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ABSTRACT Granular computing has advantage of knowledge discovery for complex data. In the paper,

we present Fuzzy Granular Hyperplane Classifiers (FGHCs) for data classification from a new angle of

Granular Computing. First, we introduce a fuzzy granular hyperplane concept by defining fuzzy granule,

fuzzy granular vector, metrics and operators. Next, for binary classification problem, we present solving

optimal fuzzy granular hyperplane through evolution strategy; the learning algorithm of parameters and

the prediction algorithm of instances are also proposed. Finally, a multi-classification prediction model is

designed by combining a set of Fuzzy Granular Hyperplane Classifiers based on vote strategy. In order to

evaluate performance, we employed 10-fold cross validation to verify on UCI dataset and Alzheimer’s Dis-

ease Voice dataset. Theoretical analysis and experiments demonstrated that FGHCs have good performance.

INDEX TERMS Fuzzy granular hyperplane, machine learning, granular computing.

I. INTRODUCTION

The classification of data is a general task in artificial intel-

ligence. Assuming that some data points belong to one of

two categories respectively, it is a goal for a new data point

to make a correct decision to classify. Although there are

lots of hyperplanes that can classify data points, there must

exist an optimal hyperplane that can divide two categories

at maximum margin. In this paper, we will discuss how to

get such the best hyperplane in granular space based on

fuzzy granulation to implement data classification with high

accuracy.

In machine learning, Support Vector Machines (SVMs,

[1]) is one of supervised learning approaches that can analyze

trained data for classification. It is also a machine learn-

ing approach on the basis of principle of statistical learning

theory. It includes superiority in prediction of small-scale

instance sets, high-dimensional and nonlinear pattern recog-

nition problems, and it can largely avoid the problems of

‘‘dimensional disaster’’ and ‘‘over-fitting’’. Also, it has a

solid theoretical foundation, a simple and straightforward
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mathematical model. Hence in the area of pattern recognition,

time series prediction, function estimation, regression analy-

sis,etc., it has made considerable progress. It is also widely

used in EEG signal analysis [2], [3], software effort estima-

tion [4], disease detection [5], [6], medical image recognition

[7], molecular and materials application [8], quantum com-

puting [9]–[11] and so on.

The standard SVMs learning algorithms may be sum-

marized as solving a quadratic programming (QP) problem

with constraints. For a small-scale quadratic optimization

problem, classical algorithms such as Newton’s method and

interior point approach can get good solutions. However,

when training set is large, the complexity of algorithms will

be so high that the efficiency will be low. At present, some

advanced training algorithms are to decompose a complexQP

problem into a suite of small-scale QP problems. According

to some iterative strategies, these small QP problems can be

solved respectively. Then, the approximate solution of the

original large-scale QP problem can be calculated. Moreover,

it will be gradually converged to the optimal solution.

In recent years, some scholars have also proposed some

new SVMs methods like granular SVMs. The main strategy

of granular SVMs is as follows: first, a series of information
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granules can be obtained by constructing the granular space

by division; then, learning is required in each information

granule; after that, a decision function on SVMs can be

obtained by clustering information (data, rules or attributes

etc.) of granules [12]–[14]. The learning principle can convert

a linearly inseparable problem into a suite of linearly sepa-

rable ones through data granulation to obtain some decision

functions. This also intensifies generalization performance of

model. In other words, it can be obtained a hyperplane with

wider margin in the training processing.

To overcome influences of noise and outliers on the SVMs

[15], [16], Lin and his colleagues [17] proposed a Fuzzy Sup-

port Vector Machines (FSVM) by combining fuzzy mathe-

matics and SVMs, which has good performance in processing

noise data. The primary idea of this approach is to add a

membership degree in the training instance set; the member-

ship degree of support vectors is much larger, but that of non

support vectors and outliers are smaller; thus, impacts from

noise points, outliers and non support vectors to an optimal

hyperplane can be reduced by the membership degree. It is

of importance for FSVM how to determine the membership

value, i.e., the weight of each instance. Some researchers

proposed a membership function determined method based

on class center; they adopted the distance between a instance

point and its cluster as the degree of membership [17]–[19].

In the case, the membership function may depend heavily

on the geometry of instances, so it may reduce the degree

of membership associated with support-vectors. Zhang et

al. [20] presented an approach about membership degrees

determined on the basis of intra class hyperplane distance;

they employed the distance between a instance point and

its inner hyperplane as the membership function. In their

scheme, membership functions rely lightly on geometry of

a instance set and support vectors can obtain a larger degree

of membership.

Statistical theory systematically studies machine learning

problems, especially in the case of limited instances. SVMs

and relative algorithms generated under theoretical frame-

work show many superior performances in theory and prac-

tical applications.

Granular computing is a discipline that specializes in think-

ing, problem solutions and theory of information processing

patterns on the basis of granular structure. It is also a new

computing paradigm in the study of intelligent information

handling. From angle of AI, granular computing is a nat-

ural model that simulates human thinking and solves com-

plex large-scale problems. Deriving from practical problems,

it can replace an exact solution with an approximate solu-

tion to achieve the purpose of simplifying the problem and

improving the solving efficiency.

