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Abstract
The effectiveness of preference relations in modeling decision-making processes makes it one of the most common

representations of information use for solving decision-making problems. This research presents the fuzzy incomplete

linguistic preference relations (Fuzzy InLinPreRa) approach as evaluated by decision-makers dealing with increasing

complexity and uncertain economics, as well as social and managerial problems. By using Fuzzy InLinPreRa, the con-

sistency measurements of decision-makers’ evaluations will provide more accurate and reasonable solutions, allowing

decision-makers to consider the objective weights of both the criteria and experts. An empirical example of the mea-

surement of brand personality is included herein to demonstrate the feasibility of this method.

Keywords Fuzzy incomplete linguistic preference relations � Fuzzy InLinPreRa � Fuzzy preference relations �
Multi-criteria decision-making

1 Introduction

Multi-Criteria Decision-Making (MCDM) methods are

well-developed, feature a strong mathematical foundation,

and are convenient for decision-making in the business

domain. The analytic hierarchy process (AHP) is among

the most discussed and popular of these methods (Franek

and Kashi 2014; Kozłowska 2022), and used by both

management practitioners and academics (Abastante et al.

2019; Goepel and Performance 2019; Hülle et al. 2011). In

particular, AHP is the most common form of the MCDM

model used in the strategic development of organizations,

throughout the product design and development process

(Khazaei Pool et al. 2018). Based on fuzzy set theory

(Zadeh 1965) and fuzzy logic, Fuzzy AHP was developed

to solve imprecise hierarchical problems (Laarhoven and

Pedrycz 1983). Fuzzy AHP is the second-most widely used

technique for solving decision-making problems in the

fields of management and business, after hybrid fuzzy

MCDM (Kubler et al. 2016; Mardani et al. 2015).

However, AHP suffers from inherent deficiencies

stemming mainly from inconsistency problems caused by

humans’ pairwise comparison capability. Pairwise com-

parisons primarily involve evaluating and comparing the

importance of several criteria, based on basic scales (Azhar

et al. 2021). Asadabadi et al. (2019) explored the incon-

sistency problem of AHP, highlighting humans’ inability to

establish consistent pairwise comparisons once the number

of criteria increased beyond three and their failing to pro-

vide rational rankings as a result. The ratios used in AHP

are point estimates, while the comparison ratios used in the

Fuzzy AHP method are given as fuzzy numbers; therefore,

ratios given in fuzzy numbers are far more likely to be

inconsistent (Wang and Chen 2008).

As one of the more effective tools, preference relations

has received significant attention because it allows deci-

sion-makers to express preference opinions throughout the

process of decision-making, with an emphasis on consis-

tency. With the rapid development of social economies,

uncertain and complex realistic decision-making issues are

common. In such a decision-making environment, deci-

sion-makers tend to express their preferences through the

use of qualitative preference opinions. Therefore, linguistic

preference relations are proposed, where judgments of

(complete) linguistic preference relations are represented
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by linguistic terms in a linguistic term set. However,

sometimes the linguistic preference relations may be given

by decision-makers with some values missing. In such

cases, it could be that the decision-makers have no

knowledge of the specific problem, or can not distinguish

how much some alternatives are better than others (Li et al.

2022b). In this case, the linguistic preference relation is

considered incomplete (Wu et al. 2020).

The problem of group decision-making with incomplete

linguistic preference relations has been the focus of

numerous researchers in recent years. To estimate

unknown preference relations, Xu (2006) proposed a

method for solving them based on the consistency of

existing preference relations for the group decision-making

problem (Wu et al. 2020; Zhao et al. 2017). Based on the

Xu (2006) framework, Hsu and Wang (2011) proposed an

alternative additive transitivity property-based estimation

method called Incomplete Linguistic Preference Relations

(InLinPreRa), which improved the consistency problem

and number of pairwise comparisons by using horizontal,

vertical, and oblique pairwise comparison algorithms. If

there are n evaluation criteria present, AHP and FAHP

need to compare nðn� 1Þ=2 times, while InLinPreRa

allows decision-makers to perform only n� 1 pairwise

comparisons, which can be faster and escape inconsistency

problems. This method can make decision-based problems

purer, simpler, and more effective; it also features complex

flexibility, compatible subjective perception, coordination,

and objective factors, and offers diversification and

extensiveness (Hsu and Wang 2011; Kou et al. 2016).

In order to remedy the fact that the evaluations of

decision-makers are always subjective and the process of

decision-making imprecise, indefinite, and uncertain, this

study proposes a method called Fuzzy Incomplete Lin-

guistic Preference Relations (Fuzzy InLinPreRa), based on

InLinPreRa. In addition to inheriting the advantages of

InLinPreRa, Fuzzy InLinPreRa not only addresses the

uncertainty and imprecision of fuzzy set theory, as fuzzy

set theory provides the flexibility required for imprecise

and ambiguous information stemming from a lack of

knowledge (Kuo et al. 2007), it also solves the subjective

judgments of decision-makers, taking into account their

weights (with fuzzy set numbers) according to their posi-

tions and work experience, generating a more reasonable

ranking of alternatives.

This study is organized as follows. Section 2 briefly

introduces the basic conceptions of MCDM, the most

commonly used MCDM methods, fuzzy preference rela-

tions, and InLinPreRa. Section 3 includes basic definitions

and conceptions related to Fuzzy InLinPreRa, such as the

formula for computing weights of criteria that also con-

siders decision-making experts’ positions and work expe-

rience. Section 4 provides an empirical example to

illustrate the effectiveness and practicability of the pro-

posed method. Section 5 offers conclusions and Sect. 6

lists the study’s limitations and future research directions.

2 Literature review

MCDM and Fuzzy MCDM contain many decision-making

alternatives and criteria, and thus represent critical topics in

expert system and operations research. MCDM approaches

can solve a wide range of engineering, economic, man-

agement, and social problems (Salih et al. 2019). Problems

can have many solutions, and MCDM serves as both a

quantitative and qualitative method for finding such solu-

tions and making appropriate decisions among them (Bhole

and Deshmukh 2018; Wang et al. 2021). In the recent

years, numerous MCDM approaches have been applied to

solve problems related to selection factors. Sotoudeh-

Anvari (2022) concluded that AHP (and Fuzzy AHP),

applied in 37.5% of academic studies at the time, was the

favorite MCDM method for the COVID-19 problem, fol-

lowed by the Technique for Order Preference by Similarity

to the Ideal Solution (TOPSIS) and the Serbian VIseKri-

terijumska Optimizacija I Kompromisno Resenje

(VIKOR). Kozłowska (2022) argued that one of the most

popular MCDM approaches is AHP. Other commonly used

methods included Simple Additive Weighting (SAW),

TOPSIS, VIKOR, Elimination and Choice Expressing the

Reality (ELECTRE), and Preference Ranking Organization

Method for Enrichment of Evaluations (PROMETHEE).

These processes were developed to help decision-makers

make appropriate choices, and each has advantages and

limitations. These methods are illustrated briefly in Sect.

2.1 and summarized in Table 1.

2.1 Common MCDM methods

2.1.1 AHP

Pairwise comparison techniques have been used widely to

address subjective and objective judgments of the qualita-

tive and/or quantitative criteria used in MCDM (Kou et al.

2016). AHP is one of the most popular MCDM approaches

when criteria are independent (Behzadian et al. 2012; İç

et al. 2022; Kozłowska 2022). The method models sub-

jective decision-making processes based on pairwise

comparisons between criteria in a hierarchical system,

giving relative weights to each (Li et al., 2022a; Saaty

1980; Tzeng and Huang 2011). AHP is applicable to most

goals (i.e., planning, identification, selection, and evalua-

tion) and uses a small number of criteria that can be indi-

vidually based on each criterion and the hierarchical

relations among them (Azhar et al. 2021) In AHP and
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Fuzzy AHP, a list of criteria (both critical factors and sub-

factors) is prioritized according to relative importance, a

useful method for solving complex decision-making

problems (Wu et al. 2009). However, once the number of

elements increases beyond a certain point, humans cannot

maintain consistent pairwise judgments (Asadabadi et al.

2019), and the resulting lack of consistency in decision-

making leads to inconsistent conclusions (Herrera-Viedma

et al. 2004). The disadvantages of AHP include irregular-

ities in ranking, use of additive aggregation, and others.

Therefore, important information may be lost and more

pairwise wise comparisons required (Nallusamy et al.

2016).

Table 1 Summary of MCDM methods: advantages, disadvantages, and applications

Method Advantages Disadvantages Applications

AHP

(pairwise
comparisons)

1. Easy to use and scalable

2. Hierarchical structure can easily
adjust to fit various sizes of
problems

3. Convenient and straightforward

4. The ability to mix qualitative and

quantitative criteria in the same

decision-making framework

1. Interdependence amongst criteria and

alternatives

2. The number of alternatives/criteria

increasing may lead to inconsistency in

pairwise comparisons

3. Some irregular rankings may occur

4. The use of additive aggregation causes

some information to be lost

Applicable to most goals (planning,

identification, selection, and evaluation)

and different domains that have a small

number of criteria that can be

individually based on criteria and their

hierarchical relationships

SAW

(weight-based

sum)

1. Ability to compensate between

criteria

2. Intuitive for decision-makers

3. Simple calculations without

complex computer programs

1. The revealed estimates do not always

reflect the facts

2. The results may not be logical

The method is recommended for solving

problems selected in multi-process

decision-making systems and widely

used in decision-making in cases with

many attributes

TOPSIS

(distance-

based)

1. Has a simple process, so it is easy

to use and program

2. The number of steps is the same,

regardless of the numbers of

criteria and attributes

3. Takes as input an unlimited

number of criteria and attributes

1.The use Euclidean distance without

considering the correlation of attributes

causes difficulties with weighting and

keeping judgment consistent

2. Uncertainty in weights is not

considered

TOPSIS and VIKOR are mostly used for

goals that need to be selected or

evaluated, but cannot stand alone;

should be combined with pairwise

comparisons, fuzzing, genetic

algorithms, or other methods that can

handle inconsistency and uncertainty

VIKOR

(distance-

based)

1. Able to identify compromise

solutions that reflect the attitudes of

the majority of decision-makers

2. Provides the maximum group

utility for the majority and

minimum personal regret for the

opponent

1. Subjective initial weighting is a

challenge to validate

2. In the case of qualitative attributes,

linguistic information processing may

lead to information distortion

ELECTRE

(outranking)

1. Deals with qualitative and

quantitative scales of criteria

2. Avoids compensation between

criteria

3. The number of alternatives in a set

of non-dominated alternatives is

reduced sequentially

1. It is difficult for decision-makers to

provide any justification for the

parameters chosen for discordance and

concordance thresholds

2. When the number of alternatives

increases, the calculation complexity

also increases

ELECTRE and PROMETHEE are

suitable for goals that need to be

selected or evaluated but given that

there are many variants of both

outranking methods, one needs to

choose variants wisely. Some variants

can stand alone but may perform better

when combined. These variants are

often combined with pairwise

comparisons

PROMETHEE

(outranking)

1. Deals with both qualitative and

quantitative criteria

2. Expresses the criteria in its own

units and requires less effort,

reducing complexity and

facilitating the use of this approach

1. Limited preference functions and

requires more preference functions or

improvements to existing functions for

better results

2. Lack of a clear way to assign weights

3. When many criteria and options are

available, the decision-makers may face

difficulties in evaluating the results

3. Once a new alternative is introduced, a

rank reversal problem may arise
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2.1.2 Simple additive weighting

SAW is a simple weighted linear combination that is

regarded as the most intuitive and simplest way of dealing

with MCDM problems (Prasetiyo and Baroroh 2016; Rizka

et al. 2018; Tzeng and Huang 2011). The concept is based

on finding a weighted sum of the performance rating for

each alternative for all attributes. The highest score reflects

the best alternative (Ibrahim and Surya 2019; Prasetiyo and

Baroroh 2016). It has the ability to compensate between

criteria and is intuitive for decision-makers. The calcula-

tions are simple and can be performed without the help of

complex computer programs. However, the estimates may

not reflect the real-world situation. The results obtained

may not logical, and the value of a particular criterion can

be very different from the values of other criteria (Azhar

et al. 2021). The method is recommended for solving

problems selected in a multi-process decision-making

system and used widely in decision-making scenarios with

many attributes (Purba 2021).

2.1.3 TOPSIS

TOPSIS and VIKOR are based on an aggregating function

that represents closeness to the ideal solution (Kozłowska

2022; Zhang and Wei 2013). The difference between

TOPSIS and VIKOR is in the use of different types of

normalization to eliminate the units of the criteria function.

VIKOR uses linear normalization, while TOPSIS employs

vector normalization (Azhar et al. 2021). The standard

TOPSIS method selects the best alternative that simulta-

neously has the shortest distance from the positive ideal

solution and furthest distance from the negative ideal

solution (Behzadian et al. 2012). The process is simple,

which facilitates its use and programming. The number of

steps is the same regardless of the number of criteria and

attributes. However, the use of Euclidean distance without

consideration of the correlation of attributes results in

difficulties with weighting and keeping judgment consis-

tent, and uncertainties in weighting are not considered

(Azhar et al. 2021; Velasquez and Hester 2013).

2.1.4 VIKOR

VIKOR ranks and selects from a group of alternatives in

cases of conflicting criteria. The method ranks criteria

based on the measure of closeness to the ideal solution and

the agreement established by mutual concessions. VIKOR

is often the preferred choice, due to its lower mathematical

complexity (Azhar et al. 2021). The advantage is in its

ability to handle MCDM problems with non-commensu-

rable and even conflicting criteria and obtain an optimal

compromise (Alfina et al. 2022; Fei et al. 2019). The

compromise is acceptable to all decision-makers because it

provides the maximum group utility to the majority and

minimum personal regret to the opponent (Azhar et al.

2021; Chang 2014; Opricovic 1998; Tzeng and Huang

2011). The main disadvantage of the VIKOR method is its

subjective initial weighting, which is challenging to vali-

date (Wibawa et al. 2019). VIKOR experiences difficulties

in the case of qualitative attributes because the linguistic

information processing may lead to information distortion

(Rahim et al. 2020).

