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Fuzzy Inference Systems Implemented
on Neural Architectures for Motor
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Abstract—Motor fault detection and diagnosis involves process- can age the motor and make it subject to incipient faults
ing a large amount of information of the motor system. With the  [1]-[3]. These types of faults usually refer to the gradual
combined synergy of fuzzy logic and neural networks, a better yatarigration in the motor that can lead to motor failure if left

understanding of the heuristics underlying the motor fault de- detected. Mot bl . that .
tection/diagnosis process and successful fault detection/diagnosié“ln etected. Motor problems can cause crises that are expensive

schemes can be achieved. This paper presents two neural fuzzy@nd are quite annoying, in particular, if the problem could have
(NN/FZ) inference systems, namely, Fuzzy Adaptive Learning been prevented. Actually, many motor faults could be avoided

Control/Decision Network (FALCON) and Adaptive Network if the application, environment, and the cause—effect of motor
Based Fuzzy Inference System (ANFIS), with applications 10 ¢4 115 were understood [4]. Therefore, reliability demands

induction motor fault detection/diagnosis problems. The general f lectri i tantly i ina due t f
specifications of the NN/FZ systems are discussed. In addition, the or electric motors are constantly increasing due to some o

fault detection/diagnosis structures are analyzed and compared the important motor applications, and the advancement in
with regard to their learning algorithms, initial knowledge re- technologies.

quirements, extracted knowledge types, domain partitioning, rule

structuring and modifications. Simulated experimental results are

presented in terms of motor fault detection accuracy and knowl- B |mportance of System Monitoring and Fault Detection
edge extraction feasibility. Results suggest new and promising

research areas for using NN/FZ inference systems for incipient ~Many engineers and researchers have focused on incipient
fault detection and diagnosis in induction motors. fault detection and preventive maintenance, which aim at
Index Terms— Fuzzy inference systems, induction motors, preyenting motor faults from happening [5]_[9]' .Usually,
knowledge extraction, motor fault diagnosis, neuralffuzzy devices such as fuses, overload relays, and circuit breakers
systems. protect induction motors. Research has focused on different
motor failure mechanisms, causes of stator and rotor failures,
analyses of these failures, methodologies to determine whether
a motor is suitable for extended service, test methods, the test
equipment needed, application and limitations of these test
procedures, data gathering, specific benefits, and costs [10],
[11]. In addition to developing motor protection schemes in
NDUCTION motors are the workhorses of industry becauseaction to faults due to misoperation, disturbances, sudden
of their roughness and versatility. Different articles havgailure, etc., motor incipient fault detection problems have
discussed the key issues for successful motor operationalgo been attracting significant attention and interest. On-
quality motor, understanding of the application, choice of thie monitoring of induction machines in critical applications
proper type of motor for the application, and proper maint¢ras been increasingly necessary to improve their reliability
nance of the motor. However, the use of induction motors #nd to minimize catastrophic failures. Microprocessor-based
today’s industry is extensive, and the motors can be expos@dnitoring systems are of particular interest because they can
to different hostile environments, misoperation, manufacturing used for regular analysis of machine variables and to predict
defects, etc. Different internal motor faults (e.g., short circuossible fault conditions, so that preventive maintenance can
of motor leads, interturn short circuits, ground faults, worbe organized in a cost-effective manner. Different researchers
out/broken bearings, broken rotor bars) along with externahve addressed the importance and economic benefits of on-
motor faults (e.g., phase failure, asymmetry of mains supplire motor monitoring and fault detection approaches [1], [11].
mechanical overload, blocked rotor, underload) are expect@eéneral methods of cost-benefit analysis have been applied to
to happen sooner or later. Furthermore, the wide variety ipivestigate the financial viability of such systems. Methods for
environments and conditions that the motors are exposeditie evaluation of the improvement of machine reliability by
Manuscript received April 4, 1997; revised May 7, 1999. Abstract publishé@onitoring of systems have also been discussed [12].
on the Internet August 20, 1999. This work was supported by the National Different invasive and noninvasive approaches for motor