As early as 1979, Zade presented fuzzy set theory and

fuzzy information granulation problem at first [21]. He

thought that human cognitive ability can be summed up

three primary characteristics of granulation, organization and

causality [22]–[25]. In 1997, Zadeh first proposed the concept

of granular computing [23]. Then lots of scholars in the

world studied the problem, and increasingly established a

new direction in artificial intelligence. Pedrycz [26] identified

the principles of Granular Computing and showed how gran-

ules are built and then adopted in giving description of data

relationships. Yao [27] first presented three-way decisions

concept, acceptance, abstain and reject, in 2009. After that,

a summary of three-way decisions theory was built on the

basis of the notions of acceptance, rejection, and noncommit-

ment [28], [29]. The theory is an addition of binary-decision

model. Miao and his colleagues [30] proposed three-level

model of granular spaces (the universe, the basis and the

granular structure) in set-theoretic formulation. They estab-

lished three-level model of granular spaces in Pawlak rough

sets [31] by using the definability defined by the logic lan-

guageWang et al. [32] presented the diagram for relationship

between three basic modes of granular computing. Also,

they analyzed the feasibility of granular computing for big

data processing. Hu and his colleagues [33] measured qual-

ity of features in multi-label learning by introducing fuzzy

mutual information and developed effective approaches to

guide section ofmulti-label feature. The algorithms can select

from streaming features and be used for ordinal multi-label

learning.

In addition, Granular Computing shows many conceptual

developments, such as graphs [34], information tables [35],

knowledge representation [36], clustering [37], rule cluster-

ing [38], classification [39] etc. There are a lot of applications

of Granular Computing. And these applications like forecast-

ing time series [40], [41], manufacturing [42], search encryp-

tion voice [43], prediction tasks [44], concept learning [45],

optimization [46], K-nearest granule classifiers [47], attribute

reduction [48], analysis of microarray data [49] and so on, are

reported in recent studies. It is of worthy of emphasizing that

information granules infiltrate almost all researches.

In this paper, method proposed is composed of two phases,

parameters learning and prediction. When parameters learn-

ing, we convert instances into fuzzy granules. In the fuzzy

granular space, loss function is created and parameters are

solved by evolution strategy. When predicting, instances are

converted into fuzzy granules and predicted by decision func-

tion. The processes are almost handled in the fuzzy granular

space. Overview is as shown in Figure 1.

Contributions of the paper have three aspects. First,

We define concepts of a fuzzy granule, a fuzzy granu-

lar vector, metrics and operators. Moreover, the concept

of a fuzzy granular hyperplane is introduced. Second,

on the basis of these, we present quickly solving opti-

mal fuzzy granular hyperplane parameters through the evo-

lution strategy. According to them, we design algorithms

on parameters’ learning and instances’ prediction, which

can solve a binary classification problem. Third, for a

multi-classification problem, we adopt divide-and-conquer

strategy, i.e., transforming a multi-classification problem

into several binary classification problems, to obtain solu-

tions. Also, we design a multi-class prediction model based

on FGHCs.
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FIGURE 1. Overview of method.

II. FROM GRANULAR COMPUTING TO CLASSIFICATION

In lots of cases, granularity of human thinking and con-

ceptual building are uncertain, rather than exact. Informa-

tion fuzzy granulation is generally achieved by a fuzzy

binary relationship, and fuzzy granulation is executed in

whole fuzzy granular space. In this paper, fuzzy granules

are obtained by fuzzy granulation, and then a fuzzy granu-

lar vector is formed by the granules, and a fuzzy granular

hyperplane is constructed by fuzzy granular vectors. Thus,

a fuzzy granular space is composed of fuzzy hyperplanes.

In a fuzzy granular space, we also define measurements

and operators, discuss Monotonic property and prove it.

Based on these, we transform a classification problem of

instances into hyperplane classification problem in fuzzy

granular space. If the training data is linearly separable,

optimal hyperplane that separate two categories of data can

be selected, so that the distance between them is as large

as possible. By solving the optimal fuzzy granular hyper-

plane with maximum margin, we can categorize unlabeled

data.

A. DESIGN METHOD AND PRIMARY CHARACTERIZATION

OF GRANULES

1) FROM INSTANCES TO FUZZY GRANULES

Definition 1: Let D = (X ,A,L) be a decision system, where

X = {x1, x2, . . . , xn} are n instances, A = {a1, a2, . . . , am}

are m-demensional features and L = {l} (l ∈ {−1,+1}) is a

label set, respectively.

Definition 2: For ∀xi, xj ∈ X and ∀a ∈ A, a dis-

tance between xi and xj on feature a can be defined

by:

da(xi, xj) = |ha(xi)− ha(xj)| (1)

Here, ha(xi) and ha(xj) denote the normalization values of

instance xi and xj on feature a, respectively. It’s easy to have

da(xi, xj) ∈ [0, 1].

