Fuzzy H-continuous Mappings and Fuzzy Strongly Closed Graphs

K.Hur a, Y.S.Ahn b, and J.H. Ryou c

Abstract

We introduce the concepts of fuzzy H-continuity and fuzzy strongly closed graph, respectively and investigate some of their properties.

Key words and phrases: fuzzy almost continuous, fuzzy T_{2w} , fuzzy H-closed set, fuzzy H-continuous, fuzzy strongly closed graph, fuzzy closed graph.

1. Introduction and preliminaries

Since the introduction of fuzzy sets by Zadeh in his classic paper[17] of 1965 and fuzzy topological spaces by Chang[3] in 1968, certain mappings between topological spaces, weaker than usual open or continuous ones, have been generalized to and studied in fuzzy topological spaces by different authors[1, 2, 5, 6, 11, 13, 14, 16]. In this paper, we extend the notion of H-continuity introduced by P.E.Long and T.R. Hamlett[9] to fuzzy topological spaces.

In order to make the exposition self-contained as far as practicable, we list some definitions and results that will be used in the sequel. Let X be a non-empty(ordinary) set and let I the unit interval [0,1]. A fuzzy set A in X is a mapping from X into I[17]. A fuzzy point x_{λ} in X is a fuzzy set in X defined by : for each $y \in X$,

$$x_{\lambda}(y) = \begin{cases} \lambda, & \text{if } y = x, \\ 0, & \text{if } y \neq x, \end{cases}$$

where $x \in X$ and $\lambda \in (0,1]$ are respectively called

2000 Mathematies subject classification of AMS: 54A40, 54B20, 54C60

This paper was supported by Wonkwang University in 2002

the support and the value of $x_{\lambda}[12,14]$. A fuzzy point x_{λ} is said to belong to a fuzzy set A in X iff $\lambda \leq A(x)$ [12]. A fuzzy set A in X is the union of all fuzzy points which belong to A[12]. A subfamily T of I^X is called a fuzzy topology on X[3] if (i) \emptyset , $X \in T$, (ii) for any $\{U_{\alpha}\}_{\alpha \in \Lambda} \subset T$, $\bigcup_{\alpha \in \Lambda} U_{\alpha} \in T$ and (iii) for any $A, B \in T$, $A \cap B \in T$. In this case, each member of T is called a fuzzy open(in short, F-open) set in X and its complement a fuzzy closed(in short, F-closed) set in X. The pair (X, T) is called a fuzzy topological space(in short, fts). For a fts X, FO(X) and FC(X)denote the collection of all F-open sets and F-closed sets in X, respectively. For a fuzzy set A in a fts X, the closure clA and the interior intA of A are defined respectively as $\operatorname{cl} A = \bigcap \{ V \in I^X : A \subset V \text{ and } \}$ $V^c \in FO(X)$ and int $A = \bigcup \{V \in FO(X) : V \subset A\}[12]$. We will use the notion of fuzzy compactness in the sense of S. Ganguly and S. Saha[7].

Definition 1.1[17]. Let f be a mapping from a set X into a Y. $A \in I^X$ and $B \in I^Y$. Then :

(i) The *image* of A under f, f(A) is a fuzzy set in Y defined by for each $y \in Y$, $[f(A)](y) = \sup_{x \in f^{-1}(y)} A(x) \quad \text{if } f^{-1}(y) \neq \emptyset,$ $= 0 \quad \text{otherwise,}$ where $f^{-1}(y) = \{x \in X : f(x) = y\}.$

(ii) The *inverse image* of B under f, $f^{-1}(B)$ is a fuzzy set in X denoted by for each $x \in X$,

접수일자: 2002년 3월 5일 완료일자: 2002년 9월 16일

^a Corresponding author

$$f^{-1}(B)(x) = B(f(x)).$$

Result 1.A[3,16]. Let $f: X \rightarrow Y$ be a mapping. Then:

- (1) $f^{-1}(B^c) = [f^{-1}(B)]^c$ for each $B \in I^Y$.
- (2) $[f(A)]^c \subset f(A^c)$ for each $A \in I^X$.
- (3) If $B_1 \subset B_2$, then $f^{-1}(B_1) \subset f^{-1}(B_2)$, where $B_1, B_2 \in I^Y$.
- (4) If $A_1 \subset A_2$, then $f(A_1) \subset f(A_2)$, where $A_1, A_2 \in I^X$.
- (5) $f(f^{-1}(B)) \subset B$ for each $B \in I^Y$. In particular, if f is surjective, then $f(f^{-1}(B)) = B$ for each $B \in I^Y$.
- (6) $A \subset f^{-1}(f(A))$ for each $A \in I^X$. In particular, if f is injective, then $f^{-1}(f(A)) = A$ for each $A \in I^X$.
- (7) If $\{B_{\alpha}\}_{\alpha \in \Lambda} \subset I^{Y}$, then $f^{-1}(\bigcup_{\alpha \in \Lambda} B_{\alpha}) = \bigcup_{\alpha \in \Lambda} f^{-1}(B_{\alpha})$ and

$$f^{-1}(\bigcap_{\alpha\in\Lambda}B_{\alpha})=\bigcap_{\alpha\in\Lambda}f^{-1}(B_{\alpha}).$$

- (8) If $\{A_{\alpha}\}_{\alpha \in \Lambda} \subset I^{X}$, then $f(\bigcup_{\alpha \in \Lambda} A_{\alpha}) = \bigcup_{\alpha \in \Lambda} f(A_{\alpha}).$
- (9) Let $g: Y \rightarrow Z$ be a mapping. Then $(g \circ f)^{-1}(C) = f^{-1}(g^{-1}(C))$ for each $C \in I^Z$.

Result 1.B[4]. Let $f: X \rightarrow Y$ be a mapping. Then:

- (1) $f(x_{\lambda}) = [f(x)]_{\lambda}$ for each $x_{\lambda} \in F_{p}(X)$.
- (2) If $A \in I^X$ and $x_{\lambda} \in A$, then $f(x_{\lambda}) \in f(A)$.
- (3) If $A \in I^X$ and $y_{\lambda} \in f(A)$, then there exists $x \in X$ such that f(x) = y and $x_{\lambda} \in A$.
- (4) If $B \in I^Y$, $y \in f(X)$ and $y_{\lambda} \in B$, then for each $x \in f^{-1}(y)$, $x_{\lambda} \in f^{-1}(B)$.
- (5) If $B \in I^Y$ and $x_{\lambda} \in f^{-1}(B)$, then $[f(x)]_{\lambda} \in B$.

Definition 1.2[12]. Let (X, T) be a fts and let Y a crisp subset of X. Then the family $T_Y = \{A|_Y : A \in T\}$ is a fuzzy topology on Y. In this case, T_Y is called the fuzzy relative topology or fuzzy subspace topology of T to Y and the pair (Y, T_Y) is called a fuzzy subspace of (X, T).

It is clear that $A|_{Y} = A \cap Y$.

Definition 1.3[8]. Two fuzzy sets A and B in a set X are said to be *disjoint* if $A \odot B = \emptyset$, where $(A \odot B)(x) = \max [0, A(x) + B(x) - 1]$ for each $x \in X$.

It is clear that $A \odot B = \emptyset$ if and only if $A \overline{q} B$, i.e., $A \subseteq B^c$.

Definition 1.4[5]. A fts X is said to be fuzzy T_{2w} (in short, FT_{2w}) if for any two distinct fuzzy points x_{λ} and y_{μ} in X, there exist $U, V \in FO(X)$ such that

 $x_{\lambda} \in U$, $y_{\mu} \in V$ and $U \odot V = \emptyset$.

Definition 1.5[12,14]. Let $\{(X_a, T_a) : \alpha \in \Lambda\}$ be a family of fts's, let $X = \prod_{a \in \Lambda} X_a$ the usual Cartesian product of $\{X_a\}_{\alpha \in \Lambda}$ and let π_a the projection form X onto X_a for each $\alpha \in \Lambda$. Let $\mathcal{P}_f(\Lambda)$ be the family of all finite subsets of Λ , let $\mathcal{S} = \{\pi_a^{-1}(B) : B \in T_a, \alpha \in \Lambda\}$ and let $\mathcal{B} = \{\cap_{\alpha \in F} \pi_a^{-1}(U_a) : U_\alpha \in T_a, F \in \mathcal{P}_f(\Lambda)\}$. Then there exists a unique fuzzy topology T on X for which \mathcal{B} is a base for T and \mathcal{S} is a subbase for T. In fact, T is the family of all unions of members of \mathcal{B} .

In this case, T is called the *fuzzy product topology* on X and the pair (X, T) is called the *fuzzy product topological space*(in short, *product fts*).

Definition 1.6[2]. Let A be a fuzzy set in a fts X. Then:

- (1) A is called a fuzzy regular open set in X if A = int(cl A).
- (2) A is called a fuzzy regular closed set in X if A = cl (int A).

We denote the collection of all fuzzy regular open[resp. closed] set in X as FRO(X) [resp. FRC(X)].

