International Mathematical Forum, 4, 2009, no. 42, 2093 - 2100

Fuzzy Ideal Extensions of Γ-Semigroups

Tapan Kumar Dutta

Department of Pure Mathematics, University of Calcutta 35, Ballygunge Circular Road, Kolkata-700019, India duttatapankumar@yahoo.co.in

Sujit Kumar Sardar

Department of Mathematics, Jadavpur University Kolkata-700032, India sksardar@math.jdvu.ac.in

Samit Kumar Majumder

Department of Mathematics, Jadavpur University Kolkata-700032, India samitmathalg@yahoo.co.in

Abstract

In this paper the concept of the extensions of fuzzy ideals in a semigroup has been extended to a Γ -semigroup. Among other results characterization of prime ideals in a Γ -semigroup in terms of fuzzy ideal extension has been obtained.

Mathematics Subject Classification: 20M12, 03F55, 08A72

Keywords: Γ-Semigroup, Fuzzy ideal extension, Fuzzy left(right) ideal, Fuzzy semiprime ideal

1 Introduction

 Γ -semigroup was introduced by Sen and Saha[9] as a generalization of semigroup and ternary semigroup. Many results of semigroups could be extended to Γ -semigroups directly and via operator semigroups[2] of a Γ -semigroup. Many results of semigroups have been studied in terms of fuzzy sets[11]. Kuroki[3,4] is the main contributor to this study. Motivated by Kuroki [3,4], Xie[10], Mustafa et all[5] we have initiated the study of Γ -semigroups in terms of fuzzy sets. This paper is a continuation of [6], [7], [8]. In this paper, the concept of the extensions of fuzzy ideals in a semigroup, introduced by Xie, has been extended to the general situation of Γ -semigroup. We have investigated some of its properties in terms of fuzzy prime and fuzzy semiprime ideals of Γ semigroup. Among other results we have obtained characterization of prime ideals in a Γ -semigroup in terms of fuzzy ideal extension.

2 Preliminaries

We recall the following definitions and results which will be used in the sequel.

Definition 2.1 [2] Let S and Γ be two non-empty sets. S is called a Γ semigroup if there exist mappings from $S \times \Gamma \times S$ to S, written as $(a, \alpha, b) \longrightarrow$ $a\alpha b$, and from $\Gamma \times S \times \Gamma$ to Γ , written as $(\alpha, a, \beta) \longrightarrow \alpha a\beta$ satisfying the following associative laws $(a\alpha b)\beta c = a(\alpha b\beta)c = a\alpha(b\beta c)$ and $\alpha(a\beta b)\gamma = (\alpha a\beta)b\gamma =$ $\alpha a(\beta b\gamma)$ for all $a, b, c \in S$ and for all $\alpha, \beta, \gamma \in \Gamma$.

Definition 2.2 [11] A fuzzy subset of a nonempty set X is a function $\mu : X \rightarrow [0, 1]$.

Definition 2.3 [10] The set of all fuzzy subsets of a set X with the relation $f \subseteq g \iff f(x) \leq g(x) \ \forall x \in X$ is a complete lattice where, for a nonempty family $\{\mu_i : i \in I\}$ of fuzzy subsets of X, the $\inf\{\mu_i : i \in I\}$ and the $\sup\{\mu_i : i \in I\}$ are the fuzzy subsets of X defined by:

 $\inf\{\mu_i : i \in I\} : X \longrightarrow [0,1], \ x \longrightarrow \inf\{\mu_i(x) : i \in I\}$ $\sup\{\mu_i : i \in I\} : X \longrightarrow [0,1], \ x \longrightarrow \sup\{\mu_i(x) : i \in I\}$

Definition 2.4 [8] A non-empty fuzzy subset μ of a Γ -semigroup S is called a fuzzy left ideal(right ideal) of S if $\mu(x\gamma y) \geq \mu(y)(resp. \ \mu(x\gamma y) \geq \mu(x))$ $\forall x, y \in S, \forall \gamma \in \Gamma$.