Definition 3: For ∀xi ∈ X , ∀a ∈ A, the fuzzy granule of the

instance xi on feature a is defined as:

Ga(xi) = di1/x1 + di2/x2 + . . .+ din/xn (2)

To simply the representation, dij is distance between xi and xj
on feature a, i.e., dij = da(xi, xj); ‘‘+’’ is union operator and

‘‘/’’ is separator. In that way, a fuzzy granule of instance is

also a set which consists of pairs constructed by distance and

instance.

Definition 4: For ∀x ∈ X and ∀a ∈ A, the cardinality of

fuzzy granule Ga(x) can be quantified by:

|Ga(x)| =
∑

t∈X

da(x, t) (3)

We can easily get 0 ≤ |Ga(x)| ≤ |X | because of da(x, t) ∈

[0, 1], where |X | expresses the number of elements in the set

X .

Definition 5: For ∀s ∈ X and Q ⊆ A, assuming Q =

{a1, a2, . . . , ak}, (k ≤ m), then the fuzzy granular vector of

instance x on feature subset Q can be denoted by:

ĜQ(s) = (Ga1 (x),Ga2 (x), . . . ,Gak (x)) (4)

Definition 6: For ∀x ∈ X and Q ⊆ A, let Q =

{a1, a2, . . . , ak}, (k ≤ m), then we can define the module of

fuzzy granular vector of x on Q as follows:

|ĜQ(x)| =
∑

a∈Q

|Ga(x)| (5)

Definition 7: Let Ga(x) and Ga(t) be fuzzy granules of x

and t on feature a, respectively, then in fuzzy granular space,
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operators ∩,∪,∼,and ⊕ can be defined as follows:

dmin,i = da(xi, x) ∗ da(xi, t) (6)

dmax,i = da(xi, x)+ da(xi, t)− da(xi, x) ∗ da(xi, t)

(7)

Ga(x) ∩ Ga(t) = dmin,1/x1 + dmin,2/x2 + . . .+ dmin,n/xn

(8)

Ga(x) ∪ Ga(t) = dmax,1/x1 + dmax,2/x2 + . . .+ dmax,n/xn

(9)

∼ Ga(x) = (1− di1)/x1 + (1− di2)/x2

+ . . .+ (1− din)/xn (10)

Ga(x)⊕ Ga(t)= (dmax,1 − dmin,1)/x1+ (dmax,2 − dmin,2)/x2

+ . . .+ (dmax,n − dmin,n)/xn (11)

To be simplified, here dij = da(xi, xj); ‘‘+’’ expresses

union operator; ‘‘/’’ denotes separator between distance and

instance.

Theorem 1: Let Ga(x) and Ga(t) be two fuzzy granules

on a, formula (6) and (7), that is dmin,i and dmax,i, have the

following equation established:

0 < dmin,i < dmax,i ≤ 1 (12)

Proof: Because of 0 < da(xi, x) < 1, 0 < da(xi, t) <

1, we have da(xi, x) ∗ da(xi, t) < da(xi, x) and da(xi, x) ∗

da(xi, t) < da(xi, t). So we get 2 ∗ da(xi, x) ∗ da(xi, t) <

da(xi, x)+ da(xi, t). Then, we also have da(xi, x)∗ da(xi, t) <

da(xi, x)+da(xi, t)−da(xi, x)∗da(xi, t). Therefore, according

to Equation (6) and (7), the formal 0 < dmin,i < dmax,i
is established. Meanwhile, da(xi, x) + da(xi, t) − da(xi, x) ∗

da(xi, t) = da(xi, x)(1−da(xi, t))+da(xi, t) < (1−da(xi, t))+

da(xi, t) = 1. That is, the formal dmax,i ≤ 1 is established.

In sum, 0 < dmin,i < dmax,i ≤ 1 is established. �

Definition 8: For ∀x, t ∈ X , let ĜA(x) = (Ga1 (x),Ga2 (x),

. . . ,Gam (x)) and ĜA(t) = (Ga1 (t),Ga2 (t), . . . ,Gam (t)) be

two fuzzy granular vectors on feature set A respectively, then

operators ∩,∪,∼, and ⊕ can be defined as follows:

ĜA(x) ∩ ĜA(t)= (Ga1 (x) ∩ Ga1 (t),Ga2 (x) ∩ Ga2 (t),

. . . ,Gam (x) ∩ Gam (t)) (13)

ĜA(x) ∪ ĜA(t)= (Ga1 (x) ∪ Ga1 (t),Ga2 (x) ∪ Ga2 (t),

. . . ,Gam (x) ∪ Gam (t)) (14)

∼ ĜA(x) = (∼Ga1 (x),∼Ga2 (x), . . . ,∼Gam (x)) (15)

ĜA(x)⊕ ĜA(t)= (Ga1 (x)⊕ Ga1 (t),Ga2 (x)⊕ Ga2 (t),

. . . ,Gam (x)⊕ Gam (t)) (16)

Definition 9: For ∀x, t ∈ X , let ĜA(x) = (Ga1 (x),Ga2 (x),

. . . ,Gam (x)) and ĜA(t) = (Ga1 (t),Ga2 (t), . . . ,Gam (t)) be

two fuzzy granular vectors on feature set A respectively, then

their distance can be defined as follows:

d̂(ĜA(x), ĜA(t)) =
1

|A| ∗ |X |

∑

a∈A

|Ga(x)⊕ Ga(t)|

|Ga(x) ∪ Ga(t)|
(17)

TABLE 1. A decision system.