The authors are with the Department of Electrical and Computer Enginefé— ’

ing, North Carolina State University, Raleigh, NC 27695-7911 USA. ]_[8]' Many of the mOtor in.cipier_n fault d?teCtipn/diagnOSis
Publisher Item Identifier S 0278-0046(99)08472-5. schemes can be applied noninvasively on-line without the need

I. INTRODUCTION

A. Importance of Motor Fault Detection and Diagnosis
for Industrial Applications

0278-0046/99$10.001 1999 IEEE



1070 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 46, NO. 6, DECEMBER 1999

of expensive monitoring equipment by using a microprocessor.With the combined synergy of fuzzy logic and NN’s, a better
With proper monitoring and fault detection/diagnosis schemasjderstanding of the detection/diagnosis process of the system
the incipient faults can be detected in their early stagesan be achieved and, also, the fault detector can be adapted
thus, maintenance and downtime expenses can be redutedyrovide more accurate solutions under different operation
and reliability can be improved. System identification andonditions. In spite of the fact that there has been extensive
parameter estimation have previously been proposed for fasearch on artificial NN’s for motor fault detection/diagnosis,
detection/diagnosis in motors [5]-[8], [13], [14]. As opposed tthe use of a hybrid neural/fuzzy system is a fairly new concept
conventional techniques, where expensive equipment or actu-the motor fault detection area. Most of the studies in
rate mathematical models are required, fuzzy logic and neutlals area are application oriented. A detailed methodology is
network (NN) technologies can be used to provide inexpensigeesented in [15], where a hybrid neural/fuzzy fault detector
but effective fault detection mechanism alternatives [15]. is used to solve the motor fault detection problem. In these
applications, the neural/fuzzy fault detector is used to monitor
the condition of the motor bearing and the insulation. The fault
C. Fuzzy Logic and NN Technologies for Fault Detection  detector not only provides accurate fault detector performance,

Fuzzy-rule-base modeling is to identify the structures adit also the heuristic reasoning behind the fault detection
the parameters of a fuzzy if-then rule base so that a desifg@cess and the actual motor fault conditions.
input/output mapping is achieved. Recently, using adaptiveln [34], an adaptive neural fuzzy (NN/FZ) system was used
networks to fine tune membership functions of a fuzzy ruk@® classify faults in a power system and to bring heuristic
base has received more attention [16]. Many methods ha®Planation to the process. Other approaches using an NN/FZ
been proposed for implementing and optimizing fuzzy reasosystem include [35], where an NN/FZ model is used to detect
ing via NN structures [15]-[21]. Parameters in fuzzy systenigults in nonlinear dynamic systems. In other studies, an
have clear physical meanings so that rule-based and Igflaptive threshold test based upon fuzzy modeling of the
guistic information can be incorporated into adaptive fuzZyrocess is employed [36]. Another scheme is given in [37],
systems systematically. On the other hand, there exist poweM{fiere the dynamical update of three parameters of the NN, the
algorithms to train various NN models to adapt difficultraining rate, momentum, and the activation function slope, is
input—output mappings. The idea behind the fusion of theBerformed by a fuzzy structure. Another technique is to add a
two technologies is to use the learning ability of NN's tduzzification layer to a conventional feedforward NN to track
implement and automate the fuzzy systems, which utilize tiults [38].
high-level human-like reasoning capability [22]. This paper focuses on the applications of two popular