It is clear that $FRO(X) \subset FO(X)$ and $FRC(X) \subset FC(X)$.

Result 1.C[1, Lemma 3.1]. Let A be a fuzzy set in a fts X. Then:

- (1) int $(\operatorname{cl} A) \in FRO(X)$.
- (2) $\operatorname{cl}(\operatorname{int} A) \in FRC(X)$.

Definition 1.7[2]. Let X and Y be fts's. Then a mapping $f: X \rightarrow Y$ is said to be *fuzzy almost continuous*(in short, *fal-continuous*) if for each $V \in FRO(Y)$, $f^{-1}(V) \in FO(X)$.

It is clear that every F-continuous mapping is fal-continuous.

Result 1.D[11, Theorem 3.3]. Let X and Y be fts's. Then a mapping $f: X \rightarrow Y$ is fal-continuous if and only if for each $x_{\lambda} \in F_{\rho}(X)$ and each $V \in FO(Y)$ with $f(x_{\lambda}) \in V$, there exists $U \in FO(X)$ such that $x_{\lambda} \in U$ and $f(U) \subset \text{int}(\text{cl } V)$.

2. Fuzzy H-continuous mappings

From now on, we consider X, Y, Z as fts's.

Definition 2.1. Let $A \in I^X$. Then A is said to be *fuzzy* H-closed relative to X (in short, fH-closed) if for each F-open cover $\{V_\alpha\}_{\alpha\in\Lambda}$ of A in X, there exists a finite subfamily Λ_0 of Λ such that $A\subset\bigcup_{\alpha\in\Lambda_0}(\operatorname{cl} V_\alpha)$. The fts X is said to be a fH-closed space if for each

F-open cover $\{V_a\}_{a\in\Lambda}$ of X, there exists a finite subfamily Λ_0 of Λ such that $\bigcup_{a\in\Lambda_0}(\operatorname{cl} V_a)=X$.

Lemma 2.2. Let X be a FT_{2w} -space. If B is fH-closed in X, then $B \in FC(X)$.

Proof. Assume that $clB \not\subset B$. Then there exists an $x_{\lambda} \in F_{p}(X)$ such that $x_{\lambda} \in \operatorname{cl} B$ but $x_{\lambda} \notin B$. Let $y_{\mu} \in B$. Since X is FT_{2w} , there exist $U_{y_{\mu}}$ and $V_{y_{\mu}} \in FO(X)$ such that $x_{\lambda} \in U_{y_{\mu}}, y_{\mu} \in V_{y_{\mu}}$ and $U_{y_{\mu}} \odot V_{y_{\mu}} = \emptyset$. Let $\mathcal{V} = \{V_{y_{\mu}} \in FO(X) \colon y_{\mu} \in B\}$. Then clearly V is a fuzzy open cover of B. Since B is fH-closed in X, there exist $y_1, \dots, y_n \in B$ such that $B \subset (\operatorname{cl} V_{y_1} \cup, \cdots, \cup \operatorname{cl} V_{y_n}) = \operatorname{cl} (\bigcup_{i=1}^n V_{y_i}),$ where $\{V_{y_1}, \dots, V_{y_n}\}\subset \mathcal{V}$. For each $i=1,\dots,n$, let $U_{y_i} \in FO(X)$ such that $x_{\lambda} \in U_{y_i}$ and $U_{y_i} \odot V_{y_i} = \emptyset$ i.e., $V_{y_i} \subset U_{y_i}^c$. Then $B \subset \operatorname{cl}(\bigcup_{i=1}^n V_{y_i}) \subset \operatorname{cl}(\bigcup_{i=1}^n U_{y_i}^c)$ $= \operatorname{cl}(\bigcap_{i=1}^n U_{v_i})^c$. Thus $\operatorname{cl} B \subset \operatorname{cl}(\bigcap_{i=1}^n U_{v_i})^c$. $x_{\lambda} \in \operatorname{cl} B$, $x_{\lambda} \in \operatorname{cl} \left(\bigcap_{i=1}^{n} U_{\nu_{i}} \right)^{c}$. But $x_{\lambda} \not\in$ $\operatorname{cl}(\bigcap_{i=1}^n U_{\nu_i})^c$. This is a contradiction. So $\operatorname{cl} B \subseteq B$. Hence $B \in FC(X)$.

Definition 2.3. A mapping $f: X \rightarrow Y$ is said to be *fuzzy* H-continuous(in short, fH-continuous) if for each $x_{\lambda} \in F_{\mathfrak{p}}(X)$ and each $V \in FO(Y)$ such that $f(x_{\lambda}) \in V$ and V^{c} is fH-closed in Y, there exists $U \in FO(X)$ such that $x_{\lambda} \in U$ and $f(U) \subset V$.