Definition 2.5 [8] A non-empty fuzzy subset μ of a Γ -semigroup S is called a fuzzy ideal of S if it is both fuzzy left ideal and fuzzy right ideal of S.

Definition 2.6 [6] A fuzzy ideal μ of a Γ -semigroup S is called fuzzy prime ideal if $\inf_{\gamma \in \Gamma} \mu(x\gamma y) = \max\{\mu(x), \mu(y)\} \ \forall x, y \in S.$

Definition 2.7 [7] A fuzzy ideal μ of a Γ -semigroup S is called fuzzy semiprime ideal if $\mu(x) \ge \inf_{\gamma \in \Gamma} \mu(x\gamma x) \ \forall x \in S.$

Definition 2.8 [2] Let S be a Γ -semigroup. Then an ideal I of S is said to be (i) prime if for ideals A, B of S, $A\Gamma B \subseteq I$ implies that $A \subseteq I$ or $B \subseteq I$. (ii) semiprime if for an ideal A of S, $A\Gamma A \subseteq I$ implies that $A \subseteq I$. **Proposition 2.9** [6,7] Let S be a Γ -semigroup and $\phi \neq I \subseteq S$. Then I is an ideal(prime ideal, semiprime ideal) of S iff μ_I is a fuzzy ideal(resp. fuzzy prime ideal, fuzzy semiprime ideal) of S, where μ_I is the characteristic function of I.

Theorem 2.10 [6,7] Let I be an ideal of a Γ -semigroup S. Then the following are equivalent:

- (i) I is prime(semiprime).
- (*ii*) for $x, y \in S, x \Gamma y \subseteq I \Rightarrow x \in I$ or $y \in I(resp. x \Gamma x \subseteq I \Rightarrow x \in I)$.
- (ii) for $x, y \in S, x \Gamma S \Gamma y \subseteq I \Rightarrow x \in I$ or $y \in I(resp. x \Gamma S \Gamma x \subseteq I \Rightarrow x \in I)$.

3 Fuzzy Ideal Extensions

Definition 3.1 Let S be a Γ -semigroup, μ be a fuzzy subset of S and $x \in S$, then the fuzzy subset $\langle x, \mu \rangle \colon S \to [0,1]$ defined by $\langle x, \mu \rangle (y) = \inf_{\gamma \in \Gamma} \mu(x\gamma y)$ is called the extension of μ by x.

Example (a): Let S be the set of all non-positive integers and Γ be the set of all non-positive even integers. Then S is a Γ -semigroup where $a\gamma b$ and $\alpha a\beta$ denote the usual multiplication of integers a, γ, b and α, a, β respectively with $a, b \in S$ and $\alpha, \beta, \gamma \in \Gamma$. Let μ be a fuzzy subset of S, defined as follows

 $\mu(x) = \begin{cases} 1, \text{ if } x = 0\\ 0.1, \text{ if } x = -1, -2\\ 0.2, \text{ if } x < -2 \end{cases}$. Then the fuzzy subset μ of S is a fuzzy ideal

of S.

For $x = 0 \in S, \langle x, \mu \rangle$ $(y) = 1 \forall y \in S$. For all other $x \in S, \langle x, \mu \rangle$ $(y) = 0.2 \forall y \in S$.

Thus $\langle x, \mu \rangle$ is a fuzzy ideal extension of μ by x.

Proposition 3.2 Let μ be a fuzzy ideal of a commutative Γ -semigroup S and $x \in S$. Then $\langle x, \mu \rangle$ is a fuzzy ideal of S.

Proof. Let μ be a fuzzy ideal of a commutative Γ -semigroup S and $p, q \in S, \beta \in \Gamma$. Then $\langle x, \mu \rangle (p\beta q) = \inf_{\gamma \in \Gamma} \mu(x\gamma p\beta q) \geq \inf_{\gamma \in \Gamma} \mu(x\gamma p) = \langle x, \mu \rangle (p)$. Thus $\langle x, \mu \rangle$ is a fuzzy right ideal of S. Hence S being commutative $\langle x, \mu \rangle$ is a fuzzy ideal of S.

