state. The deterministic acceptor of the FFA which computes the same string membership is shownin �gure 2b.4 Recurrent Neural Network Architecture for Fuzzy AutomataWe describe a method for encoding any fuzzy �nite-state automata into a recurrent neural network. Theresult of theorem 2.1 concerning the stability of the programmed network dynamics applies to �nite-stateautomata whose states are crisp, i.e. the degree with which a state is the automaton's current state iseither 0 or 1. On the other hand, FFAs can be in several states at any given time with di�erent degrees ofvagueness; vagueness is speci�ed by a real number from the interval [0; 1].Theorem 3.2 enables us to transform any FFA into a deterministic automaton which computes the samemembership function � : �� ! [0; 1]. We just need to demonstrate how to implement the computation of �with continuous discriminant functions. 12

1

2

3

4
1

2

3

4

5

6 7

0,1/0.3

0/0.5

1/0.2

0/0.7
1/0.4

1/0.5

0

1

0

1 0.5

1

1 0.2

0.3

1
00

0 0
1

0

1

(a) (b)Figure 4: Transformation of a FFA into its corresponding DFA: (a) A fuzzy �nite-state automatonwith weighted state transitions. State 1 is the automaton's start state; accepting states are drawn with doublecircles. Only paths that can lead to an accepting state are shown (transitions to garbage states are not shownexplicitly). (b) corresponding deterministic �nite-state automaton which computes the membership functionstrings. The accepting states are labeled with the degree of membership. Notice that all transitions in theDFA have weight 1.For that purpose, we augment the network architecture used for encoding DFAs with additional weightswhich connect the recurrent state neurons to a linear output neuron. The recurrent neurons shown in �gure3 implement the desired �nite-state dynamics, i.e. transitions between crisp states. We showed in section2.3 how to make the �nite-state dynamics stable for arbitrary string lengths. The weights connecting therecurrent state neurons with the linear output neuron are just the memberships assigned to the DFA statesafter the transformation of a FFA into an equivalent DFA. The algorithm for encoding FFAs in second-orderrecurrent neural networks is shown in �gure 4.Recall the upper and lower bounds on the low and high signals, respectively (lemmas 2.1 and 2.8). Let�i denote the graded memberships assigned to DFA states qi. In the worst case, the network computes fora given string the fuzzy membership function�RNN = �i �+g + (nacc � 1)��fwhere nacc is the number of DFA states with �i > 0.13

z
−1

input neurons

recurrent state neurons

network output neuron

W
ijk

second−order weights

Finite State Dynamics

fuzzy membership weights

String Membership

Figure 5: Recurrent Network Architecture for Fuzzy Finite-state Automata: The architectureconsists of two parts: Recurrent state neurons encode the state transitions of the deterministic acceptor.These recurrent state neurons are connected to a linear output neuron which computes string membership.Since ��f and �+g converge toward 0 and 1, respectively for increasing values of H, �RNN converges to-ward �i. Notice that j�RNN � �ij can be made arbitrarily small by increasing H.5 Simulation ResultsIn order to empirically test our encoding methodology, we examine how well strings from a randomly gener-ated FFAs are classi�ed by a recurrent neural network in which the FFA is encoded. We randomly generateddeterministic acceptors for fuzzy regular languages over the alphabet f0; 1g with 100 states as follows: Foreach DFA state, we randomly generated a transition for each of the two input symbols to another state.Each accepting DFA state qi was assigned a membership 0 < �i < 1; for all non-accepting states qj, we set�j = 0. We encoded these acceptors into recurrent networks with 100 recurrent state neurons, two inputneurons (one for each of the two input symbols 0 and 1), and one linear output neuron. We measured theirperformance on 100 randomly generated strings of length 100 whose membership was determined from theirdeterministic acceptors. The graphs in �gure 5 show the average absolute error of the network output as afunction of the weight strength H used to encode the �nite-state dynamics for DFAs where 1%, 5%, 20%,30%, 50% and 100% of all states had labels 0 < �i < 1. We observe that the error exponentially decreaseswith increasing hint strength H, i.e. the average output error can be made arbitrarily small. The value of H14