Theorem 2.4. Let $f: X \rightarrow Y$ be a mapping. Then the following are equivalent:

- (1) f is fH-continuous.
- (2) If $V \in FO(Y)$ and V^c is fH-closed in Y, then $f^{-1}(V) \in FO(X)$.

These statements are implied by

(3) If B is fH-closed in Y, then $f^{-1}(B) \in FC(X)$.

Furthermore, if Y is FT_{2w} , then all three statements are equivalent.

Proof. (1) \Rightarrow (2): Suppose $f: X \rightarrow Y$ is fH-continuous. Let $V \in FO(Y)$ and let V^c be fH-closed in Y. Let $x_{\lambda} \in f^{-1}(V)$. Then $f(x_{\lambda}) \in V$. By the hypothesis, there exists $U \in FO(X)$ such that $x_{\lambda} \in U$ and $f(U) \subset V$. Thus $x_{\lambda} \in U \subset f^{-1}(V)$. Hence, by Proposition 1.8 in [10], $f^{-1}(V) \in FO(X)$.

 $(2)\Rightarrow (1)$: Suppose the condition (2) holds. Let $x_{\lambda} \in F_{\rho}(X)$ and let $V \in FO(Y)$ such that $f(x_{\lambda}) \in V$ and V^c is fH-closed in Y. Then, by the hypothesis, $f^{-1}(V) \in FO(X)$ and $x_{\lambda} \in f^{-1}(V)$. Let $U = f^{-1}(V)$. Then clearly $x_{\lambda} \in U \in FO(X)$ and $f(U) \subset V$. Hence f is fH-continuous.

(3) \Rightarrow (2): Suppose the condition (3) holds. Let $V \in FO(Y)$ and let V^c be fH-closed in Y. Then, by the hypothesis, $f^{-1}(V^c) = [f^{-1}(V)]^c \in FC(X)$. Hence $f^{-1}(V) \in FO(X)$.

Now assume that Y is FT_{2w} and we show that (2) implies (3). Let B be any fH-closed set in Y. Since Y is FT_{2w} , by Lemma 2.2, $B \in FC(Y)$. Then $B^c \in FO(Y)$. Thus, by the condition (2), $f^{-1}(B^c) = [f^{-1}(B)]^c \in FO(X)$. Hence $f^{-1}(B) \in FC(X)$.

In general, the condition (2) does not imply the condition (3) as shown in Example.

Example 2.5. Let $X = \{a, b, c\}$ and let $Y = \{x, y\}$. Consider the fuzzy topologies T_X and T_Y on X and Y, respectively defined by :

$$T_X = \{\emptyset, X, \{(a, 0.2), (b, 0.2), (c, 0.3)\}\}$$

and

$$T_Y = \{ \emptyset, Y, \{ (x, 0.2), (y, 0.3) \} \}.$$

Let $f: (X, T_X) \rightarrow (Y, T_Y)$ be the mapping defined by f(a) = f(b) = x and f(c) = y. Let $V = \{(x, 0.2), (y, 0.3)\}$. Then clearly $V \in FO(Y)$ and V^c is fH-closed in Y. Moreover, $f^{-1}(V) \in FO(X)$. So the condition (2) holds.

On the other hand, let $B = \{(x, 0.2), (y, 0.3)\}$. Then B is fH-closed in Y but $f^{-1}(B) \notin FC(X)$. Hence the condition (3) does not hold.

Theorem 2.6. A mapping $f: X \rightarrow Y$ is fH-continuous if and only if for each F-closed fH-closed B in Y, $f^{-1}(B) \in FC(X)$.

Proof. (\Rightarrow): Suppose f is fH-continuous. Let B be any F-closed fH-closed set in Y. Then $B^c \in FO(Y)$ and $(B^c)^c = B$ is fH-closed in Y. By Theorem 2.4, $f^{-1}(B^c) = [f^{-1}(B)]^c \in FO(X)$. Hence $f^{-1}(B) \in FC(X)$.

(\Leftarrow): Suppose the necessary condition holds. Let $V \in FO(Y)$ such that V^c is fH-closed in Y. Then clearly V^c is F-closed fH-closed in Y. By the hypothesis, $f^{-1}(V^c) = [f^{-1}(V)]^c \in FC(X)$. Thus $f^{-1}(V) \in FO(X)$. Hence, by Theorem 2.4, f is fH-continuous.