Different NN structures have proven to be successful AN/FZ structures to solve the induction motor fault de-
solving the motor fault detection/diagnosis problem [1], [15fection/diagnosis problem: the Fuzzy Adaptive Learning
[23]_[25] F0||0wing the techniques deve|oped for generﬂontrOVDECiSion Network (FALCON)-Based Fault Detector
process fault detection/diagnosis [5]-[8], [26], and systefffFD), and the Adaptive-Network-Based Fuzzy Inference
identification via NN's [27], [28], the studies on the use oBystem (ANFIS)-Based Fault Detector (AFD). The complete
NN'’s for fault detection have been structured around sevefgpthodology for employing these structures for motor fault
concepts. One of these concepts is to estimate system outggtection is provided. In Section Il, the issues related to
given a number of previous input and output values [24]]he construction of fault detectors for induction motors
Another approach is to train the NN for on-line or off-lineare discussed. Section Il brlefly describes the architectures
estimation of certain system parameters. The NN is train@gd training procedures of the NN/FZ systems. Section IV
to estimate system parameters under different fault conditioddalyzes and compares the FFD and AFD motor fault detector
using appropriate inputs and outputs (and/or certain obsenftctures with respect to their learning algorithms, initial
variables) of the system, in a supervised learning envirokpowledge requirements, extracted knowledge types, domain
ment. References [1], [9], [23]-[25], and [29] present simildpartitioning, and rule structuring and revising. Section V
approaches to design feedforward artificial NN’s to perfor[ﬁives the comparative evaluation of simulated experimental
motor fault detection/diagnosis. Human expert approaches dAgults in terms of motor fault detection accuracy and
the use of fuzzy logic to optimize such NN structures weighowledge extraction capability. Section VI is the discussion
presented in [30]. and conclusions.

The artificial NN fault detection/diagnosis method, by itself,
cannot provide heuristic knowledge of the motor or the fa
detection process because of its blackbox approach [2].
the other hand, fuzzy logic is a tool that can easily implement .
and utilize heuristic reasoning, but it is, in general, difficuff: Induction Motor System
to provide exact solutions. Fuzzy sets have been used foln a three-phase induction motor framework, stator currents
fault diagnosis [31]-[33]. However, most of these schemésand rotor angular velocitw are measured under different
are “static,” i.e., a general fuzzy inference system is formadotor friction f and load torquer. The magnitude of motor
and is not allowed to change throughout the experiments. Thietion and load torque affect motor operations, which, in
faults are classified using this static inference engine, ratharn, affect speed and current measurements. However, the
than adapting to different operating conditions. magnitude of the motor frictiogannotbe measured directly.

Ug.n DESCRIPTION OF THEMOTOR FAULT DETECTION PROBLEM
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Fig. 2. The FFD structure.

Furthermore, the effects of incipient motor friction faultzurrents and rotor angular velocity acquired under variable
are highly coupled with effects of load torque. The aim ahotor friction and load torque values.
this paper is to estimate motor friction based on appropriate
measurements.

A three-phase induction motor simulation program, Md3- Motor Friction Fault
torSIM, is used to provide the experimental data for the This paper uses one of the most common motor incipient
motor under different operating conditions to evaluate NN/FAults, the motor friction fault, to demonstrate the NN/FZ
motor fault detector [2], [39], [40]. Nonlinear effects, suchechnology for motor fault detection/diagnosis. To simplify
as temperature and saturation, were also incorporated into ¢lue discussion without loss of generality, the friction fault is
simulation model. The specifications of this motor are givesissumed balanced, i.e., the fault will not cause unbalanced
in [2], [39], and [40]. The data consist of three-phase stateffect on an individual phase so that we can use single-
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TABLE | where.J is the moment of inertia for the rotog is the rotor
SPECIFICATIONS OF THEFUZzY INFERENCE SYSTEMS FORAFD AND FFD speed,f is the friction coefficient of the rotor; is the rotor
torque of the induction motor, arifl. is the external (or load)
torque. To simulate motor friction effect, the value ffis
FFD AFD . . . - .
increased. Ideal condition with no motor friction would imply
— . . f=o0
Membership functions } Gaussian Gaussian It is noted that the relation given in (1) is for the simulation
— _ _ model of the motor system, and provides the means for ac-
Parameterization Mean, variance Mean, variance quiring simulation data. However, the fault detection/diagnosis
scheme is not dependent on the knowledge of this model; it
Fuzzy intersection Minimum Multiplication is assumed that na priori knowledge about the torque—speed
relation of the system exists. This nhonmodel-based approach
Fuzzy inference Correlation-minimum | Correlation-product to fault detection supports application of the technique to
operator (Mamdani’s Operator) | (Larsen’s Operator) gqlged;elnlinr:\,(\)ﬁgg gsey.:stems without the requirement of precise
Aggregation Addition Addition
C. Motor Fault Detector Structures
Defuzzificati C f Weighted . . . . .
Fetication enter of area clghied average Successful fault detection/diagnosis relies on the appropri-