Input: FFA M =< �;Q;R; F;Z; �; ! > with � = fa1; a2; : : : ; aKg, Q = fq1; q2; : : : ; qNg, R = fq1g is the crisp startstate, F � Q is the set of accepting states, Z is the output alphabet, � : � � Q ! Q are the state transitions,! : Q! Z is the output map.Output: Second-order recurrent neural network with L(RNN) = L(FFA), i.e. the recurrent network assigns witharbitrary precision the same membership to all strings as the fuzzy automaton. The network is unique up to labelingof neurons.Algorithm Initialization:1. Transform M into a unique deterministic acceptor M 0 with N 0 > N states that computes the stringmembership �G for arbitrary strings. Let M 0 be in state q0i after some string s has been read;then the label 0 � �i � 1 associated with state q0i indicates the membership assigned to s by M .2. choose N 0 neurons with sigmoidal discriminant function gx) = 11+e�x and onenonrecurrent output neuron with linear discrimiant function.3. for each ak 2 � construct an input vector (0; : : : ; 0; Ik�1; 1; Ik+1; 0; : : : ; 0) of length K4. choose weight strength H according to theorem 2.1Network Construction:5. for i = 1 : : :N 0bi = �H=2;for j = 1 : : :N 0for k = 1 : : :KWijk = +H if �(qj ; ak) = qi; Wjjk = �H if �(qj; ak) 6= qj;W0ik = �i;Network Dynamics:6. St+1i = g(bi + Xj;k;j>0Wijk Stj Itk) (i > 0)St+10 =Xj>0 �jSt+1jNetwork Initialization:7. Before reading a new string, set the initial network state toS0 = (S00 ; S01 ; : : : ; S0N 0) = (S00 ; 1; 0; : : : ; 0); the value of S00 is computed as S00 = �1 (see network dynamics). .Network Performance:8. The output of Sf0 after reading a string s of length f is the string membership �G(s).Network Complexity:9. number of neurons: N'+1; number of weights: O(MN'); maximum fan-out: 3Mweight alphabet �W = f�H;�H=2; 0; H;�1; : : : ; �N 0gFigure 6: Algorithm for Encoding Arbitrary FFAs in Second-Order Recurrent Neural Networks15

0

1

2

3

4

5

6

7

4 6 8 10 12 14 16 18 20

A
ve

ra
ge

 A
bs

ol
ut

e
N

et
w

or
k

O
ut

pu
t E

rr
or

Weight Strength H

1%
5%

20%

30%

50%

100%

Figure 7: Network Performance: The graphs show average absolute error of the network output whentested on 100 randomly generated strings of length 100 as a function of the weight strength H used to encodethe �nite-state dynamics of randomly generated DFAs with 100 states. The percentages of DFA states with�i > 0 were 1%, 5%, 20%, 30%, 50% and 100% respectively, of all DFA states.for which the dynamics of all 6 DFAs remains stable for strings of arbitrary length is approximatelyH � 9:8.6 ConclusionsWe have proposed a method for representing fuzzy �nite-state automata (FFAs) in recurrent neural networkswith continuous discriminant functions. Based on a previous result on encoding stable representations of�nite-state dynamics in recurrent networks, we have shown how FFAs can be encoded in recurrent networksthat compute string membership functions with arbitrary accuracy. The method uses an algorithm whichtransforms FFAs into equivalent DFAs which compute fuzzy string membership. The fuzzy FFA states aretransformed into crisp DFA states. A membership label �i with 0 < �i � 1 is associated with each acceptingDFA state; nonaccepting DFA states have label �i = 0. The membership of a string is equal to the mem-bership label of the last visited DFA state.A recurrent neural network is constructed from the original architecture used for DFA encodings by con-necting the recurrent state neurons to a linear output neuron. The weights of these connections are set tothe value of the membership labels of the DFA states. The accuracy of the computation of the string mem-bership function depends on the network size, the number of DFA states which membership label �i > 0,16