Remark 3.3 Commutativity of Γ -semigroup S is not required to prove that $\langle x, \mu \rangle$ is a fuzzy right ideal of S when μ is a fuzzy right ideal of S.

Proposition 3.4 Let S be a commutative Γ -semigroup and μ be a fuzzy prime ideal of S. Then $\langle x, \mu \rangle$ is fuzzy prime ideal of S for all $x \in S$.

Proof. Let μ be a fuzzy prime ideal of S. Then by Proposition 3.2, $\langle x, \mu \rangle$ is a fuzzy ideal of S. Let $y, z \in S$. Then $\inf_{\beta \in \Gamma} \langle x, \mu \rangle (y\beta z) = \inf_{\beta \in \Gamma} \inf_{\gamma \in \Gamma} \mu(x\gamma y\beta z)(cf.$ Definition 3.1) = $\inf_{\beta \in \Gamma} \max\{\mu(x), \mu(y\beta z)\}(cf.$ Definition 2.6) = $\max\{\mu(x), \inf_{\beta \in \Gamma} \mu(y\beta z)\} = \max[\mu(x), \max\{\mu(y), \mu(z)\}] = \max[\max\{\mu(x), \mu(y)\}, \max\{\mu(x), \mu(z)\}] = \max\{\inf_{\delta \in \Gamma} \mu(x\delta y), \inf_{\varepsilon \in \Gamma} \mu(x\varepsilon z)\} = \max\{\langle x, \mu \rangle (y), \langle x, \mu \rangle (z)\}$. Hence by Definition 2.6, $\langle x, \mu \rangle$ is a fuzzy prime ideal of S.

Definition 3.5 Suppose S is a Γ -semigroup and μ is a fuzzy subset of S. Then we define supp $\mu = \{x \in S : \mu(x) > 0\}.$

Proposition 3.6 Let S be a Γ -semigroup, μ be a fuzzy ideal of S and $x \in S$. Then we have the following:

(1) $\mu \subseteq \langle x, \mu \rangle$.

 $(2) < (x\alpha)^n x, \mu > \subseteq < (x\alpha)^{n+1} x, \mu > \forall \alpha \in \Gamma, \forall n \in N.$

(3) If $\mu(x) > 0$ then $supp < x, \mu >= S$.

Proof. (1) Let $y \in S$. Then $\langle x, \mu \rangle$ $(y) = \inf_{\gamma \in \Gamma} \mu(x\gamma y) \ge \mu(y)$ (since μ is a fuzzy ideal of S). Hence $\mu \subseteq \langle x, \mu \rangle$.

fuzzy ideal of S). Hence $\mu \subseteq \langle x, \mu \rangle$. (2) $\langle (x\alpha)^{n+1}x, \mu \rangle (y) = \inf_{\gamma \in \Gamma} \mu((x\alpha)^{n+1}x\gamma y) = \inf_{\gamma \in \Gamma} \mu(x\alpha(x\alpha)^n x\gamma y) \geq \inf_{\gamma \in \Gamma} \mu((x\alpha)^n x\gamma y)$ (since μ is a fuzzy ideal of S) = $\langle (x\alpha)^n x, \mu \rangle (y)$. Hence $\langle (x\alpha)^n x, \mu \rangle \subseteq \langle (x\alpha)^{n+1}x, \mu \rangle$.

(3) Since $\langle x, \mu \rangle$ is a fuzzy subset of S, by definition, $\operatorname{supp} \langle x, \mu \rangle \subseteq S$. Let $y \in S$. Since μ is a fuzzy ideal of S, we have, $\langle x, \mu \rangle (y) = \inf_{\gamma \in \Gamma} \mu(x\gamma y) \ge \mu(x) > 0$. Then $\langle x, \mu \rangle (y) > 0$ and so $y \in \operatorname{supp} \langle x, \mu \rangle$.

Remark 3.7 If we consider $(x\alpha)^0 x = x$ then (2) is also true for n = 0.

Definition 3.8 Suppose S is a Γ -semigroup, $A \subseteq S$ and $x \in S$. We define $\langle x, A \rangle = \{y \in S \mid x \Gamma y \subseteq A\}$, where $x \Gamma y := \{x \alpha y : \alpha \in \Gamma\}$.