ate information being monitored. If the motor develops an
incipient fault, we need to use the monitored information
to detect the fault and determine its severity. It was pre-

vigusly demonstrated in [42] that, for a balanced friction
phase measurement to represent a three-phase case. A

motor ages. a bearing will change shane due to an imbala ae?, monitoring stator currents and rotor speed could lead
ges, fing wi ge pe du nImt ?8 successful fault detection/diagnosis. In the presence of
of the motor or just fragmentation of the bearing itself;

. : - . o varying load situations, however, it is observed that the
the lubricant will turn crisp and increase friction. Thesr ying

deformations eventually contribute to failures in other armpact of load on motor current and speed is similar to
y PalRat of the motor friction. For example, an increase in motor

of the motor: Th? study N [41] provides an overview of th?riction increases the current, and decreases the speed, which
types of antifriction bearings most commonly used, facto‘f similar to the effect of an increase in load. Therefore, if

affecting bearing life, and the relationship between the mOtﬁ{formation about load is not included in our fault detection

fr|_ct|on and temperature ISe In mduct_lon MOtors. In_the I\/I(?tors'cheme during varying load torque operation, changes in load
Sim, rotor angular velocity is described by the differential

i torque may lead to incorrect fault detection/diagnosis results.
equation This paper employs two NN/FZ systems, which perform
T.=jwo+ fw+T (1) motor fault detection under different load conditions, and
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TABLE I
SUMMARY OF GENERAL SPECIFICATIONS OF THEUTILIZED ARCHITECTURES

Fault Detector || Adaptive FIS Adaptive Algorithmic Partition Of Required Initial Structural | Extracted
Type Type Architecture Learning Spaces Knowledge Change Knowledge
Structure Type
AFD ANFIS Multilayer Hybrid; Adaptive Numerical data or No Takagi-
feedforward supervised fuzzy grid | Takagi-Sugeno type Sugeno type
network (gradient descent fuzzy rules fuzzy rules
and LSE)
FFD FALCON Multilayer Hybrid; Adaptive Numerical data or Yes Fuzzy IF-
feedforward supervised and fuzzy grid | fuzzy IF-THEN rules THEN rules
network unsupervised

are able to extract heuristics for the fault detection processmd decision making [43]. Fuzzy rules of the motor fault
The conceptual diagram of the NN/FZ motor fault detectiodetection/diagnosis problem and membership functions used
structure is depicted in Fig. 1. in these rules are implemented in the hidden-layer nodes.
The fault detector is a fuzzy inference system implementddhe membership functions are parameterized with center and
on an adaptive network structure. The stator curtembtor width values [17]. The FFD structure for the motor fault
speedw, and load torquer of the motor are the inputs of detection/diagnosis problem is shown in Fig. 2. The structure
the fault detector, and are used to estimate the motor frictiomimics a fuzzy inference system; the calculations are carried
/- The universes of discourse of the current, speed, and laaudt in a distributed manner.
torque are defined as The FFD training procedure includes both unsupervised
o (self-organized) and supervised learning schemes. The unsu-
I={ii i <iu) pervised training provides priori fuzzy partitioning of the
2 ={w|w Lw L w,| input space by defining the initial membership functions and
T={r0<7<7,} (2) finding the existence of the rules. The second part of the
training is an optimal adjustment phase of the membership
respectively. Herey, i,,w;, wcR are constants representingparameters. The training minimizes an error function, with
the upper and lower bounds for the feasible current and spefgen input, desired output, and fuzzy partitions of the input
measurements in the operating range, ane ¥ is the upper and output spaces. Different on-line structure/parameter learn-