and the weight strength H used to encode the �nite-state dynamics in the recurrent network. The larger His chosen, the more accurate the network computes membership functions.An interesting question is whether representations of FFAs can be learned through training on examplestrings and how weighted production rules are represented in trained networks. Such insight may lead to amore direct encoding of FFAs in recurrent networks without the additional step of transforming FFAs intoequivalent DFAs which compute the same string membership functions, i.e. a fuzzy representation of statesand outputs. This may lead to smaller analog VLSI implementations of �nite-state controllers.One problem with training fully recurrent networks with sigmoidal discriminant functions to behave likeFFAs is the instability of learning algorithms based on gradient descent, i.e. it can become very di�cultto train sigmoidal neurons to target values which are outside of the saturated regions of the discriminantfunction. This suggests the use of continuous multilevel threshold neurons [42] which also have the potentialfor stable internal DFA state representations. Whether training such networks is feasible remains an openquestion.References[1] N. Alon, A. Dewdney, and T. Ott, \E�cient simulation of �nite automata by neural nets," Journal ofthe Association for Computing Machinery, vol. 38, no. 2, pp. 495{514, April 1991.[2] R. Alquezar and A. Sanfeliu, \An algebraic framework to represent �nite state machines in single-layerrecurrent neural networks," Neural Computation, vol. 7, no. 5, p. 931, 1995.[3] H. Berenji and P. Khedkar, \Learning and �ne tuning fuzzy logic controllers through reinforcement,"IEEE Transactions on Neural Networks, vol. 3, no. 5, pp. 724{740, 1992.[4] J. Bezdek, ed., IEEE Transactions on Neural Networks { Special Issue on Fuzzy Logic and NeuralNetworks, vol. 3. IEEE Neural Networks Council, 1992.[5] M. Casey, Computation in discrete-time dynamical systems. PhD thesis, Department of Mathematics,University of California at San Diego, La Jolla, CA, 1995.[6] S. Chiu, S. Chand, D. Moore, and A. Chaudhary, \Fuzzy logic for control of roll and moment for aexible wing aircraft," IEEE Control Systems Magazine, vol. 11, no. 4, pp. 42{48, 1991.[7] A. Cleeremans, D. Servan-Schreiber, and J. McClelland, \Finite state automata and simple recurrentrecurrent networks," Neural Computation, vol. 1, no. 3, pp. 372{381, 1989.17

[8] G. Cybenko, \Approximation by superpositions of a sigmoidal function," Mathematics of Control, Sig-nals, and Systems, vol. 2, pp. 303{314, 1989.[9] S. Das and M. Mozer, \A uni�ed gradient-descent/clustering architecture for �nite state machine induc-tion," in Advances in Neural Information Processing Systems 6 (J. Cowan, G. Tesauro, and J. Alspector,eds.), (San Francisco, CA), pp. 19{26, Morgan Kaufmann, 1994.[10] D. Dubois and H. Prade, Fuzzy sets and systems: theory and applications, vol. 144 of Mathematics inScience and Engineering, pp. 220{226. Academic Press, 1980.[11] J. Elman, \Finding structure in time," Cognitive Science, vol. 14, pp. 179{211, 1990.[12] P. Frasconi, M. Gori, M. Maggini, and G. Soda, \Representation of �nite state automata in recurrentradial basis function networks," Machine Learning, 1995. In press.[13] P. Frasconi, M. Gori, and G. Soda, \Injecting nondeterministic �nite state automata into recurrentnetworks," tech. rep., Dipartimento di Sistemi e Informatica, Universit�a di Firenze, Italy, Florence,Italy, 1993.[14] B. Gaines and L. Kohout, \The logic of automata," International Journal of General Systems, vol. 2,pp. 191{208, 1976.[15] C. Giles, C. Miller, D. Chen, H. Chen, G. Sun, and Y. Lee, \Learning and extracting �nite stateautomata with second-order recurrent neural networks," Neural Computation, vol. 4, no. 3, p. 380,1992.[16] P. Goode and M. Chow, \A hybrid fuzzy/neural systems used to extract heuristic knowledge froma fault detection problem," in Proceedings of the Third IEEE Conference on Fuzzy Systems, vol. III,pp. 1731{1736, 1994.[17] V. Gorrini and H. Bersini, \Recurrent fuzzy systems," in Proceedings of the Third IEEE Conference onFuzzy Systems, vol. I, pp. 193{198, 1994.[18] J. Grantner and M. Patyra, \Synthesis and analysis of fuzzy logic �nite state machine models," inProceedings of the Third IEEE Conference on Fuzzy Systems, vol. I, pp. 205{210, 1994.[19] J. Grantner and M. Patyra, \VLSI implementations of fuzzy logic �nite state machines," in Proceedingsof the Fifth IFSA Congress, pp. 781{784, 1993.[20] Y. Hayashi and A. Imura, \Fuzzy neural expert system with automated extraction of fuzzy if-thenrules from a trained neural network," in Proceedings of the First IEEE Conference on Fuzzy Systems,pp. 489{494, 1990. 18