Theorem 2: For ∀s, t ∈ X , the distance of fuzzy granular

vector satisfies:

0 < d̂(ĜA(s), ĜA(t)) ≤ 1 (18)

Proof: Assuming that s = xi, t = xj, according defini-

tion 2 and 3, we haveGa(xi) = di1/x1+di2/x2+ . . .+din/xn,

Ga(xj) = dj1/x1 + dj2/x2 + . . .+ djn/xn.

From definition 1, we can get the distance

dij = da(xi, xj) ∈ (0, 1].

Then, we also have that the cardinality |Ga(s)| =
∑

t∈X da(s, t) from definition 4. As definition 5 men-

tioned above, we can obtain two fuzzy granular vectors,

ĜA(xi) = (Ga1 (xi),Ga2 (xi), . . . ,Gam (xi)), and ĜA(xj) =

(Ga1 (xj),Ga2 (xj), . . . ,Gam (xj)).

Furthermore, from equation (6)-(13), we can get ∀a ∈ A

0 <
|Ga(s)⊕Ga(t)|
|Ga(s)∪Ga(t)|

≤ |X |.

Since 0 <
∑

a∈A
|Ga(s)⊕Ga(t)|
|Ga(s)∪Ga(t)|

≤ |A| ∗ |X | is estab-

lished, we can have 0 < 1
|A|∗|X |

∑

a∈A
|Ga(s)⊕Ga(t)|
|Ga(s)∪Ga(t)|

≤ 1.

According to equation (17), we have d̂(ĜA(s), ĜA(t)) =
1

|A|∗|X |

∑

a∈A
|Ga(s)⊕Ga(t)|
|Ga(s)∪Ga(t)|

, that is, 0 < d̂(ĜA(s), ĜA(t)) ≤ 1

�

Theorem 3: (Monotonic) Let D = (X ,A,L) be a decision

system, for ∀x ∈ X and feature subset P ⊆ F ⊆ A, there

exists two fuzzy granular vectors, ĜP(x) and ĜF (x) of x on P

and F . They satisfy:

|ĜP(x)| ≤ |ĜF (x)| (19)

Proof: From definition 5, we have that ĜP(x) =

(Ga1 (x),Ga2 (x), . . . ,Gau (x)), ĜF (x) = (Ga1 (x),Ga2 (x),

. . . ,Gav (x)). For ∀a ∈ P, its fuzzy granule is Ga(x). Because

of P ⊆ F , a ∈ F is established. Its fuzzy granule satisfies

Ga(x) ∈ ĜF (x) and |P| ≤ |F |. Hence,
∑

a∈P |Ga(x)| ≤
∑

a∈F |Ga(x)|, that is |ĜP(x)| ≤ |ĜF (x)|. �

The similarity measurement denotes similar degree

between fuzzy granular vectors. We can adopt distance

between fuzzy granular vectors to measure their similarity.

We take an example as follows to explain it.

Example 1: Let D = (X ,A,L) be a decision system,

as demonstrated in Table 1. Here, X = {x1, x2, x3, x4} is a

instance set, A = {a, b, c} represents a feature set and L = {l}

denotes a label set.

A instance set X = {x1, x2, x3, x4} can be fuzzy granu-

lated on the feature a as follows. First, the distances among

instances can be calculated as:

da(x1, x1) = |0.1 − 0.1| = 0, da(x1, x2) = |0.1 − 0.3| =

0.2, da(x1, x3) = |0.1 − 0.4| = 0.3, and da(x1, x4) =

|0.1 − 0.2| = 0.1. On the basis of them, according to

definition 3, because the fuzzy granule of instance x1 on
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feature a is expressed formally as Ga(x1) = da(x1, x1)/x1 +

da(x1, x2)/x2+da(x1, x3)/x3+da(x1, x4)/x4, it can be denoted

actually as Ga(x1) = 0/x1 + 0.2/x2 + 0.3/x3 + 0.1/x4.

Its cardinality is |Ga(x1)| = 0 + 0.2 + 0.3 + 0.1 = 0.6.

Similarly, the fuzzy granule on feature b is Gb(x1) = 0/x1 +

0.1/x2 + 0.2/x3 + 0.1/x4 and its cardinality is |Gb(x1)| =

0 + 0.1 + 0.2 + 0.1 = 0.4; the fuzzy granule on feature

c is Gc(x1) = 0/x1 + 0.1/x2 + 0.2/x3 + 0.3/x4 and its

cardinality is |Gc(x1)| = 0 + 0.1 + 0.2 + 0.3 = 0.6.

Therefore, a fuzzy granular vector of instance x1 on feature

set A is ĜA(x1) = (Ga(x1),Gb(x1),Gc(x1)) and its module

is |ĜA(x1)| = |Ga(x1)| + |Gb(x1)| + |Gc(x1)| = 0.6 + 0.4 +

0.6 = 1.6.

