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Abstract

We introduce a new cryptographic primitive which is the signature analogue of fuzzy
identity based encryption(IBE). We call it fuzzy identity based signature(IBS). It
possesses similar error-tolerance property as fuzzy IBE that allows a user with the
private key for identity ω to decrypt a ciphertext encrypted for identity ω′ if and
only if ω and ω′ are within a certain distance judged by some metric. A fuzzy IBS is
useful whenever we need to allow the user to issue signature on behalf of the group
that has certain attributes. Fuzzy IBS can also be applied to biometric identity
based signature. To our best knowledge, this primitive was never considered in the
identity based signature before.

We give the definition and security model of the new primitive and present the
first practical implementation based on Sahai-Waters construction[6] and the two
level hierarchical signature of Boyen and Waters[9]. We prove that our scheme is
existentially unforgeable against adaptively chosen message attack without random
oracles.

Key words: fuzzy, identity based signature, biometric, attribute based signature,
unforgeable

1 Introduction

The concept of fuzzy identity based encryption(IBE) was introduced by Sahai
and Waters [6] and further developed in a line of works, e.g., [1,3,5]. In a
nutshell a fuzzy identity based encryption allows a user with the private key
for identity ω to decrypt a ciphertext encrypted for identity ω′ if and only if
ω and ω′ are within a certain distance judged by some metric.
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In this paper we introduce a novel cryptographic primitive that is the signature
analogue of a fuzzy identity based encryption, we call it fuzzy identity based
signature. A fuzzy identity based signature(IBS) allows a user with identity
ω to issue a signature which could be verified with identity ω′ if and only
if ω and ω′ are within a certain distance judged by some metric. Fuzzy IBS
can be directly applied to identity based signature system that uses biometric
identities. Another interesting application is attribute based signature. In this
application, a user can issue a signature on behalf of the group that has a
certain set of attributes. For example, an IT company might want a C++
senior programmer whose age is above 50 to sign the technical report. In
this scenario, it will sign to the identity {“C++”,“senior programmer”,“above
50”}. Any user who has an identity that contains all of these attributes could
issue the signature.

1.1 Our contribution.

In this paper, we first contribute the definition, formalization, and security
model of fuzzy identity based signature. We then construct a practical fuzzy
identity based signature based on Sahai-Waters construction[6]. We prove that
our scheme is existentially unforgeable against adaptively chosen message at-
tack as defined in section 3.2 without random oracles. To our best knowledge,
there is no fuzzy identity based signature scheme that has been formally pre-
sented before.

2 Preliminaries

2.1 Bilinear Pairings and Assumptions

Let us consider two multiplicative group G and GT of the same prime order p.
A bilinear pairing is a map e :G×G → GT with the following properties[2]:

1. Bilinear: e(ua, vb) = e(u, v)ab, where u, v ∈ G, and a, b ∈ Z∗
p

2. Non-degeneracy: there exists u ∈ G and v ∈ G such that e(u, v) 6= 1

3. Computability: It is efficient to compute e(u, v) for all u, v ∈ G
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2.2 Computational Diffie-Hellman(DH) Assumption

We briefly review the Computational Diffie-Hellman(DH) Assumption. We
refer the reader to previous literature[2,4] for more details.

The challenger chooses a, b ∈ Zp at random and outputs (g, A = ga, B = gb).
The adversary then attempts to output gab ∈ G. An adversary, B, has at least
an ε advantage if

Pr[B(g, ga, gb) = gab] ≥ ε

where the probability is over the randomly chosen a, b and the random bits
consumed by B.

Definition 1 The computational (t, ε) − DH assumption holds if no t-time
adversary has at least ε advantage in solving the above game.

2.3 Threshold Secret Sharing Schemes

Secret sharing schemes were introduced by Shamir[7]. A (n, t) threshold secret
sharing scheme distributes a secret s among a set of players P = {R1, .., Rn}
of n players by a dealer. Each player Ri will privately receive si as a share
of the secret by the dealer. Then, those subsets with at least t players could
recover the secret, while other subsets containing less than t players couldn’t
gain any information about the secret.

Shamir’s solution[7] uses polynomial interpolation. Let GF (q) be a finite field
with q ≥ n elements, and let s ∈ GF (q) be the secret to be shared. The dealer
randomly picks a polynomial f(x) of degree t− 1, and the constant of f(x) is
s. So f(x) has the form f(x) = s +

∑t−1
j=1 ajx

j.

If we assign every player Ri with a unique field element αi. Then the dealer
sends the secret share si = f(αi) to Ri through a private channel. Now if the
set of players S ⊂ P such that |S| ≥ t, then they could recover the secret
s = f(0) by using the following formula:

f(x) =
∑

Ri∈S

∆αi,S(x)f(αi) =
∑

Ri∈S

∆αi,S(x)si

where
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∆αi,S(x) =
∏

Rl∈S,l 6=i

x− αl

αi − αl

.