[21] J. Hopcroft and J. Ullman, Introduction to Automata Theory, Languages, and Computation. Reading,MA: Addison-Wesley Publishing Company, Inc., 1979.[22] B. Horne and D. Hush, \Bounds on the complexity of recurrent neural network implementations of�nite state machines," in Advances in Neural Information Processing Systems 6, pp. 359{366, MorganKaufmann, 1994.[23] W. J. M. Kickert and H. van Nauta Lemke, \Application of a fuzzy controller in a warm water plant,"Automatica, vol. 12, no. 4, pp. 301{308, 1976.[24] C. Lee, \Fuzzy logic in control systems: fuzzy logic controller," IEEE Transactions on Man, Systems,and Cybernetics, vol. SMC-20, no. 2, pp. 404{435, 1990.[25] S. Lee and E. Lee, \Fuzzy neural networks," Mathematical Biosciences, vol. 23, pp. 151{177, 1975.[26] T. Ludermir, \Logical networks capable of computing weighted regular languages," in Proceedings ofthe International Joint Conference on Neural Networks 1991, vol. II, pp. 1687{1692, 1991.[27] S. Mensch and H. Lipp, \Fuzzy speci�cation of �nite state machines," in Proceedings of the EuropeanDesign Automation Conference, pp. 622{626, 1990.[28] M. Minsky, Computation: Finite and In�nite Machines, ch. 3, pp. 32{66. Englewood Cli�s, NJ: Prentice-Hall, Inc., 1967.[29] S. Mitra and S. Pal, \Fuzzy multilayer perceptron, inferencing and rule generation," IEEE Transactionson Neural Networks, vol. 6, no. 1, pp. 51{63, 1995.[30] T. Nishina, M. Hagiwara, and M. Nakagawa, \Fuzzy inference neural networks which automaticallypartition a pattern space and extract fuzzy if-then rules," in Proceedings of the Third IEEE Conferenceon Fuzzy Systems, vol. II, pp. 1314{1319, 1994.[31] C. Omlin and C. Giles, \Constructing deterministic �nite-state automata in recurrent neural networks,"Journal of the ACM. Accepted for publication. A revised version of U. of Maryland TR UMIACS-TR-95-50.[32] C. Omlin and C. Giles, \Constructing deterministic �nite-state automata in sparse recurrent neuralnetworks," in IEEE International Conference on Neural Networks (ICNN'94), pp. 1732{1737, 1994.[33] C. Omlin and C. Giles, \Stable encoding of large �nite-state automata in recurrent neural networkswith sigmoid discriminants," Neural Computation, vol. 8, no. 4, 1996.[34] C. Pappis and E. Mamdani, \A fuzzy logic controller for a tra�c junction," IEEE Transactions onSystems, Man, and Cybernetics, vol. SMC-7, no. 10, pp. 707{717, 1977.19