B. FUZZY GRANULAR HYPERPLANE CLASSIFICATION

1) PROBLEM PROPOSED

Let’s review the problem first and give a solution. Assuming

there are n linearly separable instances, there are numerous

decision hyperplanes with zero error in the fuzzy granular

space to separate them. Which decision hyperplane is opti-

mal? For the decision hyperplanewith zero error, wemake the

separable margin as large as possible. To this end, we trans-

form the problem into a fuzzy granular space to solve. In a

decision system, data is fuzzy granulated and converted into

fuzzy granules divided by different atom features. And then,

these fuzzy granules can form a fuzzy granular vector. Fur-

thermore, we combine instances’ labels with their fuzzy gran-

ular vectors as pairs, which are rules. Then the rules may

form a rule library. Therefore, in the rule library, the classified

problem may be converted into the problem of searching the

optimal fuzzy granular vector Ŵ and B̂ in equation (22). The

details are as follows: first, data is granulated by definition

2-5; next, we convert the classification problem into solving

parameters Ŵ and B̂ in equation (20); finally, for the purpose,

a loss function is designed, as equation (22) exhibited, and we

can get the optimal solution by minimizing the loss function.

Before solving, we also need to give some assumptions as

follows:

(1) Errors from the predicted values and the true values are

consistent with the Gaussian distribution.

(2) There are linearly separable solutions in the problem.

In other words, we can find Ŵ and B̂ to get the fuzzy gran-

ular hyperplane with the maximum margin between positive

instances and negative ones.

We adopt evolution method to obtain the solution. Specif-

ically, error returned from a loss function is distributed ran-

domly to Ŵ and B̂ to reduce the loss function value in next

computing. After sever iterations, the loss function value

will be reduced repeatedly until convergence and the optimal

solution is obtained. Some definitions can be given on the

problem as follows.

Definition 10: Let D = (X ,A,L) be a decision system,

where X = {x1, x2, . . . , xn} expresses a instance set, A =

{a1, a2, . . . , am} denotes feature set, and L = {+1,−1}

represents a label set. For ∀x ∈ X , lx ∈ L, there exists a pair or

a rule, lbA(x) =< ĜA(x), lx >, composed of a fuzzy granular

vector and a label on A. According to these pairs, a rule

library, LBA = {lbA(x)|∀x ∈ X}, is built. A m-dimensional

fuzzy granular hyperplane in fuzzy granular space is defined

by:

Ŷ = Ŵ ∩ ĜA(x) ∪ B̂ (20)

Here, the operators, ‘‘∩’’ and ‘‘∪’’, are defined by Equation

(13) and (14). We define a decision function J : G →

(−∞,+∞) as follows, whereG represents all fuzzy granular

vector sets.

J (ĜA(x)) = ln|Ŵ ∩ ĜA(x) ∪ B̂| + α (21)

Here Ŵ , B̂ and Ŷ are fuzzy granular vectors and α is a positive

number. To classify, we define a loss function as:

LOSS(Ŵ , B̂) =
∑

x∈X

|J (ĜA(x))− lx | + λ ∗ |Ŵ | (22)

where λ ∗ |Ŵ | is a regularization item to avoid overfitting, λ

is a small positive number and lx ∈ {−1,+1} is a label of

instance x.

2) PRINCIPLE OF SOLVING PARAMETERS

Input: instance set X , test instance t and maximum iteration

times MaxIters

Output: the optimal fuzzy granular vectors, W ∗ and B∗

1. Delete the instances of missing some feature values.

2. Normalize the instance to values in [0, 1] by Equation

(23):

∀xi ∈ X ,∀a ∈ A,

ha(xi)←
ha(xi)− minxj∈X {ha(xj)}

maxxj∈X {ha(xj)} − minxj∈X {ha(xj)}
(23)

3. For each instance x ∈ X , runs step 4-6.

4. instance x is granulated on atom feature ai ∈ A, we can

get Gai (x).

5. Form a fuzzy granular vector ĜA(x) = (Ga1 (x),Ga2 (x),

. . . ,Gam (x)) of x.

6. Get the label lx of x from the decision system.

7. Build a rule library lbA(x) =< ĜA(x), lx > for training

instances; For a test instance t , it satisfies lt = null, where

null denotes uncertainty.

8. Generate n pairs of solutions randomly as initialization

solution on ith iteration, namely {( ˆW1(i), ˆB1(i)), ( ˆW2(i), ˆB2(i)),

. . . , ( ˆWn(i), ˆBn(i)}.

9. According to step 8, we can calculate the values of

function LOSS corresponding to each candidate solution,

and they are sorted in ascending order of the value of

function LOSS; the results are assigned to variable T , i.e.,

T ← AscendSort(LOSS)

10. Take the first half solutions of the T to the variable O,

i.e., O← Select(T , 0.5)

11. Each element of these new solutions is probably

corrected with errors. According to the assuming condition

mentioned above, the error satisfies e ∼ N (µ, σ 2). Here,
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TABLE 2. Algorithm of solving parameters.

e represents the error of each element of a fuzzy granular vec-

tor, µ denotes the mean and σ expresses standard deviation.