limit of feasible values for load torque in the operating ranggg algorithms based on the FALCON were also proposed in
under consideration. Three fuzzy sets are defined on eac )

the input spaces, corresponding to low, medium, and high for
each variable, and labeleld, 2., andZ},, respectively, with g AFp
1 < k < 3. The input spaceX is defined as the Cartesian

product of the current, speed, and load torque spaces The AFD is based on Jang's ANFIS [44], which is an-

other fuzzy inference system implemented on the architec-
X=Ix02xT. (3) ture of a five-layer feedforward network. By using a hybrid
) o o learning procedure, the AFD can construct an input—output
The output of the fault detector is the'frlctlo_n coefficight mapping based on both human knowledge (in the form of
The output space¥” of the fault detector is defined as Takagi—-Sugeno-type if—then rules) and input—output data ob-
Y=F={fl0<f<f.} (4) servations. Takagi—Sugeno-type if_—then rules used in thi; paper
have fuzzy antecedents, but a crisp consequence, which is a
where f, € R represents the upper limit of the frictionlinear combination of the input values, e.g.,
coefficient. The fault detection process may be viewed as a
mapping from the input space to the output space, which map< 1AW € QA (T € T1)
the operating current, speed, and load torque to motor friction. = (f = a0+ ait + asw + azr). (5)

The membership functions that form the antecedents, as
well as the functions that form the consequence parts, are
parameterized using a method similar to the one in the FFD.
A. FFD The AFD structure for the motor fault detection/diagnosis

The FFD structure is based on the model of the FALCOproblem is shown in Fig. 3.
proposed in [17]. This is an adaptive fuzzy inference sys- The hybrid learning procedure is composed of a forward
tem constructed automatically via training with system datpass and a backward pass. In the forward pass, the antecedent
The FFD architecture is a five-layered feedforward networkarameters are fixed and the consequence parameters are
based fuzzy inference system. The connectionist structureo@imized via least-squares estimation. Once the optimum
isomorphic to an NN, with layers corresponding to inputonsequence parameters are found, the backward pass stage
states, decision states, and hidden layers that substitute dtaets. In this stage, gradient descent is used to optimally
fuzzy inference engine in terms of aggregation, defuzzificatioadjust the antecedent membership parameters corresponding

lIl. NN/FZ MoOTOR FAULT DETECTION ARCHITECTURES
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ﬂ TABLE I
EXTRACTED RULES FOR MOTOR FRICTION FROM THE FFD
Are there any YES Delete the If Current and Speed And Load  then Motor Friction
links below the e=——— corresponding L 5 L &
selected links Low Medium Low Medium
] Low Medium Medium Low
Low Medium High Low
ﬂ NO Low High Low Medium
< Low High Medium Low
Low High High Low
Are there any YES Del Medium Low Low High
nodes without any clete th.e Medi I Medi Hich
significant corresponding edium ow edium ig
weights? nodes Medium Medium Low High
Medium Medium Medium Medium
Medium Medium High Low
Medium High Low Medium
Medium High Medium Low
Medium High High Low
Extract High Low Low High
final rules High Low Medium  High
High Medium Low High
High Medium Medium High

Fig. 4. Flow chart for rule revision and extraction from the FFD.

adaptive architectures. The specifications of the fuzzy infer-
to the fuzzy sets in the input domain. The output of the NN isnce systems underlying the NN/FZ structures are given in
calculated by fixing the consequence parameters to the val@aple I, for the AFD and the FFD. The membership functions
found in the forward pass. The output error of the NN imentioned in the table correspond to the input and output
then used to adapt the antecedent parameters using a stangi@ithbership functions for the FFD, and the input membership
backpropagation algorithm. Similar structures have also begmctions only, for the AFD.
used in various applications, including gain scheduling [45]
and system parameter identification [46]. B. Architectural Specifications