Proposition 3.9 Let S be a Γ -semigroup and $\phi \neq A \subseteq S$. Then $\langle x, \mu_A \rangle = \mu_{\langle x,A \rangle}$ for every $x \in S$, where μ_A denotes the characteristic function of A.

Proof. Let $x, y \in S$. Then two cases may arise viz. Case (i) $y \in \langle x, A \rangle$. Case (ii) $y \notin \langle x, A \rangle$.

Case (i) $y \in \langle x, A \rangle$. Then $x \Gamma y \subseteq A$. Hence $x \gamma y \in A \ \forall \gamma \in \Gamma$. This means that $\mu_A(x \gamma y) = 1 \ \forall \gamma \in \Gamma$. Hence $\inf_{\gamma \in \Gamma} \mu_A(x \gamma y) = 1$ whence $\langle x, \mu_A \rangle (y) = 1$. Also $\mu_{\langle x, A \rangle}(y) = 1$.

Case (ii) $y \notin \langle x, A \rangle$. Then there exists $\gamma \in \Gamma$ such that $x\gamma y \notin \dot{A}$. So $\mu_A(x\gamma y) = 0$. Hence $\inf_{\gamma \in \Gamma} \mu_A(x\gamma y) = 0$. Thus $\langle x, \mu_A \rangle (y) = 0$. Again $\mu_{\langle x,A \rangle}(y) = 0$. Thus we conclude $\langle x, \mu_A \rangle = \mu_{\langle x,A \rangle}$. **Proposition 3.10** Let S be a Γ -semigroup and μ be a nonempty fuzzy subset of S. Then for any $t \in Im(\mu)$, $\langle x, \mu_t \rangle = \langle x, \mu \rangle_t$ for all $x \in S$.

Proof. Let $y \in \langle x, \mu \rangle_t$. Then $\langle x, \mu \rangle(y) \geq t$. Hence $\inf_{\gamma \in \Gamma} \mu(x\gamma y) \geq t$. This gives $\mu(x\gamma y) \geq t$ for all $\gamma \in \Gamma$ and hence $x\gamma y \in \mu_t$ for all $\gamma \in \Gamma$. Consequently, $y \in \langle x, \mu_t \rangle$. It follows that $\langle x, \mu \rangle_t \subseteq \langle x, \mu_t \rangle$. Reversing the above argument we can deduce that $\langle x, \mu_t \rangle \subseteq \langle x, \mu \rangle_t$. Hence $\langle x, \mu \rangle_t = \langle x, \mu_t \rangle$. \blacksquare

Proposition 3.11 Let S be a commutative Γ -semigroup i.e., $a\alpha b = b\alpha a \ \forall a, b \in S, \forall \alpha \in \Gamma$ and μ be a fuzzy subset of S such that $\langle x, \mu \rangle = \mu$ for every $x \in S$. Then μ is a constant function.

Proof. Let $x, y \in S$. Then by hypothesis we have $\mu(x) = \langle y, \mu \rangle (x) = \inf_{\gamma \in \Gamma} \mu(y\gamma x) = \inf_{\gamma \in \Gamma} \mu(x\gamma y) = \langle x, \mu \rangle (y) = \mu(y)$. Hence μ is a constant function.

Corollary 3.12 Let S be a commutative Γ -semigroup, μ be a fuzzy prime ideal of S. If μ is not constant, then μ is not a maximal fuzzy prime ideal of S.

Proof. Let μ be a fuzzy prime ideal of S. Then, by Proposition 3.4 for each $x \in S$, $\langle x, \mu \rangle$ is a fuzzy prime ideal of S. Now by Proposition 3.6(1), $\mu \subseteq \langle x, \mu \rangle$ for all $x \in S$. If $\mu = \langle x, \mu \rangle$ for all $x \in S$ then by Proposition 3.11, μ is constant which is not the case by hypothesis. Hence there exists $x \in S$ such that $\mu \subsetneq \langle x, \mu \rangle$. This completes the proof.