TOPSIS and VIKOR are mostly used for goals that need

to be selected or evaluated but cannot stand alone and may

require combination with pairwise comparisons, fuzzing,

genetic algorithms, or other methods, which is recom-

mended for handling inconsistency and uncertainty (Azhar

et al. 2021).

2.1.5 ELECTRE

Based on pairwise comparison rules, ELECTRE methods

apply the concordance and discordance of criteria and

threshold values to assess the scoring schemes between

available alternatives (Kozłowska 2022). The major feature

of the ELECTRE family includes the possibility of dealing

with qualitative and quantitative scales of criteria. Such

methods are able to handle qualitative performance scales

and allow consideration of the original (either verbal or

numeric) performance without any recoding. They can also

handle heterogeneous scales. Regardless of the nature of

the scale, each procedure can run with the preserved

original performances of the actions, without the need for

recoding. The multiple criteria aggregation procedures of

ELECTRE methods do not allow performance compensa-

tion between criteria; performance degradation in some

criteria cannot be compensated for by performance

improvements in other criteria (Figueira et al. 2013). The

operation of each ELECTRE version is different, as are the

types of problems for which they can be used. For example,

ELECTRE I, IV, and IS are applicable to the choice

problem, where the goal is to select a smallest set of best

alternatives. ELECTRE II, III, and IV were designed to

establish rankings from best to worst (Govindan and Jepsen

2016). ELECTRE III has proven to be a practical and

popular method for accomplishing multi-criteria (group)

decision-making tasks and preventing cross-criteria com-

pensation (Chen et al. 2021). Avoiding compensation

between criteria is one of the main advantages of the

ELECTRE method (Jahan and Zavadskas 2019; Nghiem

and Chu 2021). The number of alternatives is a set of non-

dominated alternatives that is reduced sequentially (Rahim

et al. 2020). A disadvantage of the ELECTRE method is

the set of parameters for discordance and concordance

thresholds. It is difficult for decision-makers to provide any
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justification for the values chosen for these parameters

(Keshavarz Ghorabaee et al. 2016). Also, when the number

of alternatives increases, the calculation complexity also

increases (Rahim et al. 2020).

2.1.6 PROMETHEE

Based on the dominance relationship principles and a

generalization of the criterion notion, PROMETHEE

belongs to the family of multi-criteria outranking methods

that deal with both qualitative and quantitative criteria. The

advantage of PROMETHEE is its ability to express these

criteria in its own units, which requires less effort, reduces

complexity, and facilitates the use of this approach. PRO-

METHEE also has limited preference functions and

requires more preference functions or improvements in the

existing function to obtain better results. The lack of a clear

way to assign weights is one disadvantage. When many

criteria and options are available, decision-makers may

face difficulties in evaluating the results. Once a new

alternative is introduced, a rank reversal problem may arise

(Azhar et al. 2021).

ELECTRE and PROMETHEE are suitable for goals that

need to be selected or evaluated, but given that there are

many variants of both outranking methods, one must

choose variants wisely. Some can stand alone but may

perform better when combined. These variants are often

combined with pairwise comparisons (Azhar et al. 2021).

From the above summaries of the various MCDM

methods, it can be seen that AHP is not only one of the

most commonly used MCDM tools with pairwise com-

parison techniques in various domains such as project

management, enterprise resource planning system selec-

tion, risk assessment, and knowledge management tools

evaluation (Chen et al. 2011; Slamaa et al. 2021), but it is

also suitable for most goals. The main reasons for its

popularity include its simple, flexible, intuitive appeal, and

the ability to mix qualitative and quantitative criteria in the

same decisions (Abdul et al. 2022; Ramanathan and

Ganesh 1995). However, consistency and consensus are the

basic requirements of comparison matrices to ensure

meaningful results (Xu et al. 2022) and thus a topic of great

concern to researchers using AHP analysis.

2.2 Conceptual methodologies associated
with Fuzzy InLinPreRa

The basic conceptual methodologies associated with Fuzzy

InLinPreRa originated from preference relations used by

decision-makers to provide preference information in the

decision-making process; thus, it has become a powerful

and popular set of tools. Preference relations are con-

structed by pairwise comparisons across alternatives,

where each value represents the preference intensity of one

alternative over another (Xu 2007; Xu and Liao 2015). The

most widely used pairwise comparison matrices are addi-

tive preference relations, also known as fuzzy preference

relations (Rodrı́guez et al. 2021; Wu and Tu 2021).

According to the operational laws of linguistic assessment

scales and the acceptable incomplete LPR, Xu (2006)

developed a method for constructing consistent complete

linguistic preferences using additive transitive property

relations. Extending incomplete LPR, Hsu and Wang

(2011) proposed InLinPreRa, based on the algorithmic

rules of three different pairwise comparison. The method

allows decision-makers to express their preference inten-

sity for all alternatives using a single crisp value with only

n� 1 pairwise comparisons needed.

As all the judgments in the three methods are crisp

values that are hard to represent precisely in complex and

uncertain cases, Fuzzy InLinPreRa was introduced. Fuzzy

set theory was combined with MCDM methods to deal

with problems emerging from uncertain environments

(Zavadskas et al. 2014). The pioneering concept of fuzzy

sets proposed by Zadeh (1965) to deal with the unavoidable

uncertainty that arises in various real-world scenarios is

one of the most well-known concepts (Chen et al. 2019).

2.2.1 Fuzzy preference relations

Fuzzy preference relations were proposed by Herrera-

Viedma et al. (2004) to address the inconsistency in AHP

caused by multiple decision-makers, multi-criteria, and

multiple alternatives being presented (Hsu and Wang

2011). The effectiveness of preference relations in mod-

eling decision-making processes makes it one of the most

common representations of information used in solving

decision-based problems. Linguistic preference informa-

tion plays an important role in the decision-making process

(Li et al. 2019; Wang and Chen 2008). In fuzzy preference

relations, the expert associates the value of each pair of

alternatives with a certain degree of preference, considered

from the first alternative to the second (Capuano et al.

2018; Wang and Chen 2007). Decision-makers express

their preferences using a single crisp value (Wang 2014).

The method only requires n� 1 to compare (n represents

the number of criteria in the analysis). In addition, once the

pairwise comparison is carried out, there is no need to use

the consistency index to apply a round of consistency tests

(Tang and Hsu 2018). Important decision-making models

have been developed that use multiplicative preference

relations and additive fuzzy preference relations (Herrera-

Viedma et al. 2004; Hsu and Wang 2011) (see Appendix

1).
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2.2.2 Incomplete linguistic preference relations

With regard to the fuzzy preference relations mentioned

above, which are given as linguistic preference relations

(Xia et al. 2014), Xu (2006) found that when comparing

decision alternatives, decision-makers often used linguistic

preference relations to document and express their prefer-

ences in situations in which each of the linguistic prefer-

ence relations was required to complete all nðn� 1Þ=2

judgments in the entire top triangular portion of the equa-

tion. Such linguistic preference relations are difficult to

obtain, especially for higher-order linguistic preference

relations, because decision-makers are forced to make

these judgments under time constraints and with incom-

plete data. In this way, decision-makers may develop

incomplete linguistic preference relations in which certain

elements are not available. As a remedy, Xu (2006) pro-

posed the incomplete linguistic preference relations

method. In the process of pairwise comparisons, each

decision-maker can choose any explicit item as a standard,

based on their preference or recognition. They then carry

out pairwise comparisons between the adjoining items to

obtain the original preference matrix. An incomplete lin-

guistic preference relation counters the fact that decision-

makers can carry out the pairwise comparisons for all

attributes through a preference matrix. When decision-

makers use pairwise comparisons to compare raw prefer-

ence values, the remaining unknown values are added to

adjoin numbers equal to 0 through the corresponding

opposite numbers, in order to obtain a complete matrix.

The relevant definitions of incomplete linguistic preference

relations can be found in Appendix 2 (Hsu and Wang 2011;

Shih and Hsu 2016; Xu 2006; Zhao et al. 2016).

2.3 Extension of incomplete linguistic
preference relations

HSU and Wang (2011) provided the general formula for

decision-making related to basic preference relations,

based on fuzzy preference relations and InLinPreRa. This

method processes pairwise comparisons for decision-

making by only taking n� 1 times, which is markedly

simpler and far more efficient than the nðn� 1Þ=2 times

required by AHP. Likewise, it avoids inconsistencies when

considering criteria and evaluating the weight of criteria,

major differences from the method provided by Xu (2006).

Based on the above formula, the algorithmic rules for three

different pairwise comparisons are applied to build the

preference relation matrices. The general formula for the

decision-making related to the basic preference relations is

interpreted in the following section.

2.3.1 Construction of the decision-making matrix
for InLinPreRa

In the evaluation process, it is assumed that there are n

decision-makers denoted as Ee, where e ¼ 1; 2; . . .; n; Cr is

denoted as the evaluation criteria, where r ¼ 1; 2; . . .; k;

alternatives are denoted as Ai, where i ¼ 1; 2; . . .;m, the eth

expert under the rth criterion; and the decision-making

matrix rDðeÞ ¼ ra
ðeÞ
ij

h i
m�m

, which can be determined for m

alternatives, is expressed as:

rDðeÞ ¼ ra
ðeÞ
ij

h i
m�m

¼

A1 A2 A3 A4 . . . Am

A1

A2

A3

A4

:. . .
Am

S0
ra

ðeÞ
12

ra
ðeÞ
13

ra
ðeÞ
14 � � � ra

ðeÞ
1m

ra
ðeÞ
21 S0

ra
ðeÞ
23

ra
ðeÞ
24 � � � ra

ðeÞ
2m

ra
ðeÞ
31

ra
ðeÞ
32 S0

ra
ðeÞ
34 � � � ra

ðeÞ
3m

ra
ðeÞ
41

ra
ðeÞ
42

ra
ðeÞ
43 S0 � � � ra

ðeÞ
4m

� � � � � � � � � � � � � � � � � �
ra

ðeÞ
m1

ra
ðeÞ
m2

ra
ðeÞ
m3

ra
ðeÞ
m4 � � � S0

2
66666664

3
77777775
mxm

;

e ¼ 1; 2; . . .; n
r ¼ 1; 2; . . .; k

rD is derived from the integration of the matrices of all

decision-makers:

rD ¼ ra
ðeÞ
ij

h i
m�m

¼ 1

n
rDð1Þ þ rDð2Þ þ rDð3Þ þ � � � þ rDðnÞ
h i

ð1Þ

wðeÞ is represented as the expert’s weights, and the

weights of each expert are shown as follows:

wð1Þ;wð2Þ; . . .;wðnÞ; wðeÞ 2 0; 1½ �;
Xn
e¼1

wðeÞ ¼ 1 ð2Þ

rw is represented as the criteria weights, and the weights

of each criterion are shown as follows:

1w; 2w; . . .; kw; rw 2 0; 1½ �;
Xk
r¼1

rw ¼ 1 ð3Þ

2.3.2 Algorithmic rules for the three different pairwise
comparison decision matrices

A preference relation matrix is constructed according to the

formula listed above. It can be obtained from only a few

matrices for different known factors chosen by the deci-

sion-makers. The algorithmic rules for the three different

decision matrices are as follows:

Type 1: Horizontal pairwise comparison
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rDðeÞ ¼ ra
ðeÞ
ij

h i
m�m

¼

A1 A2 A3 A4 . . . Am

A1

A2

A3

A4

. . .

Am

0 ra
ðeÞ
12

ra
ðeÞ
13

ra
ðeÞ
14 . . . ra

ðeÞ
1m

� 0 � � . . . �
� � 0 � . . . �
� � � 0 . . . �
. . . . . . . . . . . . . . . . . .

� � � � . . . 0

2
6666666664

3
7777777775
mxm

;

r ¼ 1; 2; . . .; k

e ¼ 1; 2; . . .; n

� are the unknown variables. Assume the eth decision-

maker sets rDðeÞ ¼ ra
ðeÞ
ij

h i
6�6

to indicate the reference

and evaluation of the rth criterion for six alternatives
rAðeÞ � 6 � 6. The pairwise comparison will then gen-

erate five original linguistic preference values, where:

ra
ðeÞ
12 ¼ S�3;

ra
ðeÞ
13 ¼ S1;

ra
ðeÞ
14 ¼ S�1;

ra
ðeÞ
15 ¼ S�2;

ra
ðeÞ
16 ¼ S1

The mapping values are derived from equation

aij 2 S; aij � aji ¼ S0; aii ¼ S0, shown as follows:

ra
ðeÞ
21 ¼ �ra

ðeÞ
12 ¼ S3;

ra
ðeÞ
31 ¼ �ra

ðeÞ
13 ¼ S�1;

ra
ðeÞ
41 ¼ �ra

ðeÞ
14 ¼ S1;

ra
ðeÞ
51 ¼ �ra

ðeÞ
15 ¼ S2;

ra
ðeÞ
61 ¼ �ra

ðeÞ
16 ¼ S�1

Then, all unknown variables � the upper half of the

triangle are derived from equation aij ¼ aik � akj, shown

as follows:

ra
ðeÞ
23 ¼ ra

ðeÞ
21 þra

ðeÞ
13 ¼ S3þS1 ¼ S4

ra
ðeÞ
24 ¼ ra

ðeÞ
21 þra

ðeÞ
14 ¼ S3þS�1 ¼ S2

ra
ðeÞ
25 ¼ ra

ðeÞ
21 þra

ðeÞ
15 ¼ S3 þ S�2 ¼ S1

ra
ðeÞ
26 ¼ ra

ðeÞ
21 þ ra

ðeÞ
16 ¼ S3 þ S1 ¼ S4

ra
ðeÞ
34 ¼ ra

ðeÞ
31 þ ra

ðeÞ
14 ¼ S�1 þ S�1 ¼ S�2

ra
ðeÞ
35 ¼ ra

ðeÞ
31 þ ra

ðeÞ
15 ¼ S�1 þ S�2 ¼ S�3

ra
ðeÞ
36 ¼ ra

ðeÞ
31 þ ra

ðeÞ
16 ¼ S�1 þ S1 ¼ S0

ra
ðeÞ
45 ¼ ra

ðeÞ
41 þ ra

ðeÞ
15 ¼ S1 þ S�2 ¼ S�1

ra
ðeÞ
46 ¼ ra

ðeÞ
41 þ ra

ðeÞ
16 ¼ S1þS1 ¼ S2

ra
ðeÞ
56 ¼ ra

ðeÞ
51 þra

ðeÞ
16 ¼ S2þS1 ¼ S3

All unknown variables 9 the lower half of the triangle

are derived from Eq. (9) aij � aji ¼ S0, and the complete

preference, the decision-making matrix, is shown as

follows:

rDðeÞ ¼ ra
ðeÞ
ij

h i
m�m

¼

A1 A2 A3 A4 A5 A6

A1

A2

A3

A4

A5

A6

0 S�3 S1 S�1 S�2 S1

S3 0 S4 S2 S1 S4

S�1 S�4 0 S�2 S�3 S0

S1 S�2 S2 0 S�1 S2

S2 S�1 S3 S1 0 S3

S�1 S�4 S0 S�2 S�3 0

2
6666664

3
7777775

6�6

;

r ¼ 1; 2; . . .; k
e ¼ 1; 2; . . .; n

Type 2 Vertical pairwise comparison

rDðeÞ ¼ ra
ðeÞ
ij

h i
m�m

¼

A1 A2 A3 A4 . . . Am

A1

A2

A3

A4

. . .
Am

0 � ra
ðeÞ
13 � . . . �

� 0 ra
ðeÞ
23 � . . . �

� � 0 � . . . �
� � ra

ðeÞ
43 0 . . . �

. . . . . . . . . . . . 0 . . .
� � ra

ðeÞ
m3 � . . . 0

2
66666664

3
77777775
m�m

;

r ¼ 1; 2; . . .; k
e ¼ 1; 2; . . .; n

The complete matrix is derived based on the algo-

rithmic rule of Type 1 9 the unknown variables.