Lemma 2.7. If A and B are fH-closed in X, then $A \cup B$ is fH-closed in X.

Proof. Let $\{V_{\alpha}\}_{\alpha\in\Lambda}$ be a F-open cover of $A\cup B$ in X. Since $A\subset A\cup B$ and $B\subset A\cup B$, $\{V_{\alpha}\}_{\alpha\in\Lambda}$ is a F-open cover of A and B in X, respectively. Since A and B are fH-closed in X, there exist finite collections Λ_1 and Λ_2 of Λ such that $A\subset \bigcup_{\alpha\in\Lambda_1}(\operatorname{cl} V_{\alpha})$ and $B\subset \bigcup_{\beta\in\Lambda_2}(\operatorname{cl} V_{\beta})$. Then $A\cup B\subset \bigcup_{(\alpha,\beta)\in\Lambda_1\times\Lambda_2}\operatorname{cl}$

 $(V_a \cup V_\beta)$ and $\Lambda_1 \times \Lambda_2$ is finite. Hence $A \cup B$ is fH-closed in X.

Lemma 2.8. Let (X, T) be a fts and let $\mathcal{B}^* = \{V \in T : V^c \text{ is fH-closed in } X\}$. Then there exists a unique fuzzy topology T^* on X for which \mathcal{B}^* is a fuzzy base for T^* .

Furthermore $T^* \subset T$ and (X, T^*) is always a fuzzy H-closed space. In this case, (X, T^*) is called the induced H-closed fuzzy topological space by (X, T) and will be denoted by X^* .

Proof. Clearly $X \in \mathcal{B}^*$. So $\bigcup \mathcal{B}^* = X$. Let $B_1, B_2 \in \mathcal{B}^*$ and let $x_\lambda \in B_1 \cap B_2$. Then $B_1, B_2 \in T$, B_1^c and B_2^c are fH-closed in X. Thus, by Lemma 2.7, $B_1^c \cup B_2^c$ is fH-closed in X. Since $B_1^c \cup B_2^c = (B_1 \cap B_2)^c$, $(B_1 \cap B_2)^c$ is fH-closed in X. Moreover $B_1 \cap B_2 \in T$. Then $B_1 \cap B_2 \in \mathcal{B}^*$. Hence this completes the proof.

Result 2.A[8,Lemma 3.7]. Let (X, T) be a fts and let $\mathcal{B}_{\star} = \{V \in T : V^c \text{ is } F\text{- compact in } X\}$. Then there exists a unique fuzzy topology T_{\star} on X for which \mathcal{B}_{\star} is a fuzzy base for T_{\star} .

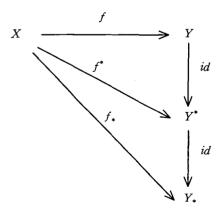
Furthermore $T_{\bullet} \subset T$ and (X, T_{\bullet}) is always a compact fuzzy topological space. In this case, (X, T_{\bullet}) is called the *induced compact fuzzy topological space by* (X, T) and will be denoted by X_{\bullet} .

It is clear that $T_* \subset T^* \subset T$.

Proposition 2.9. Let $f: X \to Y$ a mapping. Define the mappings $f^*: X \to Y^*$ and $f_*: X \to Y_*$ as follows, respectively: for each $x \in X$,

$$f^*(x) = f(x)$$
 and $f_*(x) = f(x)$.

Consider the following diagram:



Then the following hold.

- (1) f is fH-continuous if and only if f^* is F-continuous.
- (2) [8,Proposition 3.8] f is fc-continuous if and only if f_* is F-continuous.

- (3) $id: Y \rightarrow Y^*$ and $id: Y^* \rightarrow Y_*$ are F-continuous.
- (4) $id^{-1}: Y^* \rightarrow Y$ is fH-continuous.
- (5) $id^{-1}: Y_* \rightarrow Y^*$ is fc-continuous.

Theorem 2.10. Let $f: X \rightarrow Y$ be fH-continuous. If $f^*: X \rightarrow Y^*$ is F-closed(resp. F-open), then f is F-closed(resp. F-open).

Proof. Suppose $f^*: X \to Y^*$ is F-closed(resp. F-open). Let $F \in FC(X)$ (resp. $F \in FO(X)$). Then, by the hypothesis, $f^*(F)$ is F-closed(resp. F-open) in Y^* . By Proposition 2.9(3), $id: Y \to Y^*$ is F-continuous. Then $id^{-1}(f^*(F))$ is F-closed(resp. F-open) in Y. But $id^{-1}(f^*(F)) = f(F)$. So f(F) is F-closed(resp. F-open) in Y. Hence f is F-closed(resp. F-open).