First, we choose plus operation or minus one with probability

P. Second, the error e is from a pseudo-random number,

which satisfies e ∈ [µ − 3σ 2, µ + 3σ 2], so we generate the

error e in the range [µ−3σ 2, µ+3σ 2] randomly and correct

the candidate solutions. Thus, we can get some new ones.

12. Compare the new solutions with old ones according to

equation (22) and take the better parts as the initial solutions

for the next iteration.

13. Determine whether the number of iterations meets the

request, if not, return to step 8; otherwise, return to step 14.

14. Return Ŵ ∗ and B̂∗ that minimize the function LOSS(·).

3) ALGORITHM OF SOLVING PARAMETERS

According to the principle of solving the binary classification

problem, we design an algorithm of solving parameters (see

Table 2). For a multi classification problem, we need to divide

it into a set of binary classification problems. By solving

every binary classification problem, multi classification one

can get solved.

4) PRINCIPLE OF BINARY CLASSIFICATION PREDICTION

In prediction stage, given a instance x ∈ X , we have a

fuzzy granular vector ĜA(x) by fuzzy information granu-

lation. After solving parameters, we also get the optimal

solution Ŵ ∗ and B̂∗. The prediction value of instance x can

be calculated by Equation (24).

lx =

{

−1, if J (ĜA(x), Ŵ , B̂) < 0

+1, if J (ĜA(x), Ŵ , B̂) ≥ 0
(24)

5) PRINCIPLE OF MULTI-CLASSIFICATION PREDICTION

We have introduced how to solve two-category problem

as mentioned above. For a multi-classification problem,

we can divide the multi-classification problem into a series

of binary classification ones in advance. Then, we can

solve each binary classification problem and employ voting

approach to give final decision. For any binary classification

instances, we design a fuzzy granular hyperplane classifiers

(FGHCs). Then, given N -classification instance set, to solve

the multi-classification prediction problem, we need to train
N (N−1)

2
FGHCs. When predicting a test instance, we adopt

each FGHCs to have a prediction result and count the votes.

The category with most votes is the final prediction value

of the test instance. We take an example to explain as fol-

lows: considering a classification task with three categories

C1,C2,C3, we choose the fuzzy granular vectors associ-

ated with (C1,C2), (C1,C3), (C2,C3) respectively as three

training sets. After training, we have three pairs optimal

parameters. Given a test instance, we employ the three pairs

parameters to predict the label and get three results. More-

over, we count these results and give the final decision by

voting. In other words, the category with most votes will
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TABLE 3. Algorithm of prediction on binary classification.

TABLE 4. Algorithm of prediction on multi-classification.

TABLE 5. Data set.

be the final decision. The processes are as follows: First,

initialize counter Vote(C1) = Vote(C2) = Vote(C3) = 0

of categories; Second, use FGHCs associated with (C1,C2)

to predict, if the result is C1, then Vote(C1) = Vote(C1) +

1, otherwise, Vote(C2) = Vote(C2) + 1; similarly, employ

FGHCs of (C1,C3) to determine, if label predicted isC1, then

Vote(C1) = Vote(C1) + 1; if not, Vote(C3) = Vote(C3) + 1;

adopt FGHC of (C2,C3) to give the prediction result, if it

is C2, then Vote(C2) = Vote(C2) + 1, or else Vote(C3) =

Vote(C3)+1; Finally, the category with most votes will be the

final result, that is, Argmax(Vote(C1),Vote(C2),Vote(C3)).

6) ALGORITHM OF PREDICTION

After the parameter solution is executed, the fuzzy granular

vector of test instances and optimal parameters of FGHCs

can be obtained. We also design algorithms of prediction on

binary classification and multi-classification based on them

(see Table 3 and Table 4).

III. EXPERIMENTAL ANALYSIS

To measure how well FGHCs performed at classification

problem, we evaluated the performance of the classifier using

four datasets in UCI and one Alzheimer’s Disease voice

dataset, as shown in Table 5. 10-fold cross validation was

adopted in the experimental results. The values of the dataset

are various, so these values need to be normalized. The

equation (23) was employed to ensure that all values can

be normalized in [0, 1]. The data is fuzzy granulated on

every atomic feature to build a fuzzy granule. Then, a fuzzy

granular vector consists of these fuzzy granules. To verify the

performance, we compared Back Propagation (BP), SVMs

and FGHCs on evaluation indexes. We adopted True Pos-

itive (TP) rate, False Positive (FP) rate, Precision, Recall,

F-score and ROC Area to evaluate the performance. In the

evaluation, we exhibited the parameters of each category of

instance and compare them with three algorithms as men-

tioned above. In running FGHCs, the max iteration times

are 1000. Parameters of SVMs include penalty coefficient

C and γ which can be regarded as the inverse of the radius

of influence of instances selected by the model as support

vectors. Parameters of BP involve the number of hidden layer

Nh, the number of unit of input layer In, the number of unit of

hidden layer Hn, and the number of output layer On, learning

rate η, and maximum iterations Mn. Parameters of FGHCs

involve maximum iterations MI , the number of initialization

solution k , adjust factor α, and penalization factor λ.
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TABLE 6. Data set bank.