On the other hand, it can be proved that if the subset B ⊂ P such that |B| < t
couldn’t get any information about the polynomial f(x).

3 Definitions

3.1 Fuzzy Identity Based Signature

The generic fuzzy identity based signature(FIBS) scheme consists of the fol-
lowing algorithms.

• Setup(1k): The Setup algorithm is a probabilistic algorithm that takes as
input a security parameter 1k. It generates the master key mk and public
parameters params which contains an error tolerance parameter d. Note
that params is made public and mk is kept secret.

• Extract(msk, ID): The Private Key Extraction algorithm is a probabilistic
algorithm that takes as input the master key mk and an identity ID. It
outputs a private key associate with ID, denoted by DID.

• Sign(params,DID, M): The signing algorithm is a probabilistic algorithm
that takes as input the public parameters params, a private key DID asso-
ciated with ID and a message M . It outputs the signature σ.

• Verify(params, ID′, M, σ): The verification algorithm is a deterministic al-
gorithm that takes as input the public parameters params, an identity ID′

such that |ID′ ∩ ID| ≥ d, the message M and the corresponding signature
σ. It returns a bit b, where b = 1 means that the signature is valid.

3.2 Security Model.

Definition 2 (UF-FIBS-CMA). Let A be an adversary assumed to be a prob-
abilistic Turing machine taking as input a security parameter k. Consider the
following game in which A interacts with a challenger C.

• Setup The challenger C runs the setup phase of the algorithm and tells the
adversary A the public parameters.
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• Phase 1 A issues private key queries and signature queries for any identi-
ties γi adaptively.

• Phase 2 A declares the target identity α, where |α ∩ γi| < d for all γi got
from Phase 1.

• Phase 3 A issues private key queries for many identities γj, where |γj∩α| <
d for all j. A issues signature queries for any identities.

• Phase 4 A outputs (α, M̃, σ̃), where σ̃ is α’s valid signature on the message
M̃ and A does not make a signature query on (M̃, σ̃) for identity α .

We define A’s success probability by

SuccUF−FIBS−CMA
FIBS,A (k) = Pr[V erify(α, M̃, σ̃] = 1

The fuzzy identity based signature scheme FIBS is said to be UF-FIBS-CMA
secure if SuccUF−FIBS−CMA

FIBS,A (k) is negligible in the security parameter k.

4 Fuzzy Identity Based Signature Scheme

Our scheme is extended from the two level hierarchical signature presented by
Boyen and Waters[9].

The description that follows assumes that groups G and GT of prime order p
such that a bilinear pairing e : G × G → GT can be constructed, and g is a
generator of G.

Identities will be sets of n elements of Z∗
p. We use the definition of Lagrange

coefficient ∆i,S(x) as in section 2.3.

Setup(n,d) To setup the system, first, choose g1 = gy, g2 ∈ G. Next, choose
t1, ..., tn+1 uniformly at random from G. Let N be the set {1, ..., n+1} and we
define a function, T , as:

T (x) = gxn

2

n+1∏
i=1

t
∆i,N (x)
i .

Next, select a random integer z′ ∈ Zp and a random vector ~z = (z1, ...zm) ∈ Zm
p

The public parameters of the system and the master key is given by,

PP = (g1, g2, t1, ..., tn+1, v
′ = gz′ ,

v1 = gz1 , ..., vm = gzm , A = e(g1, g2)) ∈ Gn+m+4 ×GT
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MK = y.

Extract(PP,MK,ω) To generate the private key for the identity ω, first
choose a random d − 1 degree polynomial q such as q(0) = y, and return
Kω = ({Di}i∈ω, {di}i∈ω) ∈ G2n, where the elements are constructed as

Di = g
q(i)
2 T (i)ri ,

di = g−ri .

where ri is a random number from Zp defined for all i ∈ ω.

Sign(PP,Kω, M) To sign a message represented as a bit string M = (µ1 · · ·
µm) ∈ {0, 1}m for identity ω, using private key Kω = ({Di}i∈ω, {di}i∈ω) ∈ G2n,
select a random si ∈ Zp for each i in ω , and output

S = ({Di · (v′
∏m

j=1 v
µj

j )si}i∈ω, {di}i∈ω, {g−si}i∈ω)

= ({gq(i)
2 · T (i)ri · (v′ ∏m

j=1 v
µj

j )s}i∈ω, {g−ri}i∈ω, {g−si}i∈ω) ∈ G3n.