Theorem 2.11. If $f: X \rightarrow Y$ is fH-continuous and $A \in P(X)$, then $f \mid_A: A \rightarrow Y$ is fH-continuous.

Proof. Let $V \in FO(Y)$ such that V^c is fH-closed in Y. Then, by Theorem 2.4(2), $f^{-1}(V) \in FO(X)$. Thus $(f \mid_A)^{-1}(V) = f^{-1}(V) \cap A \in FO(A)$. Hence $f \mid_A$ is fH-continuous.

Theorem 2.12. If $f: X \rightarrow Y$ is F-continuous and $g: Y \rightarrow Z$ is fH-continuous, then $g \circ f: X \rightarrow Z$ is fH-continuous.

Proof. Let $W \in FO(Z)$ such that W^c is fH-closed in Z. Then, by Theorem 2.4(2), $g^{-1}(W) \in FO(Y)$. Since f is F-continuous, $f^{-1}(g^{-1}(W)) \in FO(X)$. But $(g \circ f)^{-1}(W) = f^{-1}(g^{-1}(W))$. Thus $(g \circ f)^{-1}(W) \in FO(X)$. Hence, by Theorem 2.4(2), $g \circ f$ is fH-continuous.

3. Fuzzy strongly closed graphs

Let $f: X \to Y$ be a mapping. Then the subset $G(f) = \{(x, f(x)) : x \in X\}$ of the Cartesian product $X \times Y$ is called the *graph of* f.

Definition 3.1. Let X and Y be fts's. Then a mapping $f: X \rightarrow Y$ is said to have a fuzzy strongly closed graph(in short, F-strongly closed graph) or the graph G(f) is said to be fuzzy strongly closed (in short, F-strongly closed) in $X \times Y$ if for each $(x_{\lambda}, y_{\mu}) \notin F_{\rho}(G(f))$, there exist $U \in FO(X)$ and $V \in FO(Y)$ such that $x_{\lambda} \in U$, $y_{\mu} \in V$ and $(U \times \operatorname{cl} V) \odot G(f) = \emptyset$.

Definition 3.2. Let X and Y be fts's and let $f: X \rightarrow Y$ be a mapping. Then the graph G(f) of f is said to have an upper fuzzy point in $X \times Y$ provided that for each $(x_{\lambda}, y_{\mu}) \notin F_{\rho}(G(f))$, there exist $U \in FO(X)$ and $V \in FO(Y)$ such that $x_{\lambda} \in U$, $y_{\mu} \in V$ and if $(U \times \operatorname{cl} V) \odot G(f) \neq \emptyset$, then there exists

 $(a,b) \in G(f)$ such that $(U \times \operatorname{cl} V)(a,b) > \frac{1}{2}$.

Lemma 3.3. Let X and Y be fts's, let $f: X \rightarrow Y$ a mapping and let G(f) have an upper fuzzy point in $X \times Y$. Then f has a F-strongly closed graph if and only if for each $x_{\lambda} \in F_{\rho}(X)$ and each $y_{\mu} \in F_{\rho}(Y)$ such that $y \neq f(x)$, there exist $U \in FO(X)$ and $V \in FO(Y)$ such that $x_{\lambda} \in U$, $y_{\mu} \in V$ and $f(U) \odot$ of $V = \emptyset$.

Proof. (\Rightarrow): Suppose f has a F-strongly closed graph. Let $x_\lambda \in F_p(X)$ and let $y_\mu \in F_p(Y)$ such that $y \neq f(x)$. Then clearly $(x_\lambda, y_\mu) \notin F_p(G(f))$. By the hypothesis, there exist $U \in FO(X)$ and $V \in FO(Y)$ such that $x_\lambda \in U$, $y_\mu \in V$ and $(U \times \operatorname{cl} V) \odot G(f) = \emptyset$. Assume that $f(U) \odot \operatorname{cl} V \neq \emptyset$. Then $f(U)q(\operatorname{cl} V)$. Thus there exists $b \in Y$ such that $f(U)(b) + \operatorname{cl} V(b) > 1$, i.e., $\sup_{z \in f^{-1}(b)} U(z) + \operatorname{cl} V(b) > 1$. So there exists an $a \in X$ such that b = f(a) and $U(a) + \operatorname{cl} V(b) > 1$, i.e., $(U \times \operatorname{cl} V)(a,b) > 0$. Since $(U \times \operatorname{cl} V) \odot G(f) = \emptyset$ and $(a,b) \in G(f)$, $(U \times \operatorname{cl} V)(a,b) = 0$. This is a contradiction. Hence $f(U) \odot \operatorname{cl} V = \emptyset$.