Assuming the decision-makers’ sets ra
ðeÞ
22 indicate the

reference and evaluation of a criterion with six alterna-

tives rAðeÞ � 6 � 6, the pairwise comparison will gen-

erate five original linguistic preference values, where:

ra
ðeÞ
13 ¼ S2;

ra
ðeÞ
23 ¼ S�1;

ra
ðeÞ
43 ¼ S3;

ra
ðeÞ
53 ¼ S�2;

ra
ðeÞ
63 ¼ S1

The mapping values are derived from equation

aij 2 S; aij � aji ¼ S0; aii ¼ S0, shown as follows:

ra
ðeÞ
31 ¼ �ra

ðeÞ
13 ¼ S�2

ra
ðeÞ
32 ¼ �ra

ðeÞ
23 ¼ S1

ra
ðeÞ
34 ¼ �ra

ðeÞ
43 ¼ S�3

ra
ðeÞ
53 ¼ �ra

ðeÞ
35 ¼ S2

ra
ðeÞ
36 ¼ �ra

ðeÞ
63 ¼ S�1

Then, all unknown variables 9 the upper half of the

triangle are derived from equation aij ¼ aik � akj, shown

as follows:
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ra
ðeÞ
12 ¼ ra

ðeÞ
13 þra

ðeÞ
32 ¼ S2þS1 ¼ S3

ra
ðeÞ
14 ¼ ra

ðeÞ
13 þra

ðeÞ
34 ¼ S2þS�3 ¼ S�1

ra
ðeÞ
15 ¼ ra

ðeÞ
13 þra

ðeÞ
35 ¼ S2þS2 ¼ S4

ra
ðeÞ
16 ¼ ra

ðeÞ
13 þra

ðeÞ
36 ¼ S2þS�1 ¼ S1

ra
ðeÞ
21 ¼ ra

ðeÞ
23 þra

ðeÞ
31 ¼ S�1þS�2 ¼ S�3

ra
ðeÞ
22 ¼ ra

ðeÞ
23 þra

ðeÞ
32 ¼ S�1þS1 ¼ S0

ra
ðeÞ
25 ¼ ra

ðeÞ
23 þra

ðeÞ
35 ¼ S�1þS2 ¼ S1

ra
ðeÞ
26 ¼ ra

ðeÞ
23 þ ra

ðeÞ
36 ¼ S�1 þ S�1 ¼ S2

ra
ðeÞ
45 ¼ ra

ðeÞ
43 þra

ðeÞ
35 ¼ S3þS2 ¼ S5

ra
ðeÞ
46 ¼ ra

ðeÞ
43 þra

ðeÞ
36 ¼ S3þS�1 ¼ S2

ra
ðeÞ
56 ¼ ra

ðeÞ
53 þra

ðeÞ
36 ¼ S�2þS�1 ¼ S�3

All unknown variables 9 the lower half of the triangle

are derived from Eq. (9) aij þ aji ¼ S0 and the complete

preference decision-making matrix is shown as follows:

rDðeÞ ¼ ra
ðeÞ
ij

h i
m�m

¼

A1 A2 A3 A4 A5 A6

A1

A2

A3

A4

A5

A6

0 S3 S2 S�1 S4 S1

S�3 0 S�1 S�4 S1 S�2

S�2 S1 0 S�3 S2 S�1

S1 S4 S3 0 S5 S2

S�4 S�1 S�2 S�5 0 S�3

S�1 S2 S1 S�2 S3 0

2
6666664

3
7777775

6�6

Type 3 Oblique pairwise comparison

rDðeÞ ¼ ra
ðeÞ
ij

h i
m�m

¼

A1 A2 A3 A4 . . . Am

A1

A2

A3

A4

:::

A6

0 ra
ðeÞ
12 � � . . . �

� 0 ra
ðeÞ
23 � . . . �

� � 0 ra
ðeÞ
34 . . . �

� � � 0 . .
.

�

. . . . . . . . . . . . . .
.

ra
ðeÞ
m�1 m

� � � � . . . 0

2
666666666664

3
777777777775
m�m

;

r ¼ 1; 2; . . .; k

e ¼ 1; 2; . . .; n

The complete matrix is derived based on the algo-

rithmic rule of Type 1 and � are the unknown variables.

Assuming the eth decision-makers’ sets rDðeÞ ¼

ra
ðeÞ
ij

h i
6�6

indicate the reference and evaluation of the rth

criterion with six alternatives rAðeÞ � 6 � 6, the pairwise

comparison will generate five original linguistic prefer-

ence values, where:

ra
ðeÞ
12 ¼ S2;

ra
ðeÞ
23 ¼ S�1;

ra
ðeÞ
34 ¼ S2;

ra
ðeÞ
45 ¼ S1;

ra
ðeÞ
56 ¼ S�3

The mapping values are derived from Eq. (9)

aij 2 S; aij � aji ¼ S0; aii ¼ S0, shown as follows:

ra
ðeÞ
21 ¼ �ra

ðeÞ
12 ¼ S2;

ra
ðeÞ
54 ¼ �ra

ðeÞ
45 ¼ S�1

Then, all unknown variables � the upper half of the

triangle are derived from Eq. (10) aij ¼ aik � akj, shown

as follows:

ra
ðeÞ
13 ¼ ra

ðeÞ
12 þ ra

ðeÞ
23 ¼ S2 þ S�1 ¼ S1

ra
ðeÞ
15 ¼ ra

ðeÞ
14 þ ra

ðeÞ
45 ¼ S3 þ S1 ¼ S4

ra
ðeÞ
24 ¼ ra

ðeÞ
23 þ ra

ðeÞ
34 ¼ S�1 þ S2 ¼ S1

ra
ðeÞ
26 ¼ ra

ðeÞ
25 þ ra

ðeÞ
56 ¼ S2 þ S3 ¼ S1

ra
ðeÞ
36 ¼ ra

ðeÞ
33 þ ra

ðeÞ
56 ¼ S3 þ S�3 ¼ S0

All unknown variables 9 the lower half of the trian-

gle are derived from Eq. (9) aij � aji ¼ S0, and the

complete preference decision-making matrix is shown as

follows:

rDðeÞ ¼ ra
ðeÞ
ij

h i
m�m

¼

A1 A2 A3 A4 A5 A6

A1

A2

A3

A4

A5

A6

0 S2 S1 S3 S4 S1

S�2 0 S�1 S1 S2 S�1

S�1 S1 0 S2 S3 S0

S�3 S�1 S�2 0 S1 S�2

S�4 S�2 S�3 S�1 0 S�3

S�1 S1 S0 S2 S3 0

2
6666664

3
7777775

6�6

3 Fuzzy incomplete linguistic preference
relations

This study proposes a new method called Fuzzy InLin-

PreRa to accommodate the vagueness and imprecision of

information used in solving decision-making problems

containing multi-criteria. By extending the advantages of

InLinPreRa mentioned above, Fuzzy InLinPreRa will not

only allow decision-makers to simply and efficiently carry
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out optimal alternative evaluations, it will also help with

consideration of the weights of criteria and experts with

respect to different pairwise comparisons located in the

fuzzy environment.

3.1 Construct of the original decision-making
matrix

Suppose there are n decision-makers, denoted as Ee; r

evaluating criteria; m alternatives; and the ith alternative is

denoted as Ai, where i ¼ 1; 2; . . .;m. The fuzzy evaluated

values r ~a
ðeÞ
ij construct the matrix r ~DðeÞ ¼ r ~a

ðeÞ
ij

h i
m�m

, which

is under the rth criterion carried out by the eth decision-

maker on alternative A1;A2; . . .Am, determined for the m

alternative and expressed as:

3.2 Weights of criteria and experts in Fuzzy
InLinPreRa

In the case provided, there are n decision-makers with

different weights ~we (Luo et al. 2019), according to the

importance of their positions or relative work experience,

where e ¼ 1; 2; . . .; n satisfies the fuzzy sets condition,

represented as:

~wð1Þ; ~wð2Þ; . . .; ~wðeÞ; . . .; ~wðnÞ; where

~wðeÞ ¼ aðeÞ; bðeÞ; cðeÞ
� � ð4Þ

The weight of each criterion is determined by n deci-

sion-makers and the eth expert evaluated the weight of the

rth criterion, denoted as r ~w eð Þ, where e ¼ 1; 2; :::; n.

r ¼ 1; 2; :::; k. For example, the weights of the first crite-

rion are evaluated by all of the decision-makers and

denoted as 1 ~wð1Þ,…,1 ~wðnÞ. The others can be expressed as

follows:

1st criteria :
2st criteria :
. . .
kth criteria :

1 ~wð1Þ; 1 ~wð2Þ; . . . ; 1 ~wðnÞ
2 ~wð1Þ; 2 ~wð2Þ; . . . ; 2 ~wðnÞ

..

. ..
.

. . . ..
.

k ~wð1Þ; k ~wð2Þ; . . . ; k ~wðnÞ

To avoid the weights of criteria being subjectively

determined by the decision-making experts and to

approximate reality, the final weights of the criteria should

consider the decision-making experts’ position and work

experience. Therefore, the final weights of the criteria are

calculated according to Eq. (5), shown as follows:

r ~w ¼

Pn
e¼1

ðr ~wðeÞ � ~wðeÞÞ

Pk
r¼1

Pn
e¼1

ðr ~wðeÞ � ~wðeÞÞ
; where r ¼ 1; 2; . . .; k;

e ¼ 1; 2; . . .; n

ð5Þ

3.3 Basic definitions for fuzzy InLinPreRa

This study used a triangular membership function for

fuzzification to set ~S0 ¼ ðL ~S0 ;M
~S0 ;R

~S0Þ as the neutral fuzzy

value (NFV). The right and left sides are ~SA ¼

Fig. 1 ~SA and ~S�A are mirror reflections of an isosceles triangle

A1 A2 A3 A4 . . . Am

r ~DðeÞ ¼ r ~a
ðeÞ
ij

h i
m�m

¼

A1

A2

A3

A4

:::

Am

~S0
r ~a

ðeÞ
12

r ~a
ðeÞ
13

r ~a
ðeÞ
14 � � � r ~a

ðeÞ
1m

r ~a
ðeÞ
21

~S0
r ~a

ðeÞ
23

r ~a
ðeÞ
24 � � � r ~a

ðeÞ
2m

r ~a
ðeÞ
31

r ~a
ðeÞ
32

~S0
r ~a

ðeÞ
34 � � � r ~a

ðeÞ
3m

r ~a
ðeÞ
14

r ~a
ðeÞ
42

r ~a
ðeÞ
43

~S0 � � � r ~a
ðeÞ
4m

� � � � � � � � � � � � � � � � � �
r ~a

ðeÞ
m1

r ~a
ðeÞ
m2

r ~a
ðeÞ
m3

r ~a
ðeÞ
m4 � � � ~S0

2
66666666664

3
77777777775
m�m

;
e ¼ 1; 2; . . .; n

r ¼ 1; 2; . . .; k
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ðL ~SA ;M
~SA ;R

~SAÞ and ~S�A ¼ ðL ~S�A ;M
~S�A ;R

~S�AÞ, respectively,

which is a (mirror reflection) mapping of an isosceles tri-

angle with the equal-length bases represented as in Fig. 1.