Verify(PP,ω′,M,σ) To verify a signature S = ({S(i)
1 }i∈ω, {S(i)

2 }i∈ω, {S(i)
3 }i∈ω)

against an identity ω′, where |ω′ ∩ ω| ≥ d, and a message M = (µ1, ..., µm) ∈
{0, 1}m, choose an arbitrary d−element subset S of ω ∩ ω′ and verify that

∏
S(e(S

(i)
1 , g) · e(S(i)

2 , T (i)) · e(S(i)
3 , v′

∏m
j=1 v

µj

j ))∆i,S(0)

=
∏

S(e(g
q(i)
2 · T (i)ri · (v′ ∏m

j=1 v
µj

j )si , g) · e(g−ri , T (i)) · e(g−si , v′
∏m

j=1 v
µj

j ))∆i,S(0)

=
∏

S(e(g
q(i)
2 , g) · e(T (i)ri , g) · e((v′ ∏m

j=1 v
µj

j )si , g) · e(g−ri , T (i)) · e(g−si , v′
∏m

j=1 v
µj

j ))∆i,S(0)

=
∏

S e(g
q(i)
2 , g)∆i,S(0) = A.

If the equality holds, output valid; otherwise, output invalid.

5 Security proofs

We show security as in Theorem 1, the approach is based on that of [6][9].

Theorem 1 . Let A be an adversary that makes at most l � p signature
queries and produces a successful forgery against our scheme with probability
ε in time t. Then there exists an algorithm B that solves the CDH problem in
Zp with probability ε̃ ≥ ε/(4pnnl) in time t̃ ≈ t.
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Proof. The simulator B is given an instance (g, ga, gb) ∈ G3 of the CDH prob-
lem, and must produce gab. The simulation proceeds as follows:

Setup B first selects a random identity α∗. Next, B chooses a random k ∈
{0, ...,m}, and random numbers x′, x1, ..., xm in the interval {0, ..., 2l − 1}.
It also chooses additional random exponents z′, z1, ..., zm ∈ Zp. It lets g1 =
ga, g2 = gb. It then chooses a random n degree polynomial f(x) and an n
degree polynomial u(x) such that ∀x u(x) = −xn if and only if x ∈ α. B sets

ti = g
u(i)
2 gf(i) for i from 1 to n+1. Since ti is chosen independently at random,

we have T (i) = gin

2

∏n+1
j=1 (g

u(j)
2 gf(j))∆j,N (i) = g

in+u(i)
2 gf(i). The simulator give

the public parameters,

PP = (g, g1, g2, t1, ..., tn+1, v
′ = gx′−2kl

2 gz′ , (vj = g
xj

2 gzj)j=1,...,m, A = e(g1, g2))

The corresponding master key, MK = a, is unknown to B.

To answer a private key query on identity γ that |γ ∩α∗| < d, the simulator B
proceeds as follows. We first define three sets Γ, Γ′, S in the following manner:

Γ = γ∩α, Γ′ be any set such as Γ ⊆ Γ′ ⊆ γ and |Γ′| = d−1, and S = Γ′∪{0}.

Then we define the private key Kγ for i ∈ Γ′ as: ({Di}i∈Γ′ = {gλi
2 T (i)ri}i∈Γ′ , {di}i∈Γ′ =

{gri}i∈Γ′), where λi, ri are chosen randomly in Zp. We define d−1 degree poly-
nomial q(x) as q(i) = λi, q(0) = a.

Next we computes the private key Kγ for i ∈ γ − Γ′ as follows:

Di = (
∏

j∈Γ′ g
λj∆j,S(i)
2 )(g

−f(i)
in+u(i)

1 (g
in+u(i)
2 gf(i))ri

′
)∆0,S(i)

di = (g
−1

in+u(i)

1 gr′i)∆0,S(i).

Since i /∈ α, in + u(i) will be none-zero. We claim that such construction is a
valid response to this private key query. To see this, let ri = (r′i− a

in+u(i)
)∆0,S(i).
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Then we have that,

Di = (
∏

j∈Γ′ g
λj∆j,S(i)
2 )(g

−f(i)
in+u(i)

1 (g
in+u(i)
2 gf(i))ri

′
)∆0,S(i)

= (
∏

j∈Γ′ g
λj∆j,S(i)
2 )(g

−af(i)
in+u(i) (g

in+u(i)
2 gf(i))ri

′
)∆0,S(i)

= (
∏

j∈Γ′ g
λj∆j,S(i)
2 )(ga

2(g
in+u(i)
2 gf(i))

−a
in+u(i) (g

in+u(i)
2 gf(i))ri

′
)∆0,S(i)

= (
∏

j∈Γ′ g
λj∆j,S(i)
2 )(ga

2(g
in+u(i)
2 gf(i))r′i−

a
in+u(i) )∆0,S(i)

= (
∏

j∈Γ′ g
λj∆j,S(i)
2 )g

a∆0,S(i)
2 (T (i))ri

= g
q(i)
2 T ri

i

di = (g
−1

in+u(i)

1 gr′i)∆0,S(i) = (gr′i−
a

in+u(i) )∆0,S(i).