 (\Leftarrow) : Suppose the necessary condition holds. Let $(x_{\lambda}, y_{\mu}) \notin F_b(G(f))$. Then clearly

 $x_{\lambda} \in F_{p}(X)$, $y_{\mu} \in F_{p}(Y)$ and $y \neq f(x)$. By the hypothesis, there exist $U \in FO(X)$ and $V \in FO(Y)$ such that $x_{\lambda} \in U$, $y_{\mu} \in V$ and $f(U) \odot \operatorname{cl} V = \emptyset$. Assume that $(U \times \operatorname{cl} V) \odot G(f) \neq \emptyset$. Since G(f) has an upper fuzzy point in $X \times Y$, there exists $(a,b) \in G(f)$ such that $(U \times \operatorname{cl} V)(a,b) > \frac{1}{2}$, i.e.,

 $\min [U(a), \operatorname{cl} V(b)] > \frac{1}{2}$. Then:

$$\begin{split} f(U)(b) + & \operatorname{cl} V(b) - 1 = & \sup_{z \in f^{-1}(b)} U(z) \\ & + & \operatorname{cl} V(b) - 1 \\ & \geq U(a) + & \operatorname{cl} V(b) - 1 \\ & \geq 2 & \min \left[U(a), \\ & & \operatorname{cl} V(b) \right] - 1 \\ & > 0. \end{split}$$

Thus $f(U) \odot \operatorname{cl} V \neq \emptyset$. This is a contradiction. So $(U \times \operatorname{cl} V) \odot G(f) = \emptyset$. Hence f has a F-strongly closed graph.

Remark 3.4. If $f: X \rightarrow Y$ has a F-strongly closed graph, then for each $x_{\lambda} \in F_{\rho}(X)$ and each $y_{\mu} \in F_{\rho}(Y)$ such that $y \neq f(x)$, there exist $U \in FO(X)$ and $V \in FO(Y)$ such that $x_{\lambda} \in U$, $y_{\mu} \in V$ and $f(U) \odot \operatorname{cl} V = \emptyset$.

Theorem 3.5. Let $f: X \rightarrow Y$ be fal-continuous and let G(f) have an upper fuzzy point in $X \times Y$. If Y is FT_{2w} , then f has a F-strongly closed graph.

Proof.} Let $x_{\lambda} \in F_{b}(X)$ and let $y_{\mu} \in F_{b}(Y)$ such that $y \neq f(x)$. Then $y_{\mu} \neq f(x_{\lambda})$. Since Y is FT_{2w} , there exists $V \in FO(X)$ such that $y_{\mu} \in V$ and

 $f(x_{\lambda}) \in (\operatorname{cl} V)^c$. Since $\operatorname{cl} V \in FRC(Y)$, $(\operatorname{cl} V)^c \in FRO(Y)$. Since f is fal-continuous, there exists $U \in FO(X)$ such that $x_{\lambda} \in U$ and $f(U) \subset (\operatorname{cl} V)^c$. Then $f(U) \odot \operatorname{cl} V = \emptyset$. Hence, by Lemma 3.3, f has a F-strongly closed graph.

Corollary 3.5. Let $f: X \rightarrow Y$ be F-continuous and let G(f) have an upper fuzzy point in $X \times Y$. If Y is FT_{2w} , then f has a F-strongly closed graph.

Theorem 3.6. Let $f: X \rightarrow Y$ be a surjection with F-strongly closed graph. Then Y is FT_{2w} .

Proof. Let y_{λ} and z_{μ} be distinct fuzzy point in Y. Since f is surjective, there exists $x \in X$ such that $y_{\lambda} = f(x_{\lambda})$. Then $(x_{\lambda}, z_{\mu}) \notin F_{p}(G(f))$. Since f has a F-strongly closed graph, by Remark 3.4, there exist $U \in FO(X)$ and $V \in FO(Y)$ such that $x_{\lambda} \in U$, $z_{\mu} \in V$ and $f(U) \odot \operatorname{cl} V = \emptyset$. Thus $f(x_{\lambda}) = y_{\lambda} \in (\operatorname{cl} V)^{c}$. Hence Y is FT_{2w} .

The following is the immediate result of Theorem 3.6 and Corollary 3.5.

Theorem 3.7. A fts X is FT_{2w} if and only if the identity mapping $id: X \rightarrow X$ has a F-strongly closed graph.