The fuzzy numbers of the isosceles triangles with bases

of equal length have the following properties:

Properties

(1) R
~S�A � L

~S�A ¼ R
~S0 � L

~S0 ¼ R
~SA � L

~SA

(2) M
~SA �M

~S0 ¼ M
~S0 �M

~S�A or M
~SA þM

~S�A ¼
2M

~S0

(3) L
~SA �M

~S0 ¼ M
~S0 � R

~S�A or L
~SA þ L

~S�A ¼ 2M
~S0

(4) R
~SA �M

~S0 ¼ M
~S0 � L

~S�A or R
~SA þ L

~S�A ¼ 2M
~S0

(5) L
~SA � L

~S0 ¼ L
~S0 � L

~S�A or L
~SA þ L

~S�A ¼ 2L
~S0

(6) R
~SA � R

~S0 ¼ R
~S0 � R

~S�A or R
~SA þ R

~S�A ¼ 2R
~S0

(7) L
~SA � R

~S0 ¼ L
~S0 � R

~S�A or L
~SA þ R

~S�A ¼
L

~S0 þ R
~S0

(8) R
~SA � L

~S0 ¼ R
~S0 � L

~S�A or R
~SA þ L

~S�A ¼ R
~S0þ

L
~S0

(9) M
~SA � R

~S0 ¼ M
~S0 � R

~S�A or M
~SA þ R

~S�A ¼
M

~S0 þ R
~S0

(10) M
~SA � L

~S0 ¼ M
~S0 � L

~S�A or M
~SA þ L

~S�A ¼
M

~S0 þ L
~S0

Theorem If the FNV ~S0 is a set of fixed fuzzy numbers (a

constant value), ~SA and ~S�A are mapped, and only if the

fuzzy numbers ~S0, ~SA, and ~S�A are of isosceles triangles

with bases of equal length, then ~SA � ~S�A ¼ 2 ~S0 (see

Fig. 2).

Proof Let

~S0 ¼ ðL ~S0 ;M
~S0 ;R

~S0Þ

~SA ¼ ðL ~SA ;M
~SA ;R

~SAÞ

~S�A ¼ ðL ~S�A ;M
~S�A ;R

~S�AÞ

According to properties (1)–(10), then verify:

~SA � ~S�A ¼ ðL ~SA þ L
~S�A ;M

~SA þM
~S�A ;R

~SA þ R
~S�AÞ

¼ ð2L ~S0 ; 2M
~S0 ; 2R

~S0Þ ¼ 2 ~S0

ð6Þ

In this case, a set of fixed fuzzy numbers 2 ~S0 is

represented as ~Sconst, then:

~SA � ~S�A¼2 ~S0 ¼ ~Sconst ð7Þ

Definition 1 When alternative Ai is compared with Aj, the

fuzzy evaluation number is expressed as ~aij; when Aj is

compared with Ai, the fuzzy evaluation number is expres-

sed as ~aji. Let ~aij and ~aji be mapped in the decision-making

matrix, based on Equation ~SA � ~S�A¼2 ~S0 ¼ ~Sconst; then,

~aij � ~aji ¼ ~Sconst; i 6¼ j; i; j ¼ 1; 2; . . .;m ð8Þ

~aii are the elements on the diagonal in the decision-

making matrices.

~aii ¼ ~S0 ð9Þ

Numerical Example 1 Let NFV ~S0 ¼ ð0:4; 0:5; 0:6Þ; the

mapping of ~S3 ¼ ð0:7; 0:8; 0:9Þ in the decision-making

matrix is ~S�3¼ ð0.1,0:2; 0.3), represented as in Fig. 2. The

three fuzzy numbers ~S0, ~S3, and ~S�3 satisfy properties (1)–

(10) and Eq. (7) (i.e., ~S3 � ~S�3 ¼ ð0:7; 0:8; 0:9Þ�
ð0:1; 0:2; 0:3Þ ¼ ð0:8; 1:0; 1:2Þ ¼ 2 ~S0 ¼ ~Sconst).

Properties If ~aij is on the right side of ~S0, then the map-

ping of the fuzzy number is on the left side of ~S0 and rep-

resented as ~aji; the inverse is also true.

Definition 2 Let ~D ¼ ð~aijÞm�m be a matrix of an incom-

plete linguistic preference relation; then ~D is called a

consistent incomplete linguistic preference relation if:

~aik � ~akj ¼ ~aij; for all i; j; k ð10Þ

Equation (10) is an additive transitivity relation. It

represents the ideas as follows. The interpretation of ~aik is

on the right side of ~S0 and ~aki is on the left side of ~S0. Then,

the intensity of the preference for alternative xi is over xk. If

~akj is on the right side of ~S0, then the intensity of the

preference for alternative xk is over xj. Therefore, the

intensity of the preference for alternative xi is over xj, so

that ~aij should be on the right side of ~S0 and ~aji on the left

side of ~S0.

Properties In the decision-making matrix, if

i\j; 2\j\m, m is the number of alternatives; the element

~aij is in the upper-right diagonal matrix and its mapping is

~aji in the lower-left diagonal matrix. Then:

Fig. 2 ~S3 and ~S�3 are mapped based on NFV ~S0
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~aij � ~aji ¼ 2 ~S0 ¼ ~Sconst ð11Þ

3.4 Algorithmic rules for three different kinds
of pairwise comparison decision-making
matrices based on Fuzzy InLinPreRa

According to Hsu and Wang (2011), the algorithmic rules

for three different kinds of pairwise comparison decision-

making matrices for Fuzzy InLinPreRa are expressed as:

Type 1: Horizontal pairwise comparison

r ~DðeÞ ¼ r ~a
ðeÞ
ij

h i
m�m

¼

A1 A2 A3 A4 . . . Am

A1

A2

A3

A4

. . .
Am

~S0
r ~a

ðeÞ
12

r ~a
ðeÞ
13

r ~a
ðeÞ
14 ::: r ~a

ðeÞ
1m

� ~S0 � � ::: �
� � ~S0 � ::: �
� � � ~S0 ::: �
::: ::: ::: ::: ::: :::
� � � � ::: ~S0

2
6666664

3
7777775

mxm

;

r ¼ 1; 2; . . .; k
e ¼ 1; 2; . . .; n

� are the unknown variables. Suppose that there are six

alternatives; r ~DðeÞ � 6 � 6 sets r ~a
ðeÞ
ij as the reference and

evaluation of criteria by decision-makers. Then, the five

original linguistic preference values are produced as

follows:

r ~a
ðeÞ
12 ¼ ~S�3;

r ~a
ðeÞ
13 ¼ ~S1;

r ~a
ðeÞ
14 ¼ ~S�1;

r ~a
ðeÞ
16 ¼ ~S1

The original values of r ~a
ðeÞ
12 , r ~a

ðeÞ
13 , r ~a

ðeÞ
14 , r ~a

ðeÞ
15 , and r ~a

ðeÞ
16

are evaluated by the eth decision-maker under rth criteria.

Their mappings are r ~a
ðeÞ
21 , r ~a

ðeÞ
31 , r ~a

ðeÞ
41 , r ~a

ðeÞ
51 , and r ~a

ðeÞ
61 , pro-

duced according to Eq. (7). That is r ~a
ðeÞ
ij � r ~a

ðeÞ
ji ¼ ~Sconst,

and shown as follows:

r ~a
ðeÞ
21 � r ~a

ðeÞ
12 ¼ ~Sconst;

r ~a
ðeÞ
13 � r ~a

ðeÞ
31 ¼ ~Sconst;

r ~a
ðeÞ
14 � r ~a

ðeÞ
41 ¼ ~Sconst

r ~a
ðeÞ
15 � r ~a

ðeÞ
51 ¼ ~Sconst;

r ~a
ðeÞ
16 � r ~a

ðeÞ
61 ¼ ~Sconst

All of the unknown variables � of the upper half of the

triangle are derived from Eq. (10):

r ~a
ðeÞ
23 ¼ r ~a

ðeÞ
21 � r ~a

ðeÞ
13

r ~a
ðeÞ
25 ¼ r ~a

ðeÞ
21 � r ~a

ðeÞ
15

r ~a
ðeÞ
24 ¼ r ~a

ðeÞ
21 � r ~a

ðeÞ
14

r ~a
ðeÞ
26 ¼ r ~a

ðeÞ
21 � r ~a

ðeÞ
16

r ~a
ðeÞ
35 ¼ r ~a

ðeÞ
31 � r ~a

ðeÞ
15

r ~a
ðeÞ
34 ¼ r ~a

ðeÞ
31 � r ~a

ðeÞ
14

r ~a
ðeÞ
36 ¼ r ~a

ðeÞ
31 � r ~a

ðeÞ
16

r ~a
ðeÞ
45 ¼ r ~a

ðeÞ
41 � r ~a

ðeÞ
15

r ~a
ðeÞ
46 ¼ r ~a

ðeÞ
41 � r ~a

ðeÞ
16

r ~a
ðeÞ
56 ¼ r ~a

ðeÞ
51 � r ~a

ðeÞ
16

All unknown variables � of the lower half of the tri-

angle are derived from Eq. (28). The fuzzy complete

preference decision-making matrix is represented as:

r ~DðeÞ ¼ r ~a
ðeÞ
ij

h i
m�m

¼

A1 A2 A3 A4 A5 A6

A1

A2

A3

A4

A5

A6

~S0
~S�3

~S1
~S�1

~S�2
~S1

~S3
~S0

r ~a
ðeÞ
23

r ~a
ðeÞ
24

r ~a
ðeÞ
25

r ~a
ðeÞ
26

~S�1
r ~a

ðeÞ
32

~S0
r ~a

ðeÞ
34

r ~a
ðeÞ
35

r ~a
ðeÞ
36

~S1
r ~a

ðeÞ
42

r ~a
ðeÞ
43

~S0
r ~a

ðeÞ
45

r ~a
ðeÞ
46

~S2
r ~a

ðeÞ
52

r ~a
ðeÞ
53

r ~a
ðeÞ
54

~S0
r ~a

ðeÞ
56

~S�1
r ~a

ðeÞ
62

r ~a
ðeÞ
63

r ~a
ðeÞ
64

r ~a
ðeÞ
65

~S0

2
666666664

3
777777775

6�6

;

r ¼ 1; 2; . . .; k
e ¼ 1; 2; . . .; n

Type 2: Vertical pairwise comparison

r ~DðeÞ ¼ r ~a
ðeÞ
ij

h i
m�m

¼;

A1 A2 A3 A4 . . . Am

A1

A2

A3

A4

. . .
Am

~S0 � r ~a
ðeÞ
13 � . . . �

� ~S0
r ~a

ðeÞ
23 � . . . �

� � ~S0 � . . . �
� � r ~a

ðeÞ
43

~S0 . . . �
. . . . . . . . . . . . . . . �
� � r ~a

ðeÞ
m3 � . . . ~S0

2
66666664

3
77777775

m�m

;

r ¼ 1; 2; . . .; k
e ¼ 1; 2; . . .; n

;

� are the unknown variables. The fuzzy complete

matrix is produced following the Type 1 algorithmic rules.

Suppose that there are six alternatives; r ~DðeÞ � 6 � 6 is set

r ~a
ðeÞ
ij as the reference and evaluation of criteria by the

decision-makers. Then, the five original linguistic prefer-

ence values are produced as follows:

r ~a
ðeÞ
13 ¼ ~S2;

r ~a
ðeÞ
23 ¼ ~S�1;

r ~a
ðeÞ
43 ¼ ~S3;

r ~a
ðeÞ
53 ¼ ~S�2;

r ~a
ðeÞ
63 ¼ ~S1

The mappings of the fuzzy numbers are derived from

Eq. (11) and shown as follows:

r ~a
ðeÞ
13 � r ~a

ðeÞ
31 ¼ ~Sconst

r ~a
ðeÞ
23 � r ~a

ðeÞ
32 ¼ ~Sconst

r ~a
ðeÞ
43 � r ~a

ðeÞ
34 ¼ ~Sconst

r ~a
ðeÞ
53 � r ~a

ðeÞ
35 ¼ ~Sconst

All of the unknown variables � the upper half of the

triangle are derived from Eq. (27):

r ~a
ðeÞ
12 ¼ r ~a

ðeÞ
13 � r ~a

ðeÞ
32

r ~a
ðeÞ
14 ¼ r ~a

ðeÞ
13 � r ~a

ðeÞ
34

r ~a
ðeÞ
15 ¼ r ~a

ðeÞ
13 � r ~a

ðeÞ
35

r ~a
ðeÞ
16 ¼ r ~a

ðeÞ
13 � r ~a

ðeÞ
36

r ~a
ðeÞ
21 ¼ r ~a

ðeÞ
23 � r ~a

ðeÞ
31

r ~a
ðeÞ
22 ¼ r ~a

ðeÞ
23 � r ~a

ðeÞ
32

r ~a
ðeÞ
25 ¼ r ~a

ðeÞ
23 � r ~a

ðeÞ
35

r ~a
ðeÞ
26 ¼ r ~a

ðeÞ
23 � r ~a

ðeÞ
36

r ~a
ðeÞ
45 ¼ r ~a

ðeÞ
43 � r ~a

ðeÞ
35

r ~a
ðeÞ
46 ¼ r ~a

ðeÞ
43 � r ~a

ðeÞ
36

r ~a
ðeÞ
56 ¼ r ~a

ðeÞ
53 � r ~a

ðeÞ
36
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All of the unknown variables 9 of the lower half of the

triangle are derived from Eq. (11) ~aij � ~aji ¼ ~Sconst. The

fuzzy complete preference decision-making matrix is rep-

resented as:

The fuzzy complete preference decision-making matrix

is represented as:

r ~DðeÞ ¼ r ~a
ðeÞ
ij

h i
m�m

¼

A1 A2 A3 A4 A5 A6

A1

A2

A3

A4

A5

A6

~S0
r ~a

ðeÞ
12

~S2
r ~a

ðeÞ
14

r ~a
ðeÞ
15

r ~a
ðeÞ
16

r ~a
ðeÞ
21

~S0
~S�1

r ~a
ðeÞ
24

r ~a
ðeÞ
25

r ~a
ðeÞ
26

~S�2
~S1

~S0
~S�3

~S2
~S�1

r ~a
ðeÞ
41

r ~a
ðeÞ
42

~S3
~S0

r ~a
ðeÞ
45

r ~a
ðeÞ
46

r ~a
ðeÞ
51

r ~a
ðeÞ
52

~S�2
r ~a

ðeÞ
54

~S0
r ~a

ðeÞ
56

r ~a
ðeÞ
61

r ~a
ðeÞ
62

~S1
r ~a

ðeÞ
64

r ~a
ðeÞ
65

~S0

2
666666664

3
777777775

6�6

Type 3: Oblique pairwise comparison

r ~DðeÞ ¼ r ~a
ðeÞ
ij

h i
m�m

¼

A1 A2 A3 A4 . . . Am

A1

A2

A3

A4

:::

Am

~S0
r ~a

ðeÞ
12 � � ::: �

� ~S0
r ~a

ðeÞ
23 � ::: �

� � ~S0
r ~a

ðeÞ
34 ::: �

� � � ~S0
. .
.