TABLE 7. Data set Iris.

As shown in Table 6, in the Bank dataset, parameters of

BP were as follows: Nh = 1, In = 4, Hn = 6, On = 2, η

= 0.016, and Mn = 10000. Parameters of SVMs satisfied

to C = 1 and γ = 0.1. Parameters of FGHCs were as

follows: MI = 10000, k = 400, α = 0.217, and λ = 0.026.

FGHCs and BP achieved ROC Area of 1 in both categories,

while SVMs got 0.982 (i.e., 0.81% improvement). F-score

improved by 0.91% and 0.71% in two categories respectively

compared with BP; it increased by 2.04% and 1.63% respec-

tively compared with SVMs, exhibiting the quality of the

positive predictions. FGHCs outperform BP in Recall metric

over this dataset. Recall increased by 3.32% compared with

SVMs in category −1, while decreased by 0.2% in category

1. Large improvements (i.e., 4.07%) in the Precision in class

−1 compared with SVMs; meanwhile, Precision decreased

by 0.2%. The Precisions of FGHCs are superior to those

obtained by BP. Overall, FGHCs performs slightly better

SVMs and BP in the Bank dataset.

In Iris dataset, there are three categories, as exhibited in

Table 7. Parameters of BP were as follows: Nh = 1, In = 4,

Hn = 200, On = 3, η = 0.028, and Mn = 1000. Parameters

of SVMs satisfied to C = 10 and γ = 0.01. Parameters

of FGHCs were as follows: MI = 1000, k = 100, α =

0.128, and λ = 0.015. ROC Area improved by 2.47% in

category 2 and 3 compared with BP. It increased by 3.21%

and 2.68% in two categories compared with SVMs. Inter-

estingly, in category 1, all perform metrics of three methods

are the same. F-score made an improvement by 2.24% and

2.02% in category 2 and 3, respectively, compared with BP.

It decreased by 1.91% and 2.35% in the two categories com-

pared with SVMs. Recall increased by 4.35% in class 2 com-

pared with BP. Meanwhile, it improved by 6.67% in class 3,

while it decreased by 2.08% in class 2; therefore, average

increased by 1.39%, compared with SVMs. From the average

of precision to evaluate, FGHCs was 0.9733, BP was 0.9603,

and SVMswas 0.9617. The average of precision improved by

1.35% and 1.21%, respectively.

The number of dataset Seeds is between Bank’s and Iris’.

Parameters of BP were as follows: Nh = 1, In = 7, Hn = 230,

On = 3, η = 0.015, and Mn = 1000. Parameters of SVMs

satisfied to C = 12 and γ = 0.021. Parameters of FGHCs

were as follows: MI = 1000, k = 120, α = 0.113, and

λ = 0.019. Table 8 compared the performance metrics with

the three approaches. The details are as follows. ROC Area

of FGHCs was superior to those obtained by BP and SVMs.

In particular, FGHCs achieved average ROC Area of more

than 0.996, while BPwas 0.980 and SVMs just got 0.964 (i.e.,

1.63% and 3.32% improvement respectively). In F-score, the

average was 0.952 from FGHCs, which improved by 1.49%

compared with SVMs; it was the same as BP’s. Recall of

FGHCs in average was 0.953, BP’s was 0.952 and SVMs’

was 0.938. It increased by 0.11% and 1.60% respectively.

The precision of FGHCs was also better than that of SVMs.

It made an improvement by 1.6% in average and had almost

not changed compared with BP’s.

In dataset Nomao, it includes 2 categories, 120 attributes

and 34465 instances. Parameters of BP were as follows:

Nh = 2, In = 120, Hn1 = 200, Hn2 = 230 On = 2, η = 0.022,

and Mn = 200000. Parameters of SVMs satisfied to C = 7

and γ = 0.015. Parameters of FGHCs were as follows:

MI = 500000, k = 10000, α = 0.287, and λ = 0.025.

As shown in Figure 2, the performance of FGHCs are superior

to BP and SVMs. In particular, FGHCs achieved recall of

0.975 in category −1, while BP and SVMs just got 0.928

and 0.967 (i.e., 4.91% and 0.83% improvement respectively).

Accuracy improved by 3.64% and 0.73% respectively. Recall
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TABLE 8. Data set seeds.

of category +1 increased by 4.55% and 0.31% respectively.

To verify further performance, we adopted voice dataset from

University of Pittsburgh on Alzheimer’s disease. The dataset

is composed of voices and transcripts from participants. The

corpus includes 1264 instances divided into two categories.

To extend scale of the dataset, we splitted these voices into

100,000 fragments as a new dataset. Aswell known,Mel Cep-

stral Coefficients (MFCC) and Gammatone Cepstral Coeffi-

cients (GFCC) are both good features for classification. Here

we extracted the two types of features of voice for classi-

fication. For MFCC, the first 20 dimensions, its first-order

difference, and its second-order difference were selected

and connected to obtain 57-dimensional features. Similarly,

we extracted 57-dimensional features of GFCC. Thus we can

get 114-dimensional features of Alzheimer’s disease voice.