Theorem 3.8. If a mapping $f: X \rightarrow Y$ has a F-strongly closed graph, then it is fH-continuous.

Proof. Let K be any fH-closed set in Y and let $x_{\lambda} \in [f^{-1}(K)]^c$. Let $y_{\mu} \in K$. Then $(x_{\lambda}, y_{\mu}) \notin F_{\rho}(G(f))$. Since f has a F-strongly closed graph, by Lemma 3.3, there exist $U_{y_a} \in FO(X)$ and $V_{y_{\mu}} \in FO(Y)$ such that $x_{\lambda} \in U_{y_{\mu}}$, $y_{\mu} \in V_{y_{\mu}}$ and $f(U_{y_{\mu}}) \odot \operatorname{cl} V_{y_{\mu}} = \emptyset$. Consider the family $\{V_{y_{\mu}}\}$ $\in FO(Y): y_{\mu} \in K$. Then clearly $\{V_{y_{\mu}} \in FO(Y):$ $y_{\mu} \in K$) is an F-open cover of K in Y. Since K is fH-closed in Y, there exists a finite subset K_0 of Ksuch that $K \subset \bigcup_{y_{\mu} \in K_{\emptyset}} (\operatorname{cl} V_{y_{\mu}})$. Let $U = \bigcap \{U_{y_{\mu}} \in K_{\emptyset}\}$ $FO(X): x_{\lambda} \in U_{y_{\mu}} \text{ and } y_{\mu} \in K_0$. Then $x_{\lambda} \in U \in FO(X)$ and $U \odot f^{-1}(K) = \emptyset$, i.e., $U \subset [f^{-1}(K)]^c$. Thus $[f^{-1}(K)]^c \in FO(X)$. So $f^{-1}(K) \in FC(X)$. Hence, by Theorem 2.4, f is fH-continuous.

References

- [1] N.Ajmal and S.K.Azad, Fuzzy almost continuity and its pointwise characterization by dual points and fuzzy nets, Fuzzy Sets and Systems, 34(1990), 81-101.
- [2] K.K.Azad, On fuzzy semi-continuity, fuzzy almost continuity and fuzzy weakly continuity, J. Math.

Anal. Appl., 82(1981), 14-32.

- [3] C.L.Chang, Fuzzy topological spaces, J. Math. Anal. Appl., 24(1968), 182–190.
- [4] Z.Deng, Fuzzy pseudo-metric spaces, J. Math. Anal. Appl., 86(1982), 74–95.
- [5] A.A. Fora, Fuzzy separation axioms and fuzzy continuity, Arab Gulf J. Scient. Res., Math. Phys. sci., A5(3)(1987), 307–318.
- [6] S. Ganguly and S.Saha, On separation axioms and T_i -fuzzy continuity, Fuzzy Sets and Systems, 16(1985), 265-275.
- [7] _____, A note on compactness in a fuzzy setting, Fuzzy Sets and Systems, 34(1990), 117-124.
- [8] K. Hur, J.R.Moon and J.H.Ryou, Fuzzy c-continuous mappings. International Journal of Fuzzy Logic and Intelligent Systems, Vol.1, no.1(2001), 50-55.
- [9] P.E. Long and T.R. Hamlett, H continuous functions, Bollettino U.M.Z.(4)11 (1975), 552-558.
- [10] C.De Mitri and E.Pascali, Characterization of fuzzy topologies from neighborhoods of fuzzy points, J. Math. Anal. Appl., 93(1983), 1-14.
- [11] M.N.Mukherjee and S.P.Sina, On some weaker forms of fuzzy continuous and fuzzy open mappings on fuzzy topological spaces, Fuzzy Sets and Systems, 32(1989), 103–114.
- [12] Pu Pao-Ming and Liu Ying-Ming, Fuzzy topology I: neighborhood structure of a fuzzy point and Moore-Smith convergence, J. Math. Anal. Appl., 76(1980), 571-599.
- [14] C.K.Wong, Fuzzy topology, product and quotient theorems, J. Math. Anal. Appl., 45(1974), 512–521.
- [15] ______, Fuzzy points and local properties of fuzzy topology, J. Math. Anal. Appl., 46(1974), 316–328.
- [16] T. H. Yalvac, Fuzzy sets and functions on fuzzy spaces, J. Math. Anal. Appl., 126(1987), 409-423.
- [17] L. A. Zadeh, Fuzzy sets, Inform and Control, 8(1965), 338–353.

저 자 소 개

K.Hur a

제 8권 6호 참조

Y.S.Ahn b

제 11권 2호 참조

J.H. Ryou ^c

제 8권 6호 참조