�
..
.
::: ::: ::: ::: . .

.
r ~a

ðeÞ
m�1 m

� � � � ::: ~S0

2
6666666666664

3
7777777777775
m�m

;

r ¼ 1; 2; . . .; k

e ¼ 1; 2; . . .; n

9 are the unknown variables. The fuzzy complete

matrix is formed following the Type 1 algorithmic rules.

Suppose there are six alternatives; rAðeÞ � 6 � 6 sets r ~a
ðeÞ
ij

as the reference and evaluation of criteria by decision-

makers. Then, the five original linguistic preference values

are produced as follows:

r ~a
ðeÞ
12 ¼ ~S2;

r ~a
ðeÞ
23 ¼ ~S�1;

r ~a
ðeÞ
34 ¼ ~S2;

r ~a
ðeÞ
45 ¼ ~S1;

r ~a
ðeÞ
56 ¼ ~S�3

The mappings of the fuzzy numbers are derived from

Eq. (11) and shown as follows:

r ~a
ðeÞ
12 � r ~a

ðeÞ
21 ¼ ~Sconst

r ~a
ðeÞ
23 � r ~a

ðeÞ
32 ¼ ~Sconst

r ~a
ðeÞ
34 � ~a

ðeÞ
43 ¼ ~Sconst

r ~a
ðeÞ
45 � r ~a

ðeÞ
54 ¼ ~Sconst

r ~a
ðeÞ
56 � r ~a

ðeÞ
65 ¼ ~Sconst

All of the unknown variables � the upper half of the

triangle are derived from Eq. (10):

r ~a
ðeÞ
13 ¼ r ~a

ðeÞ
12 � r ~a

ðeÞ
23

r ~a
ðeÞ
14 ¼ r ~a

ðeÞ
13 � r ~a

ðeÞ
34

r ~a
ðeÞ
16 ¼ r ~a

ðeÞ
15 � r ~a

ðeÞ
56

r ~a
ðeÞ
15 ¼ r ~a

ðeÞ
14 � r ~a

ðeÞ
45

r ~a
ðeÞ
24 ¼ r ~a

ðeÞ
23 � r ~a

ðeÞ
34

r ~a
ðeÞ
25 ¼ r ~a

ðeÞ
24 � r ~a

ðeÞ
45

r ~a
ðeÞ
26 ¼ r ~a

ðeÞ
25 � r ~a

ðeÞ
56

r ~a
ðeÞ
35 ¼ r ~a

ðeÞ
34 � r ~a

ðeÞ
45

r ~a
ðeÞ
36 ¼ r ~a

ðeÞ
33 � r ~a

ðeÞ
56

r ~a
ðeÞ
46 ¼ r ~a

ðeÞ
45 � r ~a

ðeÞ
56

All of the unknown variables � of the lower half of the

triangle are derived from Eq. (11). The fuzzy complete

preference decision-making matrix is represented as:

r ~DðeÞ ¼ r ~a
ðeÞ
ij

h i
m�m

¼

A1 A2 A3 A4 A5 A6

A1

A2

A3

A4

A5

A6

~S0
~S3

r ~a
ðeÞ
13

r ~a
ðeÞ
14

r ~a
ðeÞ
15

r ~a
ðeÞ
16

~S�3
~S0

~S�1
r ~a

ðeÞ
24

r ~a
ðeÞ
25

r ~a
ðeÞ
26

r ~a
ðeÞ
31

~S1
~S0

~S�3
r ~a

ðeÞ
35

r ~a
ðeÞ
36

r ~a
ðeÞ
41

r ~a
ðeÞ
42

~S3
~S0

~S5
r ~a

ðeÞ
46

r ~a
ðeÞ
51

r ~a
ðeÞ
52

r ~a
ðeÞ
53

~S�5
~S0

~S�3

r ~a
ðeÞ
61

r ~a
ðeÞ
62

r ~a
ðeÞ
63

r ~a
ðeÞ
64

~S3
~S0

2
666666666664

3
777777777775

6�6

;

r ¼ 1; 2; . . .; k

e ¼ 1; 2; . . .; n

3.5 Definition of the fuzzy numbers
for the appropriate linguistic variables

In this study, the linguistic values were characterized by

the triangular fuzzy number defined as [0, 1] (Chou and

Chen 2020). The definition of the fuzzy number is different

from that which was given by Xu (2006). Xu (2006)

defined the corresponding values of

S�4; S�3; S�2; S�1; S0; S1; S2; S3; S4 as - 4, - 3, - 2, - 1,

0, 1, 2, 3, 4; the neutral value is S0, where S0 ¼ 0. In this

study, the definition of the corresponding fuzzy numbers of

~S�4; ~S�3; ~S�2; ~S�1, ~S0; ~S1; ~S2; ~S3; ~S4 is between e0 ¼
ð0:0; 0:0; 0:0Þ and e1 ¼ ð1:0; 1:0; 1:0Þ. The NFV is ~S0,

where ~S0 ¼ ð0:4; 0:5; 0:6Þ.
Let ~S0 ¼ ð0:4; 0:5; 0:6Þ be the NFV. The fuzzy numbers

are mapped on both sides. On its left side, the fuzzy

numbers are called ~S�4; ~S�3; ~S�2; ~S�1, whereas the values

of the fuzzy numbers are defined between ~S�4 ¼
ð0:0; 0:1; 0:2Þ and ~S0 ¼ ð0:4; 0:5; 0:6Þ. On the right side,

the fuzzy numbers are called ~S1; ~S2; ~S3; ~S4, whereas the

values of the fuzzy numbers are defined between ~S0 ¼
ð0:4; 0:5; 0:6Þ and ~S4 ¼ ð0:8; 0:9; 1:0Þ. Here, the use of a

triangular fuzzy number is one of the major components of

fuzzy set theory (Wang and Chen 2008). The triangular
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fuzzy numbers are shown in Table 2 as isosceles triangular

fuzzy numbers with bases of equal lengths (see Fig. 3).

Xu (2006) considered S0 ¼ 0 to be the neutral value. On

the right side are S1; S2; S3; S4 and the mapped values are

S�1; S�2; S�3; S�4. For example, when comparing A2 to

A3, the linguistic term of evaluation is ‘‘strongly pre-

ferred.’’ The element in the decision-making matrix is

represented as a23 ¼ S2 ¼ 2 and its mapping is

a32 ¼ S�2 ¼ �2; then, S2 þ S�2 ¼ S0 ¼ 0.

In this study, the FNV is a set of fuzzy numbers (i.e.,
~S0 ¼ ð0:4; 0:5; 0:6Þ). On the right side are ~S1; ~S2; ~S3; ~S4.

Then, the mapping is ~S�1; ~S�2; ~S�3; ~S�4, respectively.

For example, when comparing A2 to A3, the linguistic term

of evaluation is ‘‘strongly preferred,’’ so that the element in

the decision-making matrix is represented as ~a23 ¼ ~S2 ¼
ð0:6; 0:7; 0:8Þ; and its mapping is ~a32 ¼ ~S�2 ¼
ð0:2; 0:3; 0:4Þ. Then, ~a23 � ~a32¼ ~S2 � ~S�2 ¼ ð0:8; 1:0; 1:2Þ.

3.6 Construction of the decision-making matrix
for Fuzzy InLinPreRa

The processes of constructing a consistent decision-making

matrix are represented as follows.

Step 1. Formation of the original decision-making

matrix

In this study, the original decision-making matrix fol-

lowed a Type 1 horizontal pairwise comparison, repre-

sented as follows:

r ~DðeÞ ¼ r ~a
ðeÞ
ij

h i
m�m

¼

A1 A2 A3 A4 . . . Am

A1

A2

A3

A4

. . .
Am

~S0
r ~a

ðeÞ
12

r ~a
ðeÞ
13

r ~a
ðeÞ
14 . . . r ~a

ðeÞ
1m

� ~S0 � � . . . �
� � ~S0 � . . . �
� � � ~S0 . . . �
. . . . . . . . . . . . . . . �
� � � � . . . ~S0

2
6666664

3
7777775
m�m

;

r ¼ 1; 2; . . .; k
e ¼ 1; 2; . . .; n

The first-row values were evaluated by the eth decision-

maker. Then, the values in the first column were obtained

from the rule of mapping based on Eq. (28), ~aij � ~aji¼2 ~S0.

All unknown variables � the upper half of the triangle

were calculated according to Eq. (27), ~aik � ~akj¼~aij. The

decision-making matrix is represented as follows:

r ~DðeÞ ¼ r ~a
ðeÞ
ij

h i
m�m

¼

A1 A2 A3 A4 . . . Am

A1

A2

A3

A4

. . .
Am

~S0
r ~a

ðeÞ
12

r ~a
ðeÞ
13

r ~a
ðeÞ
14 . . . r ~a

ðeÞ
1m

r ~a
ðeÞ
21

~S0
r ~a

ðeÞ
23

r ~a
ðeÞ
24 . . . r ~a

ðeÞ
2m

r ~a
ðeÞ
31 � ~S0

r ~a
ðeÞ
34 . . . r ~a

ðeÞ
3m

r ~a
ðeÞ
41 � � ~S0 . . . r ~a

ðeÞ
4m

. . . . . . . . . . . . . . . . . .
r ~a

ðeÞ
m1 � � � . . . ~S0

2
66666664

3
77777775
m�m

;

r ¼ 1; 2; . . .; k
e ¼ 1; 2; . . .; n

Step 2. Conversion of the fuzzy number within the

boundary ~S4 ¼ ð0:8; 0:9; 1:0Þ.
In fuzzy set theory, each element is mapped to [0, 1] by

a membership function (Radhika and Parvathi 2016). In

this case, suppose the fuzzy number ~aik ¼ ðL;M;RÞ in the

upper half of the triangle of the decision matrix was outside

the boundary ~S4 ¼ ð0:8; 0:9; 1:0Þ; all of the fuzzy numbers

must then be converted into the boundary’s parameters.

Table 2 Fuzzy linguistic variables and triangular fuzzy numbers

Linguistic variables Triangular fuzzy numbers

~S�4 Extremely not preferred (0.0, 0.1, 0.2)

~S�3 Not preferred (0.1, 0.2, 0.3)

~S�2 Moderately not preferred (0.2, 0.3, 0.4)

~S�1 Slightly not preferred (0.3, 0.4, 0.5)

~S0 Indifferent (0.4, 0.5, 0.6)

~S1 Slightly preferred (0.5, 0.6, 0.7)

~S2 Moderately preferred (0.6, 0.7, 0.8)

~S3 Moderately preferred (0.7, 0.8, 0.9)

~S4 Extremely preferred (0.8, 0.9, 1.0)

0

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 3 Triangular fuzzy numbers for fuzzy linguistic variables
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The conversion method is different here, with the formula

f ðxÞ ¼ xþa
1þ2a provided by Herrera-Viedma et al. (2004). The

first step in the conversion is to search out Lmax, Mmax, and

Rmax from the matrix:

Lmax ¼ max ~aik ¼ ðL;�;�Þj8i; k; i\k; 2\k\mf g
Mmax ¼ max ~aik ¼ ð�;M;�Þj8i; k; i\k; 2\k\mf g
Rmax ¼ max ~aik ¼ ð�;�;RÞj8i; k; i\k; 2\k\mf g

� is unknown. Then, the new converted fuzzy numbers

are calculated according to Eq. (12).

~anew
ik ¼ L

Lmax

� L4;
M

Mmax

�M4;
R

Rmax

� R4

� �

¼ ðLnew;Mnew;RnewÞ ð12Þ

Let the fuzzy number be ~aik ¼ ðL;M;RÞ, where

Lnew 	Mnew 	Rnew. When the value of the fuzzy numbers

Lmax;Mmax;Rmax in the upper-right diagonal of the deci-

sion-making matrix are on the right side of
~S4 ¼ ðL4;M4;R4Þ ¼ ð0:8; 0:9; 1:0Þ(to exceed the values

ð0:8; 0:9; 1:0Þ), then the values of the fuzzy numbers should

be converted according to Eq. (12), as follows (see Fig. 4).

~anew
ik ¼ L

Lmax

� 0:8;
M

Mmax

� 0:9;
R

Rmax

� 1:0

� �
ð13Þ

The values of the fuzzy numbers in the lower-left

diagonal of the decision-making matrix are calculated

according to Eq. (11). The converted decision-making

matrix r ~CðeÞ is represented as follows:

r ~CðeÞ ¼ r ~c
ðeÞ
ij

h i
m�m

¼

A1 A2 A3 A4 . . . Am

A1

A2

A3

A4

. . .
Am

~S0
r ~c

ðeÞ
12

r ~c
ðeÞ
13

r ~c
ðeÞ
14 . . . r ~c

ðeÞ
1m

r ~c
ðeÞ
21

~S0
r ~c

ðeÞ
23

r ~c
ðeÞ
24 . . . r ~c

ðeÞ
2m

r ~c
ðeÞ
31

r ~c
ðeÞ
32

~S0
r ~c

ðeÞ
34 . . . r ~c

ðeÞ
3m

r ~c
ðeÞ
14

r ~c
ðeÞ
42

r ~c
ðeÞ
43

~S0 . . . r ~c
ðeÞ
4m

. . . . . . . . . . . . . . . . . .
r ~c

ðeÞ
m1

r ~c
ðeÞ
m2

r ~c
ðeÞ
m3

r ~c
ðeÞ
m4 . . . ~S0

2
66666664

3
77777775
m�m

;

e ¼ 1; 2; . . .; n
r ¼ 1; 2; . . .; k

Step 3. Multiplication by the fuzzy weight of each

criterion

In general, the converted decision matrix is multiplied

by the weight of the 1 ~w; 2 ~w; :::; k ~w criteria. In this case, this

converted decision-making matrix is multiplied by the

fuzzy weight of the rth criterion r ~w, which is calculated

according to Eq. (6) and represented as follows:

Table 3 Experts’ backgrounds
Sample no Gender Age Educational level Position Tenure

1 Female 31–40 University Sales specialist 6

2 Female 51–60 University Sales 2

3 Male 21–30 Universitystudent Sales 2

4 Male 21–30 University Sales 2

5 Female 21–30 University Sales 2

6 Male 31–40 University Sales 8

7 Male 31–40 University Sales 5

8 Male 21–30 University Sales 4

9 Male 51–60 Master Sales director 15

10 Female 31–40 University Sales 10

11 Male 41–50 High school Sales manager 6

Fig. 4 Conversion of the fuzzy numbers for Lmax, Mmax, and Rmax
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r ~CðeÞ � r ~w ¼ r ~c
ðeÞ
ij � r ~w

h i
m�m

¼

A1 A2 A3 A4 . . . Am

A1

A2

A3

A4

. . .