The classification includes two classes. We compared long

short-term memory (LSTM) with FGHCs on ROC as shown

in Figure 3. Parameters of LSTM included 2 hidden lay-

ers with 200 hidden units at each layer. The learning rate

belonged to [0.0001, 0.01] and the maximum iterations was

1,000,000. Adam optimizer was used to do gradient opti-

mization. Parameters of BP were as follows: Nh = 2, In =

114, Hn1 = 100, Hn2 = 110 On = 2, η ∈ [0.01, 0.001],

and Mn = 1, 000, 000. Parameters of SVMs satisfied to

C ∈ [18, 25] and γ ∈ [0.001, 0.01]. Parameters of FGHCs

were as follows: MI = 1, 000, 000, k = 12, 000, α ∈

[0.001, 0.5], and λ ∈ [0.0001, 0.05]. Figure 3(a) and (b)

compares ROC Area got by FGHCs, LSTM, SVMs, and BP

using MFCC and GFCC feature. As demonstrated in Figure

3(a) and Figure 3(b), the ROC curve of FGHCs are closer

to the upper left corner than other classifiers. Hence FGHCs

had better performance than other models using MFCC and

GFCC on the dataset. As shown in Figure 3(a), FGHCs

got ROC Area of 0.92, and LSTM achieved ROC Area of

0.90 (i.e., improvement 2.22%). ROC Area of SVMs was

0.82 and ROC Area of BP was 0.85. FGHCs increased by

12.20% and 8.24% respectively. As shown in Figure 3(b),

FGHCs improved by 2.76%, 13.02%, and 8.98% compared

with LSTM, SVMs, and BP respectively.

In addition, we also employed sampling raw data as fea-

tures to train these classifiers and compared ROC Area

obtained by the classifiers (see Figure 3(c) and (d)). Parame-

ters of LSTM involved 2 hidden layers with 210 hidden units

FIGURE 2. Comparison of accuracy and recall on data set Nomao.

at each layer. The learning rate belonged to [0.0001, 0.01] and

the maximum iterations was 1,000,000. Adam optimizer was

also adopted to do gradient optimization. Parameters of BP

were as follows: Nh = 2, In = 180,Hn1 = 230,Hn2 = 240,On
= 2, η ∈ [0.001, 0.0015], and Mn = 1, 000, 000. Parameters

of SVMs satisfied to C ∈ [15, 30] and γ ∈ [0.001, 0.015].

Parameters of FGHCs were as follows: MI = 1, 000, 000,

k = 12, 050, α ∈ [0.001, 0.6], and λ ∈ [0.0001, 0.09].

As shown in Figure 3(c), FGHCs got ROC Area of 0.912,

LSTM achieved ROC Area of 0.903. FGHCs increased by

1.00%. Compared with SVMs and BP, FGHCs improved

by 12.18% and 9.75% (SVMs was ROC Area of 0.813

and BP was ROC Area of 0.831). As demonstrated in

Figure 3(d), SVMs got ROC Area of 0.823 and BP

achieved ROC Area of 0.834. FGHCs obtained ROC Area

of 0.887 and LSTM got ROC Area of 0.881. FGHCs

increased by 7.78% and 6.35% compared with SVMs and

BP respectively. FGHCs improved by 0.68% compared

with LSTM.

Overall, FGHCs is superior to LSTM, SVMs, and BP.

We also found that MFCC and GFCC features can lead to

the improvement of performance.

In sum, FGHCs is superior to BP and SVMs as whole.

FGHCs performs slightly better than LSTM. The main rea-

sons are as follows. a) Fuzzy granulation is considered before

classification and it embodies the angle of the collective struc-

tures of instances. b)While solving these optimal parameters,
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FIGURE 3. Comparison of ROC on data set of Alzheimer’s disease voice.

we take into account the evolution principle that can find the

global optimal solution. In contrast, BP and LSTM some-

times get the optimal solution that may be localized rather

than global one; SVMs can obtain global optimal solution

according to solving principle, but it just classifies the raw

data instead of granules.

IV. CONCLUSION

In this paper, we propose Fuzzy Granular Hyperplane Clas-

sifiers from granular computing view. The scheme is as fol-

lows. First, we introduce a fuzzy granular hyperplane concept

by some new definitions on fuzzy granules, operators and

metrics. Then, we present parameters learning and instances

predicted algorithms of binary classification based on evolu-

tion computing. To find multi-classification solution, we pro-

pose a predicted model by voting on the basis of a series of

Fuzzy Granular Hyperplane Classifiers of binary classifica-

tion. That is, we transform a multi-classification problem into

a set of binary classification problems and employ counting

votes to achieve the final decision. Experimental results show

the performance of FGHCs outperforms those of BP, SVMs

and LSTM under special parameters. In future work, we plan

to add localized information granulation, parallel and dis-

tributed thoughts into algorithms to apply widely in big data

research.
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