Proposition 3.13 Let S be a commutative Γ -semigroup. If μ is a fuzzy semiprime ideal of S, then $\langle x, \mu \rangle$ is a fuzzy semiprime ideal of S for every $x \in S$.

Proof. Let μ be a fuzzy semiprime ideal of S and $x, y \in S$. Then $\inf_{\gamma \in \Gamma} \langle x, \mu \rangle$ $(y\gamma y) = \inf_{\gamma \in \Gamma \delta \in \Gamma} \mu(x \delta y \gamma y) \leq \inf_{\gamma \in \Gamma \delta \in \Gamma} \mu(x \delta y \gamma y \delta x)$ (since μ is a fuzzy ideal of S) = $\inf_{\gamma \in \Gamma \delta \in \Gamma} \mu(x \delta y \gamma x \delta y)$ (using commutativity of S and Definition 2.7)) = $\langle x, \mu \rangle$ (y). Again by Proposition 3.2, $\langle x, \mu \rangle$ is a fuzzy ideal of S. Consequently, $\langle x, \mu \rangle$ is a fuzzy semiprime ideal of S for all $x \in S$.

Corollary 3.14 Let S be a commutative Γ -semigroup, $\{\mu_i\}_{i\in I}$ be a non-empty family of fuzzy semiprime ideals of S and let $\mu = \inf\{\mu_i : i \in I\}$. Then for any $x \in S$, $\langle x, \mu \rangle$ is a fuzzy semiprime ideal of S.

Proof. Since each $\mu_i(i \in I)$ is a fuzzy ideal, $\mu_i(0) \neq 0 \quad \forall i \in I(\text{Each } \mu_i \text{ is non-empty, so there exists } x_i \in S \text{ such that } \mu_i(x_i) \neq 0 \quad \forall i \in I. \text{ Also } \mu_i(0) = \mu_i(0\gamma x_i) \geq \mu_i(x_i) \quad \forall i \in I. \text{ Hence } \forall i \in I, \ \mu_i(0) \neq 0). \text{ Consequently, } \mu(0) \neq 0.$ Thus μ is non-empty. Now let $x, y \in S$. Then $\mu(x\gamma y) = \inf\{\mu_i : i \in I\}(x\gamma y) = \inf\{\mu_i(x\gamma y) : i \in I\} \geq \inf\{\mu_i(x) : i \in I\} = \mu(x). \text{ Hence } S \text{ being a commutative } \Gamma\text{-semigroup, } \mu \text{ is a fuzzy ideal of } S.$

Now if $a \in S$ then $\mu(a) = \inf\{\mu_i : i \in I\}(a) = \inf\{\mu_i(a) : i \in I\} \ge \inf\{\inf_{\gamma \in \Gamma} \mu_i(a\gamma a) : i \in I\}$ (since each μ_i is a fuzzy semiprime ideal(*cf*. Definition 2.7)) = $\inf_{\gamma \in \Gamma} [\inf\{\mu_i : i \in I\}(a\gamma a)] = \inf_{\gamma \in \Gamma} \mu(a\gamma a)$. This means, μ is a fuzzy semiprime ideal of S. Hence by Proposition 3.13, for any $x \in S, \langle x, \mu \rangle$ is a fuzzy semiprime ideal of S.

Remark 3.15 The proof of the above Corollary shows that in a Γ -semigroup intersection of arbitrary family of fuzzy semiprime ideals is a fuzzy semiprime ideal.

Corollary 3.16 Let S be a commutative Γ -semigroup, $\{S_i\}_{i \in I}$ a non-empty family of semiprime ideals of S and $A := \bigcap_{i \in I} S_i \neq \phi$. Then $\langle x, \mu_A \rangle$ is a fuzzy semiprime ideal of S for all $x \in S$ where μ_A is the characteristic function of A.