Am

~S0 � r ~w r ~c
ðeÞ
12 � r ~w r ~c

ðeÞ
13 � r ~w r ~c

ðeÞ
14 � r ~w . . . r ~c

ðeÞ
1m � r ~w

r ~c
ðeÞ
21 � r ~w ~S0 � r ~w r ~c

ðeÞ
23 � r ~w r ~c

ðeÞ
24 � r ~w . . . r ~c

ðeÞ
2m � r ~w

r ~c
ðeÞ
31 � r ~w r ~c

ðeÞ
32 � r ~w ~S0 � r ~w r ~c

ðeÞ
34 � r ~w . . . r ~c

ðeÞ
3m � r ~w

r ~c
ðeÞ
14 � r ~w r ~c

ðeÞ
42 � r ~w r ~c

ðeÞ
43 � r ~w ~S0 � r ~w . . . r ~c

ðeÞ
4m � r ~w

. . . . . . . . . . . . . . . . . .
r ~c

ðeÞ
m1 � r ~w r ~c

ðeÞ
m2 � r ~w r ~c

ðeÞ
m3 � r ~w r ~c

ðeÞ
m4 � r ~w . . . ~S0 � r ~w

2
66666666664

3
77777777775
m�m

where e ¼ 1; 2; . . .; n; r ¼ 1; 2; . . .; k.

Step 4. Integration of the decision matrix for all criteria

respective to the individual expert

Integration of the decision matrix for k criteria must be

accomplished respective to the individual expert, according

to the equation of fuzzy number addition. Then, it is

divided by the number of criteria. The criteria-integrated

matrix is represented as follows:

gCIMðeÞ ¼ 1

k

Xk
r¼1

recðeÞij �r ~w ¼ gcimðeÞ
h i

m�m

¼ 1

k
�

A1 A2 A3 A4 . . . Am

A1

A2

A3

A4

. . .

Am

eS0 �r ew recðeÞ12 �r ew recðeÞ13 �r ew recðeÞ14 �r ew . . . recðeÞ1m �r ew
recðeÞ21 �r ew eS0 �r ew recðeÞ23 �r ew recðeÞ24 �r ew . . . recðeÞ2m �r ew
recðeÞ31 �r ew recðeÞ32 �r ew eS0 �r ew recðeÞ34 �r ew . . . recðeÞ3m �r ew
recðeÞ14 �r ew recðeÞ42 �r ew recðeÞ43 �r ew eS0 �r ew . . . recðeÞ4m �r ew
. . . . . . . . . . . . . . . . . .
recðeÞm1 �r ew recðeÞm2 �r ew recðeÞm3 �r ew recðeÞm4 �r ew . . . eS0 �r ew

2
66666666664

3
77777777775

m�m

¼

A1 A2 A3 A4 . . . Am

A1

A2

A3

A4

. . .
Am

gcim
ðeÞ
11

gcim
ðeÞ
12

gcim
ðeÞ
13

gcim
ðeÞ
14 . . . gcim

ðeÞ
1m

gcim
ðeÞ
21

gcim
ðeÞ
22

gcim
ðeÞ
23

gcim
ðeÞ
24 . . . gcim

ðeÞ
2m

gcim
ðeÞ
31

gcim
ðeÞ
32

gcim
ðeÞ
33

gcim
ðeÞ
34 . . . gcim

ðeÞ
3m

gcim
ðeÞ
41

gcim
ðeÞ
42

gcim
ðeÞ
43

gcim
ðeÞ
44 . . . gcim

ðeÞ
4m

. . . . . . . . . . . . . . . . . .
gcim

ðeÞ
m1

gcim
ðeÞ
m4

gcim
ðeÞ
m3

gcim
ðeÞ
m4 . . . gcimðeÞ

mm

. . .

2
66666664

3
77777775

m�m

where e ¼ 1; 2; . . .; n; r ¼ 1; 2; . . .; k.

Step 5. Multiplication by the fuzzy weight of the indi-

vidual decision-maker

Generally, the integrated decision matrix is multiplied

by the weight of the individual decision-maker

~wð1Þ; ~wð2Þ; . . .; ~wðnÞ. In this case, this integrated decision-

making matrix is multiplied by the weight of the eth
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decision-maker, ~wðeÞ. The experts’ integrated matrix is

represented as follows:

gEIMðeÞ ¼ gEIMðeÞ � ewðeÞ ¼ geimðeÞ
h i

m�m

¼

A1 A2 A3 A4 . . . Am

A1

A2

A3

A4

. . .

Am

gcim
ðeÞ
11 � ewðeÞ gcim

ðeÞ
12 � ewðeÞ gcim

ðeÞ
13 � ewðeÞ gcim

ðeÞ
14 � ewðeÞ . . . gcim

ðeÞ
1m � ewðeÞ

gcim
ðeÞ
21 � ewðeÞ gcim

ðeÞ
22 � ewðeÞ gcim

ðeÞ
23 � ewðeÞ gcim

ðeÞ
24 � ewðeÞ . . . gcim

ðeÞ
2m � ewðeÞ

gcim
ðeÞ
31 � ewðeÞ gcim

ðeÞ
32 � ewðeÞ gcim

ðeÞ
33 � ewðeÞ gcim

ðeÞ
34 � ewðeÞ . . . gcim

ðeÞ
3m � ewðeÞ

gcim
ðeÞ
41 � ewðeÞ gcim

ðeÞ
42 � ewðeÞ gcim

ðeÞ
43 � ewðeÞ gcim

ðeÞ
44 � ewðeÞ . . . gcim

ðeÞ
4m � ewðeÞ

. . . . . . . . . . . . . . . . . .

gcim
ðeÞ
m1 � ewðeÞ gcim

ðeÞ
m4 � ewðeÞ gcim

ðeÞ
m3 � ewðeÞ gcim

ðeÞ
m4 � ewðeÞ . . . gcimðeÞ

mm � ewðeÞ

2
66666666664

3
77777777775

m�m

¼

A1 A2 A3 A4 . . . Am

A1

A2

A3

A4

. . .

Am

geim
ðeÞ
11

geim
ðeÞ
12

geim
ðeÞ
13

geim
ðeÞ
14 . . . geim

ðeÞ
1m

geim
ðeÞ
21

geim
ðeÞ
22

geim
ðeÞ
23

geim
ðeÞ
24 . . . geim

ðeÞ
2m

geim
ðeÞ
31

geim
ðeÞ
32

geim
ðeÞ
33

geim
ðeÞ
34 . . . geim

ðeÞ
3m

geim
ðeÞ
41

geim
ðeÞ
42

geim
ðeÞ
43

geim
ðeÞ
44 . . . geim

ðeÞ
4m

. . . . . . . . . . . . . . . . . .

geim
ðeÞ
m1

geim
ðeÞ
m4

geim
ðeÞ
m3

geim
ðeÞ
m4 . . . geimðeÞ

mm

. . .

2
66666666664

3
77777777775

m�m

where e ¼ 1; 2; . . .; n

Step 6. Integration of all decision-making matrices for

the decision-making experts

The decision-making matrices for all experts are then

integrated into a single matrix. The final (F)-integrated

decision-making matrix is represented as follows:

eF ¼ 1

n

Xn
e¼1

gEIMðeÞ

¼

A1 A2 A3 A4 . . . Am

A1

A2

A3

A4

. . .

Am

Pn
e¼1

geim
ðeÞ
11

Pn
e¼1

geim
ðeÞ
12

Pn
e¼1

geim
ðeÞ
13

Pn
e¼1

geim
ðeÞ
14 . . .

Pn
e¼1

geim
ðeÞ
1m

Pn
e¼1

geim
ðeÞ
21

Pn
e¼1

geim
ðeÞ
22

Pn
e¼1

geim
ðeÞ
23

Pn
e¼1

geim
ðeÞ
24 . . .

Pn
e¼1

geim
ðeÞ
2m

Pn
e¼1

geim
ðeÞ
31

Pn
e¼1

geim
ðeÞ
32

Pn
e¼1

geim
ðeÞ
33

Pn
e¼1

geim
ðeÞ
34 . . .

Pn
e¼1

geim
ðeÞ
3m

Pn
e¼1

geim
ðeÞ
41

Pn
e¼1

geim
ðeÞ
42

Pn
e¼1

geim
ðeÞ
43

Pn
e¼1

geim
ðeÞ
44 . . .

Pn
e¼1

geim
ðeÞ
4m

. . . . . . . . . . . . . . . . . .
Pn
e¼1

geim
ðeÞ
m1

Pn
e¼1

geim
ðeÞ
m4

Pn
e¼1

geim
ðeÞ
m3

Pn
e¼1

geim
ðeÞ
m4 . . .

Pn
e¼1

geimðeÞ
mm

. . .

2
666666666666666664

3
777777777777777775

m�m

Step 7. Defuzzification of the integrated decision-mak-

ing matrix
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This study applied maximizing and minimizing set

methods (Chen 1985) to defuzzify the fuzzy numbers.

Equations are represented as follows:

Maximizing Set R ¼ ðx; fRðxÞÞ x 2 Rjjf g.

and fRðxÞ ¼
ðx� x1Þ=ðx2 � x1Þ; x1 	 x	 x2

0; otherwise

� �

ð14Þ

Minimizing Set L ¼ ðx; fLðxÞÞ x 2 Rjjf g.

and fRðxÞ ¼
ðx� x2Þ=ðx1 � x2Þ; x1 	 x	 x2

0; otherwise

� �

ð15Þ
UMðiÞ ¼ sup

x
ðfMðxÞ ^ fAi

ðxÞÞ; i ¼ 1; 2; . . .; n ð16Þ

UGðiÞ ¼ sup
x
ðfGðxÞ ^ fAi

ðxÞÞ; i ¼ 1; 2; . . .; n ð17Þ

UTðiÞ ¼ UMðiÞ þ 1 � UGðiÞ½ �=2; i ¼ 1; 2; . . .; n ð18Þ

Step 8. Ranking the crisp values of all alternatives

4 Empirical example

In this section, Fuzzy InLinPreRa was employed to

demonstrate a quantitative basis for analytically deter-

mining from a managerial viewpoint the ranking of popular

brand personalities in the sports shoe industry (Khazaei

Pool et al. 2018). The research procedure was conducted

according to the following steps:

Step 1 Determine the evaluation criteria, alternatives,

and decision-making experts.

The construction of brand personality has received

considerable attention in consumer behavior research.

Brand personality, a five-dimensional framework devel-

oped by Aaker (1997), is comprised of the integers of

sincerity, excitement, competence, sophistication, and

ruggedness. It refers to a series of human characteristics

associated with given brands. This characterization plays

an important role in promoting interaction between con-

sumers and brands, thus helping to create, develop, and

maintain strong brands (Seimiene and Kamarauskaite

2014). Based on the self-concept and self-congruity theo-

ries, consumer behavior research has suggested that con-

sumers prefer brands that they believe to be similar in

various respects to themselves. Brand self-congruity refers

to a match between a brand’s image and an individual’s

self-concept, strongly influencing brand success, such as

through positive consumer brand recognition, customer

satisfaction, and customer loyalty (Matzler et al. 2016).

We considered ten of the current leading brands in the

sports shoe industry: Adidas, Asics, Champion, Converse,

New Balance, Nike, Puma, Reebok, Skechers, and Under

Armour (Khazaei Pool et al. 2018). There were 11 deci-

sion-making experts who worked in the sports shoe

industry had extensive experience, and held different

positions (Table 3).

In this case, the decision-makers were denoted as Ee,

where e ¼ 1; 2; . . .; 11; the evaluating criteria as Cr, where

r ¼ 1; 2; . . .; 5; and the alternatives as Ai, where

i ¼ 1; 2; . . .; 10.

Step 2 Data collection.

This study employed a questionnaire divided into three

parts: evaluation of alternatives, weight of criteria, and

personal information. The survey was distributed to 11

Table 4 Linguistic terms for weights corresponding to fuzzy numbers

Linguistic terms Triangular fuzzy numbers

Extremely non-important (ENI) (0.0, 1.5, 1.5)

Not important (NIP) (0.5, 1.5, 2.5)

Slightly not important (SNI) (1.5, 2.5, 3.5)

Neutral (N) (2.5, 3.5, 4.5)

Slightly important (SIP) (3.5, 4.5, 5.5)

Important (IP) (4.5, 5.5, 6.5)

Extremely important (EIP) (5.5, 7.0, 7.0)

Table 5 Weights for decision-making experts corresponding to fuzzy

numbers

Expert nos Linguistic terms Fuzzy number weights

E1 EIP (5.5, 7.0, 7.0)

E2 NIP (0.5, 1.5, 2.5)

E3 NIP (0.5, 1.5, 2.6)

E4 NIP (0.5, 1.5, 2.7)

E5 SNI (1.5, 2.5, 3.5)

E6 EIP (5.5, 7.0, 7.0)

E7 IP (4.5, 5.5, 6.5)

E8 SIP (3.5, 4.5, 5.5)

E9 EIP (5.5, 7.0, 7.0)

E10 EIP (5.5, 7.0, 7.0)

E11 IP (4.5, 5.5, 6.5)

Table 6 Weights of criteria based on the importance of the experts

Criteria Fuzzy numbers

Sincerity (0.0843, 0.1877, 0.4124)

Excitement (0.0945, 0.2056, 0.4458)

Competence (0.0997, 0.2182, 0.4755)

Sophistication (0.0868, 0.1909, 0.4340)

Ruggedness (0.0896, 0.1976, 0.4306)
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decision-making experts who had worked as sales and

marketing executives in the sports shoe industry between 2

and 15 years. The linguistic terms for the weights corre-

sponded to the fuzzy numbers represented (as in the table).