[35] A. Pathak and S. Pal, \Fuzzy grammars in syntactic recognition of skeletal maturity from x-rays," IEEETransactions on Systems, Man, and Cybernetics, vol. 16, no. 5, pp. 657{667, 1986.[36] C. Perneel, J.-M. Renders, J.-M. Themlin, and M. Acheroy, \Fuzzy reasoning and neural networks fordecision making problems in uncertain environments," in Proceedings of the Third IEEE Conference onFuzzy Systems, vol. II, pp. 1111{1125, 1994.[37] J. Pollack, \The induction of dynamical recognizers," Machine Learning, vol. 7, pp. 227{252, 1991.[38] M. Rabin, \Probabilistic automata," Information and Control, vol. 6, pp. 230{245, 1963.[39] A. Salommaa, \Probabilistic and weighted grammars," Information and Control, vol. 15, pp. 529{544,1969.[40] E. Santos, \Maximin automata," Information and Control, vol. 13, pp. 363{377, 1968.[41] H. Senay, \Fuzzy command grammars for intelligent interface design," IEEE Transactions on Systems,Man, and Cybernetics, vol. 22, no. 5, pp. 1124{1131, 1992.[42] J. Si and A. Michel, \Analysis and synthesis of a class of discrete-time neural networks with multilevelthreshold neurons," IEEE Transactions on Neural Networks, vol. 6, no. 1, p. 105, 1995.[43] H. Siegelmann and E. Sontag, \Turing compatability with neural nets," Applied Mathematics Letters,vol. 4, no. 6, pp. 77{80, 1991.[44] M. Thomason and P. Marinos, \Deterministic acceptors of regular fuzzy languages," IEEE Transactionson Systems, Man, and Cybernetics, no. 3, pp. 228{230, 1974.[45] K. Thornber, \The �delity of fuzzy-logic inference," IEEE Transactions on Fuzzy Systems, vol. 1, no. 4,pp. 288{297, 1993.[46] K. Thornber, \A key to fuzzy-logic inference," International Journal of Approximate Reasoning, vol. 8,pp. 105{121, 1993.[47] P. Tino, B. Horne, and C.L.Giles, \Finite state machines and recurrent neural networks { automataand dynamical systems approaches," Tech. Rep. UMIACS-TR-95-1, Institute for Advance ComputerStudies, University of Maryland, College Park, MD 20742, 1995.[48] P. Tino and J. Sajda, \Learning and extracting initial mealy machines with a modular neural networkmodel," Neural Computation, vol. 7, no. 4, pp. 822{844, 1995.[49] F. Unal and E. Khan, \A fuzzy �nite state machine implementation based on a neural fuzzy system,"in Proceedings of the Third International Conference on Fuzzy Systems, vol. 3, pp. 1749{1754, 1994.20

[50] L.-X. Wang, Adaptive Fuzzy Systems and Control: Design and Stability Analysis. Englewood Cli�s, NJ:Prentice-Hall, 1994.[51] L.-X. Wang, \Fuzzy systems are universal approximators," in Proceedings of the First InternationalConference on Fuzzy Systems, pp. 1163{1170, 1992.[52] T. Watanabe, M. Matsumoto, and M. Enokida, \Synthesis of synchronous fuzzy sequential circuits," inProceedings of the Third IFSA World Congress, pp. 288{291, 1989.[53] R. Watrous and G. Kuhn, \Induction of �nite-state languages using second-order recurrent networks,"Neural Computation, vol. 4, no. 3, p. 406, 1992.[54] W. Wee and K. Fu, \A formulation of fuzzy automata and its applications as a model of learningsystems," IEEE Transactions on System Science and Cybernetics, vol. 5, pp. 215{223, 1969.[55] L. Zadeh, \Fuzzy sets," Information and Control, vol. 8, pp. 338{353, 1965.[56] Z. Zeng, R. Goodman, and P. Smyth, \Learning �nite state machines with self-clustering recurrentnetworks," Neural Computation, vol. 5, no. 6, pp. 976{990, 1993.

21