Proof. By supposition $A \neq \phi$. Then for any ideal P of S, $P\Gamma P \subseteq A$ implies that $P\Gamma P \subseteq S_i \ \forall i \in I$. Since each S_i is a semiprime ideal of S, $P \subseteq S_i \ \forall i \in I(cf. \text{ Definition 2.8})$. So $P \subseteq \bigcap_{i \in I} S_i = A$. Hence A is a semiprime ideal of S(cf. Definition 2.8). So the characteristic function μ_A of A is a fuzzy semiprime ideal of S(cf. Proposition 2.9). Hence by Proposition 3.13, $\forall x \in S, < x, \mu_A > \text{ is a fuzzy semiprime ideal of } S$.

Alternative Proof: $A = \bigcap_{i \in I} S_i \neq \phi$ (by the given condition). Hence $\mu_A \neq \phi$. Let $x \in S$. Then $x \in A$ or $x \notin A$. If $x \in A$ then $\mu_A(x) = 1$ and $x \in S_i \ \forall i \in I$. Hence $\inf\{\mu_{S_i} : i \in I\}(x) = \inf_{i \in I} \{\mu_{S_i}(x)\} = 1 = \mu_A(x)$. If $x \notin A$ then $\mu_A(x) = 0$ and for some $i \in I$, $x \notin S_i$. It follows that $\mu_{S_i}(x) = 0$. Hence $\inf\{\mu_{S_i} : i \in I\}(x) = \inf_{i \in I} \{\mu_{S_i}(x)\} = 0 = \mu_A(x)$. Thus we see that $\mu_A = \inf\{\mu_{S_i} : i \in I\}$. Again μ_{S_i} is a fuzzy semiprime ideal of S for all $i \in I(cf$. Proposition 2.9). Consequently by Corollary 3.14, for all $x \in S, < x, \mu_A >$ is a fuzzy semiprime ideal of S.

Theorem 3.17 Let S be a Γ -semigroup. If μ is a fuzzy prime ideal of S and $x \in S$ such that $\mu(x) = \inf_{y \in S} \mu(y)$, then $\langle x, \mu \rangle = \mu$. Conversely, if μ is a fuzzy ideal of S such that $\langle y, \mu \rangle = \mu \ \forall y \in S$ with $\mu(y)$ not maximal in $\mu(S)$ then μ is prime.

Proof. Let μ be a fuzzy prime ideal of S and $x \in S$ be such that $\mu(x) = \inf_{y \in S} \mu(y)$ (it can be noted here that since each $\mu(y) \in [0,1]$, a closed and bounded subset of R, $\inf_{y \in S} \mu(y)$ exists). Let $z \in S$. Then $\mu(x) \leq \mu(z)$. Hence $\max\{\mu(x), \mu(z)\} = \mu(z)$(*). Now $\langle x, \mu \rangle \langle z \rangle = \inf_{\gamma \in \Gamma} \mu(x\gamma z)$. Since μ is a fuzzy prime ideal of S, $\inf_{\gamma \in \Gamma} \mu(x\gamma z) = \max\{\mu(x), \mu(z)\} = \mu(z)$ (using (*)). Hence $\langle x, \mu \rangle \langle z \rangle = \mu(z)$. Consequently, $\langle x, \mu \rangle = \mu$.

Conversely, let μ be a fuzzy ideal of S such that $\langle y, \mu \rangle = \mu \ \forall y \in S$ with $\mu(y)$ is not maximal in $\mu(S)$ and let $x_1, x_2 \in S$. Then μ being a fuzzy ideal of S, $\mu(x_1\gamma x_2) \geq \mu(x_1)$ and $\mu(x_1\gamma x_2) \geq \mu(x_2) \ \forall \gamma \in \Gamma$. This leads to $\inf_{\gamma \in \Gamma} \mu(x_1\gamma x_2) \geq \mu(x_1)$(**) and $\inf_{\gamma \in \Gamma} \mu(x_1\gamma x_2) \geq \mu(x_2)$(***). Now two cases may arise viz. Case (i) Either $\mu(x_1)$ or $\mu(x_2)$ is maximal in $\mu(S)$. Case (ii) Neither $\mu(x_1)$ nor $\mu(x_2)$ is maximal in $\mu(S)$. Case (i) Without loss of generality, let $\mu(x_1)$ be maximal in $\mu(S)$. Then $\inf_{\gamma \in \Gamma} \mu(x_1\gamma x_2) \leq \mu(x_1)$. Consequently $\inf_{\gamma \in \Gamma} \mu(x_1\gamma x_2) = \mu(x_1) = \max\{\mu(x_1), \mu(x_2)\}$. Case (ii) By the hypothesis $\langle x_1, \mu \rangle = \mu$ and $\langle x_2, \mu \rangle = \mu$. Hence $\langle x_1, \mu \rangle \langle x_2 \rangle = \mu(x_2) \Rightarrow \inf_{\gamma \in \Gamma} \mu(x_1\gamma x_2) = \mu(x_2) = \max\{\mu(x_1), \mu(x_2)\}$ (using (**)). Thus we conclude that μ is a fuzzy prime ideal of S.