The weights of the criteria and experts corresponding to the

fuzzy numbers are shown in Tables 4 and 5, respectively.

The weights of the criteria were calculated as referents

to the importance of the experts, according to Eq. (5). The

results are shown in Table 6.

Example

The left fuzzy number of criterion 1 (1w) was calculated

as follows:

Step 3 Construction of the decision-making matrix

This study utilized the algorithm of horizontal pairwise

comparison to construct all of the experts’ evaluations

under each criterion. The original matrix evaluated by

expert E1 for criteria C1 was represented as:

C1 A1 A2 A3 … A10

A1 (0.4, 0.5,

0.6)

(0.4, 0.5,

0.6)

(0.6, 0.7,

0.8)

… (0.4, 0.5,

0.6)

A2 � (0.4, 0.5,

0.6)

� … �

A3 � � (0.4, 0.5,

0.6)

… �

… … … … … …
A10 9 9 9 … (0.4, 0.5,

0.6)

The fuzzy numbers in the first column were produced

according to the rule of mapping, (i.e., Eq. 11) and the

matrix was as follows:

C1 A1 A2 A3 … A10

A1 (0.4, 0.5,

0.6)

(0.4, 0.5,

0.6)

(0.6, 0.7,

0.8)

… (0.4, 0.5,

0.6)

A2 (0.4, 0.5,

0.6)

(0.4, 0.5,

0.6)

� … �

A3 (0.2, 0.3,

0.4)

� (0.4, 0.5,

0.6)

… �

… … … … … …
A10 (0.4, 0.5,

0.6)

� � … (0.4, 0.5,

0.6)

All unknown variables 9 the upper half of the triangle

were calculated according to Eq. (10).

C1 A1 A2 A3 … A10

A1 (0.4, 0.5,

0.6)

(0.4, 0.5,

0.6)

(0.6, 0.7,

0.8)

… (0.4, 0.5,

0.6)

A2 (0.4, 0.5,

0.6)

(0.4, 0.5,

0.6)

(1.0, 1.2,
1.4)

… (0.8, 1.0,

1.2)

A3 (0.2, 0.3,

0.4)

� (0.4, 0.5,

0.6)

… (0.6, 0.8,

1.0)

… … … … … …
A10 (0.4, 0.5,

0.6)

� (0.2, 0.2,

0.2)

… (0.4, 0.5,

0.6)

Step 4 Conversion of the fuzzy numbers into the

boundary ~S4 ¼ ð0:8; 0:9; 1:0Þ.
The maximum fuzzy numbers that exceeded the

boundary, such as (1.0, 1.2, 1.4), were sorted. Then, all of

the fuzzy numbers were converted according to Eq. (13).

Table 7 Overall ranking of the alternatives

Brand New Balance Asics Nike Adidas Under Armour Skechers Reebok Champion Converse Puma

Avg 0.3264 0.3075 0.3578 0.4260 0.3093 0.3385 0.3499 0.2682 0.3478 0.4180

Rank 7 9 3 1 8 6 4 10 5 2

ð5:5 � 5:5 þ 0:5 � 0:5 þ :::þ 4:5 � 1:5Þ
½ð5:5 � 5:5 þ 0:5 � 0:5 þ :::þ 4:5 � 1:5Þ þ :::þ ð5:5 � 4:5 þ 0:5 � 0:5 þ :::þ 4:5 � 2:5Þ� ¼ 0:0843
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The unknown variables � in the lower half of the triangle

were derived from Eq. (28). The complete fuzzy preference

decision-making matrix was represented as:

C1 A1 A2 A3 … A10

A1 (0.4, 0.5,

0.6)

(0.4, 0.5, 0.6) (0.6, 0.7, 0.8) … (0.4, 0.5, 0.6)

A2 (0.4, 0.5,

0.6)

(0.4, 0.5, 0.6) (0.73, 0.83,

0.93)

… (0.58, 0.69,

0.8)

A3 (0.2, 0.3,

0.4)

(0.07, 0.17,

0.27)

(0.4, 0.5, 0.6) … (0.44, 0.55,

0.67)

… … … … … …
A10 (0.4, 0.5,

0.6)

(0.22, 0.31,

0.4)

(0.36, 0.45,

0.53)

… (0.4, 0.5, 0.6)

Step 5 Multiplication by the fuzzy number for each

criterion’s weight

C1 A1 A2 … A10

A1 (0.4, 0.5, 0.6)�
(0.0843,

0.1877,

0.4124)

(0.4, 0.5, 0.6)�
(0.0843,

0.1877, 0.4124)

… (0.4, 0.5, 0.6)�
(0.0843,

0.1877,

0.4124)

A2 (0.4, 0.5, 0.6)�
(0.0843,

0.1877,

0.4124)

(0.4, 0.5, 0.6)�
(0.0843,

0.1877, 0.4124)

… (0.58, 0.69,

0.8)� (0.0843,

0.1877,

0.4124)

A3 (0.2, 0.3, 0.4)�
(0.0843,

0.1877,

0.4124)

(0.07, 0.17,

0.27)�(0.0843,

0.1877, 0.4124)

… (0.44, 0.55,

0.67)�
(0.0843,

0.1877,

0.4124)

… … … … …
A10 (0.4, 0.5, 0.6)�

(0.0843,

0.1877,

0.4124)

(0.22, 0.31, 0.4)�
(0.0843,

0.1877, 0.4124)

… (0.4, 0.5, 0.6)�
(0.0843,

0.1877,

0.4124)

Step 6 Integration of the five-criteria matrix for each

expert’s evaluation of the alternatives, then dividing by 5

E1 A1 A2 … A10

A1 [(0.0337,

0.0939,

0.2474)�
(0.0378,

0.1028,

0.2675)�…
�(0.0358,

0.0988,

0.2584)]/5

[(0.0337, 0.0939,

0.2474)�
(0.0283, 0.0823,

0.2229)�…
�(0.0448, 0.1185,

0.3014)]/5

… [(0.0337,

0.0939,

0.2474)�
(0.0472,

0.1234,

0.3121)�…
�(0.0269,

0.0790,

0.2153)]/5

A2 [(0.0337,

0.0939,

0.2475)�
(0.0472,

0.1234,

0.3121)�…
�(0.0269,

0.0790,

0.2153)]/5

[(0.0337, 0.0939,

0.2474)�
(0.0378, 0.1028,

0.2675)�…
�(0.0358, 0.0988,

0.2584)]/5

… [(0.0491,

0.1300,

0.3299)�
(0.0630,

0.1586,

0.3901)�…
�(0.0358,

0.1016,

0.2691)]/5

..

. ..
. ..

. … ..
.

A10 [(0.0337,

0.0939,

0.2475)�
(0.0283,

0.0823,

0.2229)�…
�(0.0448,

0.1185,

0.3014)]/5

[(0.0184, 0.0578,

0.1649)�
(0.0126, 0.0470,

0.0814)�…
�(0.0358.0.0960,

0.2476)]/5

… [(0.0337,

0.0939,

0.2474)�
(0.0378,

0.1028,

0.2675)�…
�(0.0358,

0.0988,

0.2584)]/5

Example Integration of the five-criteria preference eval-

uations for A1 and A10 by expert E1, calculated as follows:

0:0337; 0:0939; 0:2474ð Þ�½
ð 0:0472; 0:1234; 0:3121ð Þ � 0:0399; 0:1091; 0:2853ð Þ
� 0:0521; 0:1336; 0:3472ð Þ � 0:0269; 0:0790; 0:2153ð Þ�=5

¼ ð0:0400; 0:1078; 0:2815Þ
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Step 7 Multiplication by the fuzzy number for each

expert’s weight

Step 8 Integration of the matrix of the 11 experts’

evaluations of alternatives, then dividing by 11

Example: Integration of the matrices for the 11 experts’

preference evaluations for A1 and A10, calculated as

follows:

[(0.2198, 0.7546, 1.9702) � (0.0200, 0.1617,

0.7036)�(0.0293, 0.2233, 0.9292) � (0.0293, 0.2233,

0.9293) � (0.0904, 0.2285, 0.5685)�(0.1895, 0.5270,

1.3994) � (0.2199, 0.5741, 1.4637) � (0.2288, 0.5729,

1.4130)�(0.1588, 0.4596, 1.2524) � (0.1588, 0.4596,

1.2524) � (0.2305, 0.6167, 1.5983)�(0.2638, 0.6693,

1.6692)]/11 = (0.1527, 0.4556, 1.2633).

Step 9 Defuzzifying the integrated decision-making

matrices

E1 A1 A2 … A10

A1 (0.0364,0.1000,0.2638)

�(5.5,7,7)

(0.0346,0.0960,0.2548)

�(5.5,7,7)

… (0.0100,0.1078,0.2815)

�(5.5,7,7)

A2 (0.0382,0.1040,0.2728)

�(5.5,7,7)

0.0364,0.1000,0.2638)

�(5.5,7,7)

… 0.0511,0.1340,0.3415)

�(5.5,7,7)

..

. ..
. ..

. ..
. ..

.

A10 (0.0328,0.0932,0.2461)

˜(5.5,7,7)

(0.0216,0.0660,0.1860)

˜(5.5,7,7)

… (0.0364,0.1000,0.2638)

�(5.5,7,7)

E A1 A1 … A1

A1 [(0.2003, 0.7000, 1.8465)�
(0.0182, 0.1500, 0.6595)�…
�(0.1638, 0.4500, 1.1871)]/11

[(0.1901, 0.6721, 1.7836)�
(0.0173, 0.1440, 0.6370)�…
� 0.1967, 0.5226, 1.347)]/11

… [(0.2198, 0.7546, 1.9702)�
(0.0200, 0.1617, 0.7036)�…
�(0.2638, 0.6693, 1.6692)]/11

A1 [(0.2102, 0.7279, 1.9094)�
(0.0191, 0.1560, 0.6153)�…
�(0.1309, 0.3774, 1.0267)]/11

[(0.2002, 0.7000, 1.8465)�
(0.0182, 0.1500, 0.6595)�…
�(0.1638, 0.4500, 1.1871)]/11

… [(0.2813, 0.9380, 2.3907)�
(0.0310, 0.2360, 0.9790)�…
�(0.2809, 0.7118, 1.7705)]/11

..

. ..
. ..

. ..
. ..

.

A1 [(0.1805, 0.6454, 1.7229)�
(0.0164, 0.1383, 0.6153)�…
�(0.0637, 0.2307, 0.7049)]/11

[(0.1190, 0.4620, 1.3023)�
(0.0054, 0.0640, 0.3399)�…
�(0.0467, 0.1882, 0.6036)]/11

… [(0.2002, 0.7000, 1.8465)�
(0.0182, 0.1500, 0.6595)�…
�(0.1638, 0.4500, 1.1871)]/11

E1-E11 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

A1 0.3389 0.3542 0.3510 0.3874 0.3464 0.3716 0.3510 0.3619 0.2101 0.3874

A2 0.3084 0.4067 0.4070 0.4247 0.3999 0.4101 0.4070 0.4098 0.2673 0.4247

A3 0.3180 0.4115 0.4118 0.4293 0.4047 0.4149 0.4118 0.2834 0.4046 0.4293

A4 0.3231 0.3389 0.4148 0.4323 0.4078 0.4179 0.4148 0.2864 0.4076 0.4323

A5 0.4037 0.3256 0.5003 0.5185 0.3389 0.4245 0.4214 0.2936 0.4143 0.4387

A6 0.3040 0.2480 0.4114 0.4289 0.2395 0.3389 0.4114 0.2825 0.4042 0.4289

A7 0.3265 0.2520 0.3389 0.4320 0.2435 0.2563 0.3389 0.2862 0.4073 0.4320

A8 0.3150 0.2484 0.2488 0.4292 0.2398 0.2527 0.2488 0.2111 0.4045 0.4292

A9 0.3399 0.2610 0.2614 0.4389 0.2526 0.2653 0.2614 0.1476 0.3389 0.4389

A10 0.2860 0.2285 0.2326 0.3389 0.2197 0.2329 0.2326 0.1199 0.2195 0.3389

Avg 0.3264 0.3075 0.3578 0.4260 0.3093 0.3385 0.3499 0.2682 0.3478 0.4180
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Step 10 Ranking the alternatives.

The results showed that Adidas, Puma, Nike, Reebok,

and Converse were, respectively, ranked from first to fifth

in terms of preference (Table 7).

5 Conclusions

MCDM techniques can help decision-makers choose viable

alternatives for real world decision-making problems

involving multiple conflicting criteria. Multi-criteria anal-

ysis problems require decision-makers to make qualitative

evaluations concerning the performance of alternatives

with regard to the relative importance of each independent

criterion, and each independent criterion with regard to the

overall goal of the problem set. Due to the relative com-

plexities and uncertainties of decision-making problems

and inherent subjectivity of human judgment, accurate

conclusions are often unrealistic or unfeasible. Decision-

makers often find that assigning linguistic variables to

judgments feels more natural and is easier than to fixed

value judgments (Chen et al. 2011). The use of fuzzy sets is

more compatible with the vague interpretations of human

language (Khazaei Pool et al. 2018). Therefore, it is better

to use fuzzy instead of crisp numbers to indicate the data

(Chen et al. 2011; Yang and Wang 2013).

This study presented Fuzzy InLinPreRa as a means of

addressing increasingly complex decision-making prob-

lems resulting from rapid economic development and

profound social change (Chen et al. 2022a; Peng et al.