It shows that Di, di have the correct distribution. To answer the signature
query on identity γ that |γ ∩ α∗| < d, B uses Kγ to create a signature on M
exactly as in the actual scheme, and outputs the result.

To answer the signature query on identity α∗ for some M = (µ1 · · · µm), we
define F = −2kl + x′ +

∑m
j=1 xjµj and J = z′ +

∑m
j=1 zjµj. If F ≡ 0(mod p),

the simulator aborts. Otherwise, B selects a random set Λ such that Λ ⊂ α∗

and |Λ| = d − 1 and define gq′(i) = gλ′i for i ∈ Λ where λ′i is chosen randomly
in Zp. Then it computes gq′(i) = (

∏d−1
j=1 gλ′j∆j,α∗ (i))ga∆0,α∗ (i) for i ∈ α∗ − Λ. B

picks random ri, si for i ∈ α∗ and computes,

S
(i)
1 = (gq′(i))−J/F gf(i)ri(gJgF

2 )si

S
(i)
2 = g−ri

S
(i)
3 = (gq′(i))1/F g−si .

For s̃i = si − q′(i)/F , we have that,

S
(i)
1 = (gg′(i))−J/F gf(i)ri(gJgF

2 )si = (gq′(i))−J/F gf(i)rigq′(i)J/F g
q′(i)
2 (gJgF

2 )si−q′(i)F

= g
q′(i)
2 gf(i)ri(gJgF

2 )s̃i = g
q′(i)
2 T (i)r(i)(v′

∏m
j=1 v

µj

j )s̃i

S
(i)
3 = (gq′(i))1/F g−si = (gq′(i))1/F g−q′(i)/F g−s̃i = g−s̃i .

It shows that S
(i)
1 , S

(i)
2 , S

(i)
3 have the correct distribution.
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Eventually, A outputs a valid forgery S∗ = ({S(i)∗
1 }i∈α, {S(i)∗

2 }i∈α, {S(i)∗
3 }i∈α)

on M∗ where M∗ = (µ∗1 · · ·µ∗m) ∈ {0, 1}m for identity α. Let F ∗ = −2kl +x′ +∑m
j=1 xjµ

∗
j and J∗ = z′ +

∑m
j=1 zjµ

∗
j . If α 6= α∗ or if F ∗ 6≡ 0(mod p), B aborts.

Otherwise, the forgery must be the following form, for some r∗i , s
∗
i ∈ Zp,

S
(i)
1 = g

q∗(i)
2 T (i)r∗i (v′

∏m
j=1 v

µj

j )s∗i = g
q∗(i)
2 gf(i)r∗i gJ∗s∗i

S
(i)
2 = g−r∗i

S
(i)
3 = g−s∗i .

We select a random set Λ′ such that Λ′ ⊂ α and |Λ′| = d, and computes as
follows,

S∗
1 =

∏
i∈Λ′(S

(i)
1 )∆i,α(i) =

∏
i∈Λ′(g

∆i,α(i)q∗(i)
2 T (i)∆i,α(i)r∗i (v′

∏m
j=1 v

µj

j )∆i,α(i)s∗i )

=
∏

i∈Λ′(g
∆i,α(i)q∗(i)
2 g∆i,α(i)f(i)r∗i g∆i,α(i)J∗s∗i ) = gab ∏

i∈Λ′(g∆i,α(i)f(i)r∗i g∆i,α(i)J∗s∗i )

S∗
2 =

∏
i∈Λ′(S

(i)
2 )∆i,α(i)f(i) =

∏
i∈Λ′ g−∆i,α(i)f(i)r∗i

S∗
3 =

∏
i∈Λ′(S

(i)
3 )∆i,α(i) =

∏
i∈Λ′ g−∆i,α(i)s∗i .

B could solve the CDH instance by outputting S∗
1 · S∗

2 · (S∗
3)

J∗ = gab.

Pr[the simulation not aborting]

= Pr[α = α∗] · Pr[F 6≡ 0(mod p)] · Pr[F ∗ ≡ 0(mod p)]

= 1
pn · (1− 1

2l
) · 1

2nl
≤ 1

4pnnl
.

ε̃ ≥ ε · Pr[the simulation not aborting] ≥ ε · 1
4pnnl

. �
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7 Conclusion

In this paper, we first contribute the definition, formalization, and security
model of fuzzy identity based signature. We then construct a practical fuzzy
identity based signature based on Sahai-Waters construction[6] and the two
level hierarchical signature of Boyen and Waters[9]. Finally, We prove that our
scheme is existentially unforgeable against adaptively chosen message attack
as defined in section 3.2 without random oracles by reducing it to the Chosen
Diffie-Hellman assumption.
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