To end this paper we get the following characterization theorem of a prime ideal of a Γ -semigroup which follows as a corollary to the above theorem.

Corollary 3.18 Let S be a Γ -semigroup and I be an ideal of S. Then I is prime iff for $x \in S$ with $x \notin I$, $\langle x, \mu_I \rangle = \mu_I$, where μ_I is the characteristic function of I.

Proof. Let *I* be a prime ideal of *S*. Then, by Proposition 2.9, μ_I is a fuzzy prime ideal of *S*. For $x \in S$ such that $x \notin I$, we have $\mu_I(x) = 0 = \inf_{y \in S} \mu_I(y)$.

Then by Theorem 3.17, $\langle x, \mu_I \rangle = \mu_I$.

Conversely, let $\langle x, \mu_I \rangle = \mu_I$ for all x in S with $x \notin I$. Let $y \in S$ be such that $\mu_I(y)$ is not maximal in $\mu_I(S)$. Then $\mu_I(y) = 0$ and so $y \notin I$. So $\langle y, \mu_I \rangle = \mu_I$. So by the Theorem 3.17, μ_I is a fuzzy prime ideal of S. So I is a prime ideal of S(cf. Proposition 2.9).

Acknowledgement: We are thankful to Prof. Xiang-Yun Xie of the Department of Mathematics and Physics, Wuyi University, P.R. China; for his co-operation and encouragement to write this paper.

References

[1] N.C. Adhikari, Study of Some Problems Associated with Gamma Semigroups, *Ph.D. Dissertation(University of Calcutta)*.

- [2] T.K. Dutta. and N.C. Adhikari, On Prime Radical of Γ-Semigroup, Bull. Cal. Math. Soc. 86 No.5(1994), 437-444.
- [3] N. Kuroki, On Fuzzy Ideals and Fuzzy Bi-ideals in Semigroups, Fuzzy Sets and Systems, 5(1981), No.2, 203-215.
- [4] Mordeson et all, Fuzzy Semigroups, Springer-Verlag(2003), Heidelberg.
- [5] Uckun Mustafa, Mehmet Ali and Jun Young Bae, Intuitionistic Fuzzy Sets in Gamma Semigroups, Bull. Korean Math. Soc., 44(2007), No.2, 359-367.
- [6] S.K. Sardar and S.K. Majumder, A Note on Characterization of Prime Ideals of Γ-Semigroups in terms of Fuzzy Subsets, (to appear in International Jr. of Contemp. Math. Sciences).
- [7] S.K. Sardar and S.K. Majumder, Characterization of Semiprime Ideals of Γ-Semigroups in terms of Fuzzy Subsets, (*Pre-print*).
- [8] S.K. Sardar and S.K. Majumder, On Fuzzy Ideals in Γ-Semigroups, (to appear in International Jr. of Algebra).
- [9] M.K. Sen and N.K Saha, On Γ-Semigroups I, Bull. Calcutta Math. Soc. 78(1986), No.3, 180-186.
- [10] Xiang-Yun Xie, Fuzzy Ideal Extensions of Semigroups, Soochow Journal of Mathematics, 27, No.2, April.2001, 125-138.
- [11] L.A. Zadeh, Fuzzy Sets, Information and Control, 8(1965), 338-353.

Received: March, 2009