2022). Triangular fuzzy numbers were used here to quan-

tify linguistic variables in Fuzzy InLinPreRa because their

simplicity and ease of use has made them the most com-

monly employed to represent linguistic information in

practical applications (Tavana et al. 2021). The theoretical

contributions of this study can be summarized as follows.

Fuzzy InLinPreRa is an alternative additive transitivity

property-based estimation of the use of the fuzzy set

method. It considers more objective weights of criteria and

weights of decision-makers, allowing decision-making in

imprecise and vague environments and solving inconsistent

problems. When decision-makers process pairwise com-

parisons for criteria with the least number of judgments

(i.e., n� 1 judgments), comparisons can be carried out

more efficiently and do not generate inconsistent problems;

this makes the decision-making process more efficient and

accurate. Each decision-maker can unrestrictedly choose

the explicit index for pairwise comparisons, named hori-

zontal, vertical, and oblique comparisons. The rest of the

unknown variables can be obtained through adjoining

additions and their corresponding opposite relationship

algorithms, and then quickly produce a complete matrix

(Hsu and Wang 2011). This study also presented a formula

for considering the weights of decision-makers according

to their positions and work experiences, in order to

obtaining a more reasonable ranking of alternatives.

5.1 Managerial implications

This analytical framework was used to evaluate and rank

the personalities of selected brands of sports shoes and

verify the feasibility of the proposed approach. The results

showed that Fuzzy InLinPreRa is capable of providing

invaluable insights for use in strategic marketing decisions.

The evaluation and ranking of brands is useful for both

academic research and practice. Researchers can measure

the competences of each brand by evaluating them, and

industrialists can extract the competitive advantages of the

brands selected (Khazaei Pool et al. 2018). In addition, this

method assures consistency and flexibility for a number of

alternatives, attributions, criteria, and hierarchical levels

related to decision-making issues. The method can be used

as a powerful tool in solving decision-making problems in

academic research and practice.

6 Limitations and future research directions

Future directions for this research will focus on consumers’

perceptions and preferences, exploring new insights and

further considering consumers’ heterogeneity (Chen et al.

2022b). The investigation of consumer numbers should go

beyond that of expert opinions. It is recommended that

software be developed to facilitate analyses of larger

decision-making groups.

Appendix 1

Two preference relations for the fuzzy preference relations

(Herrera-Viedma et al. 2004):

• Multiplicative preference relation

The multiplicative preference relation A on a set of

alternatives X is denoted by a matrix A � X � X, A ¼ ðaijÞ,
aij is expressed as the ratio of the preference degree of

alternative xi over xj, and A is assumed to be a multi-

plicative reciprocal:

aij � aji ¼ 1 8i; j 2 1; . . .; nf g ð19Þ

• Additive fuzzy preference relation

The fuzzy preference relation supposes that P on a set of

alternatives X is denoted by P ¼ ðpijÞ, pij ¼ lpðxi; xjÞ and

pij is regarded as a different preference degree of alterna-

tive xi over xj. If pij ¼ 1=2 denotes no difference between

xi and xj(xi 
 xj), pij ¼ 1 denotes that xi is absolutely
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preferred over xj, pij ¼ 0 denotes that xj is absolutely pre-

ferred over xi, pij [ 1=2 indicates that xi is preferred over

xjðxi�xjÞp, and the preference matrix is assumed to be an

additive reciprocal:

pijþpji ¼ 1 8i; j 2 1; . . .; nf g ð20Þ

Proposition Assume a set of alternatives X ¼ ðx1; . . .; xnÞ
and a reciprocal multiplicative preference relation A ¼
ðaijÞ with aij 2 ½1=9; 9� being associated with it; then, the

corresponding reciprocal additive fuzzy preference rela-

tion P ¼ ðpijÞ with pij 2 0; 1½ � to A ¼ ðaijÞ is given as

follows:

Pij ¼ gðaijÞ ¼
1

2
� 1þ log9 aij
� 	

ð21Þ

Using this transformation function g, we can relate the

research issues obtained for the two preference relations.

In order to make a consistent choice, when a fuzzy

preference relationship is assumed, the consistent proper-

ties are proposed to satisfy this relation. One of the most

important properties concerning preference is transitivity,

which represents the preference value obtained by directly

comparing two alternatives being equal to or greater than

the preference value between those two alternatives

obtained from an indirect chain of alternatives. The

properties are given below (Herrera-Viedma et al. 2004;

Hsu and Wang 2011):

• Additive transitivity consistency fuzzy preference

relation

A reciprocal additive fuzzy preference relation is

consistent if:

pijþpjkþpki ¼
3

2
8i; j; k ð22Þ

• Construction of a consistent fuzzy preference relation A

A set of alternatives X ¼ x1; x2; . . .; xn; n� 2f g as a

consistent fuzzy preference relation P from n� 1

preference values p12; p23; . . .; pn�1nf g can be con-

structed as follows. The set of preference values B is

calculated as:

B ¼ pij; i\j ^ pij 62 p12; p23; . . .; pn�1nf g

 �

pji ¼
j� iþ1

2
� pijþ1 � piþ1;iþ2;... � pij

ð23Þ

a ¼ min B [ p12; p23; . . .; pn�1nf gf gj j ð24Þ

P ¼ p12; p23; . . .; pn�1nf g [ B[
1 � ~p12; 1 � ~p23; . . .; 1 � ~pn�1nf g [ :B

ð25Þ

The consistent fuzzy preference relation P is

obtained as P ¼ f ðPÞ:

f : �a; 1þa½ � ! 0; 1½ �; f ðxÞ ¼ xþa

1þ2a
ð26Þ

Appendix 2

The relevant definitions of incomplete linguistic preference

relations are as follows (Hsu and Wang 2011; Shih and Hsu

2016; Xu 2006):

Definition 1 (Incomplete linguistic preference additive

relation) Let A ¼ ðaijÞn�n be a linguistic preference rela-

tion. Assume A is an incomplete linguistic preference

relation that decision-makers can use to carry out pairwise

comparison to satisfy Eq. (9).

aij 2 S; aij � aji ¼ S0; aii ¼ S0; for all i; j ð27Þ

Definition 2 (Incomplete linguistic consistent additive

preference relation) Let A ¼ ðaijÞn�n be a complete con-

sistent additive preference relation, a type of additive

transitivity represented as Eq. (10), which interprets that

the aik value represents the intensity of the preference for

alternative xi(Ai) over xk(Ak) and the akj value represents

the intensity of the preference for alternative xk over xj(Aj).

Then, it can reasonably be assumed that the intensity of the

preference for alternative xi over xj should be equal to the

sum of the preference intensities regarding alternative xk as

an intermediate.

aik � akj¼aij; for all i; j; k ð28Þ

If aij ¼ S0, aij ¼ 0 represents xi and xj indifference, both

can satisfy.

aik ¼ akj ¼ aij ¼ S0.

Definition 3 (Incomplete linguistic preference adjoining

preference relation) Let A ¼ ðaijÞn�n be a linguistic pref-

erence relation. Assume A is an incomplete linguistic

preference relation. If ði; jÞ \ ðk; lÞ 6¼ ;, the elements aij
and akl are named in the adjoining relation.

Definition 4 (Incomplete linguistic preference indirect

relation) Let A ¼ ðaijÞn�n be a linguistic preference rela-

tion. Assume A is an incomplete linguistic preference

relation and ai0j0 is the unknown value in preference matrix

A. The element ai0j0 is indirectly named available, as

derived from the two known adjoining elements ai0k and

akj0 .

Definition 5 (Acceptable alternative for incomplete lin-

guistic preference) Let A ¼ ðaijÞn�n be an incomplete lin-

guistic preference relation. Assume A is an incomplete

linguistic preference relation. If each unknown element can

2320 T.-C. Wang, S.-L. Huang

123



be obtained through its adjoining known elements, then it

is called an acceptable alternative. The acceptable alterna-

tive for incomplete linguistic preference A could be the

known value in a column or row, having n� 1 contrasting

values by pairs.

Employing the incomplete linguistic preference rela-

tions proposed by Xu (2006) to construct the decision-

making matrix, as described through the following steps

(Chen et al. 2011):

Step 1 Let D ¼ d1; d2; . . . ; dmf g be the set of decision-

makers and the weight vector of the decision-makers be

W ¼ ðw1;w2; . . . ;wmÞT
, wk � 0, where k ¼ 1; 2; . . .;m,Pm

k¼1 wk ¼ 1. The decision-maker dk 2 D uses linguis-

tic variables to compare all n alternative numbers, where

an acceptable incomplete linguistic preference relation

matrix Ak ¼ ðaðkÞij Þn�n will be constructed through n� 1

times pairwise comparisons, among which a
ðkÞ
ij denotes

that the kth expert counters the preference relation values

of the pairwise comparison of alternatives i; j.

Step 2 Apply the known variables in Ak ðk ¼ 1; 2; . . .;mÞ
and determine all the unknown variables according to

Eq. (10), aij ¼ aik � akj in Ak,ðk ¼ 1; 2; . . .;mÞ. Then, the

corresponding consistent complete linguistic preference

relations are obtained:

A ¼ ðaðkÞij Þn�n ðk ¼ 1; 2; . . .;mÞ

Step 3 Each expert’s decision preference matrix is

multiplied by the weight vector of the decision-maker to

integrate a complete decision-making matrix, shown as

follows:

aij ¼ w1a
ð1Þ
ij � w2a

ð2Þ
ij � � � � � wma

ðmÞ
ij ; for all i; j ð29Þ

Step 4 To calculate the average of all the preference

degrees aij, ðj ¼ 1; 2; . . .;mÞ is in the ith row of A. Then,

the final decision-making preference matrix is obtained.

a ¼ 1

n
ai1 �

1

n
ai2 � � � � � 1

n
ain; for all i ð30Þ

Step 5 Rank all alternatives xiði ¼ 1; 2; . . .; nÞ and choose

the optimal one(s) according to the value of

aiði ¼ 1; 2; . . .; nÞ.

Authors’ contributions We confirm that this manuscript has not been

published elsewhere and is not under consideration by another jour-

nal. All authors have approved the manuscript and agree with its

submission to Soft Computing.

Funding The authors declare that no funds, grants, or other support

were received during the preparation of this manuscript.

Data availability statement The data that support the findings of this

study are available from professionals of hotels but restrictions apply

to the availability of these data, which were used under license for the

current study, and so are not publicly available.

Declarations

Conflict of interests The authors have no relevant financial or non-

financial interests to disclose.

References

Aaker JL (1997) Dimensions of brand personality. J Mark Res

34(3):347–356

Abastante F, Corrente S, Greco S, Ishizaka A, Lami IM (2019) A new

parsimonious AHP methodology: assigning priorities to many

objects by comparing pairwise few reference objects. Expert

Syst Appl 127:109–120

Abdul D, Wenqi J, Tanveer A (2022) Prioritization of renewable

energy source for electricity generation through AHP-VIKOR

integrated methodology. Renewable Energy 184:1018–1032

Alfina A, Rizki F, Wassalam OJF (2022) Comparison of topsis and

viktor methods in scholarship selection of Aisyah University.

INFOKUM 10(03):1–11

Asadabadi MR, Chang E, Saberi M (2019) Are MCDM methods

useful? A critical review of analytic hierarchy process (AHP)

and Analytic Network Process (ANP). Cogent Eng. https://doi.

org/10.1080/23311916.2019.1623153

Azhar NA, Radzi NAM, Wan Ahmad WSHM (2021) Multi-criteria

decision making: a systematic review. Recent Adv Electr

Electron Eng 14(8):779–801

Behzadian M, Otaghsara SK, Yazdani M, Ignatius J (2012) A state-of

the-art survey of TOPSIS applications. Expert Syst Appl

39(17):13051–13069

Bhole GP, Deshmukh T (2018) Multi-criteria decision making

(MCDM) methods and its applications. Int J Res Appl Sci Eng

Technol (IJRASET) 6(5):899–915

Capuano N, Chiclana F, Herrera-Viedma E, Fujita H, Loia V (2018)

Fuzzy rankings for preferences modeling in group decision

making. Int J Intell Syst 33(7):1555–1570

Chang T-H (2014) Fuzzy VIKOR method: a case study of the hospital

service evaluation in Taiwan. Inf Sci 271:196–212

Chen S-H (1985) Ranking fuzzy numbers with maximizing set and

minimizing set. Fuzzy Sets Syst 17(2):113–129

Chen Y-H, Wang T-C, Wu C-Y (2011) Multi-criteria decision making

with fuzzy linguistic preference relations. Appl Math Model

35(3):1322–1330

Chen Z-S, Yang Y, Wang X-J, Chin K-S, Tsui K-L (2019) Fostering

linguistic decision-making under uncertainty: a proportional

interval type-2 hesitant fuzzy TOPSIS approach based on

Hamacher aggregation operators and andness optimization

models. Inf Sci 500:229–258

Chen Z-S, Zhang X, Rodrı́guez RM, Pedrycz W, Martı́nez L (2021)

Expertise-based bid evaluation for construction-contractor selec-

tion with generalized comparative linguistic ELECTRE III.

Autom Constr 125:103578

Chen L, Nan G, Li M, Feng B, Liu Q (2022a) Manufacturer’s online

selling strategies under spillovers from online to offline sales.

J Oper Res Soc 1–24

Chen L, Nan G, Liu Q, Peng J, Ming J (2022b) How do consumer

fairness concerns affect an E-commerce Platform’s choice of

selling scheme? J Theor Appl Electron Commer Res

17(3):1075–1106

Fuzzy incomplete linguistic preference relations 2321

123

https://doi.org/10.1080/23311916.2019.1623153
https://doi.org/10.1080/23311916.2019.1623153


Chou T-Y, Chen Y-T (2020) Applying fuzzy AHP and TOPSIS

method to identify key organizational capabilities. Mathematics

8(5):836

Fei L, Deng Y, Hu Y (2019) DS-VIKOR: a new multi-criteria

decision-making method for supplier selection. Int J Fuzzy Syst

21(1):157–175

Figueira JR, Greco S, Roy B, Słowiński R (2013) An overview of
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