This section gives the specifications of the adaptive struc-
tures on which the fuzzy inference systems were built. A
summary of the AFD and FFD in terms of learning algorithms,
initial knowledge requirements, extracted knowledge types,

As mentioned previously, the NN/FZ fault detector strucdomain partitioning, and rule structuring and revising are given
tures can be viewed as fuzzy inference systems built on Table Il. In the table,Structural Changeindicates that

IV. COMPARISON OFAFD AND FFD

A. Fuzzy Inference System Specifications
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TABLE IV
EXTRACTED RULES FOR MOTOR FRICTION FROM THE AFD

If and and Then

Current Speed Torque Motor Friction =  agtari+a;0+a; T
is is is
7] a a ay

Low Low Low -0.000080 -0.002066 0.000009 -0.000006
Low Low Medium 0.000064 0.001869 0.000017 0.000005
Low Low High 0.000015 0.000731 0.000017 0.000002
Low Medium  Low -0.007231 0.000715 -0.004680 -0.000142
Low Medium  Medium 0.006610 0.000270 -0.003254 0.000077
Low Medium  High 0.001077 -0.000616 0.001091 0.000012
Low High Low 0.003800 -0.000040 -0.003413 0.001234
Low High Medium -0.009238 0.000105 -0.001410 -0.000276
Low High High -0.000954 0.000175 -0.000913 -0.000010
Medium  Low Low 0.000385 0.004829 -0.001178 0.000017
Medium  Low Medium -0.000787 -0.001354 -0.002979 -0.000012
Medium  Low High -0.000809 0.002709 -0.001996 -0.000003
Medium  Medium  Low -0.007552 0.000639 -0.006557 -0.000116
Medium  Medium  Medium 0.008476 -0.000172 -0.001871 0.000123
Medium  Medium  High -0.001331 0.000268 -0.003028 -0.000007
Medium  High Low 0.005266 -0.001111 0.004863 0.000084
Medium  High Medium -0.002410 0.000164 -0.006782 -0.000021
Medium  High High 0.000514 0.000680 0.000909 0.000009
High Low Low 0.000361 0.000343 0.000614 0.000006
High Low Medium 0.000582 0.000573 -0.003838 0.000010
High Low High 0.007055 -0.000095 -0.004106 0.000107
High Medium  Low -0.000208 -0.002087 -0.002117 -0.000007
High Medium  Medium -0.001226 0.001379 -0.004767 -0.000010
High Medium  High -0.001882 -0.000714 -0.003380 -0.000025
High High Low 0.000085 0.003685 -0.000007 0.000010
High High Medium -0.000054 -0.003187 -0.000120 -0.000008
High High High -0.000018 -0.000327 -0.000021 -0.000001

the architecture enables a change in the rule structure, idgonnection weights are updated so that the final connections
a combination of different antecedents with different conserovide the strongest antecedent—consequence relations, which
guences, during the evolution of the fuzzy inference system.afe then selected as the rules. The weights at layer-4 connect
fuzzy inference system (with noninteractive fuzzy informatiorthe <th antecedent node to th#h consequence node. Higher
can be viewed as a partition in the multidimensional featug@nnection weights can be interpreted as implying that the
space, where the number of partitions in each dimensiéarresponding rules have larger impact in the fault diagnosis
corresponds to the number of fuzzy sets and the correspondiiigcess. After this elimination, if there exist no connections
membership functions that are defined in that dimension. Ai®m a layer-4 node to any layer-3 node, then this layer-4 node
Adaptive Partitioningmeans that the parameters of the fuzzip eliminated as it has no impact on the output. The flow chart
sets defined in each dimension are allowed to change in @rfhe rule structuring and modification procedure is given in
effort to optimize the network with respect to an error measureld- 4.

Required Initial Knowledgés the knowledge that is externally

supplied to the architecture initiallyExtracted Knowledge V. RESULTS OF INCIPIENT MOTOR FAULT
stands for the knowledge that can be transparently acquired DETECTION USING FFD AND AFD
from the structure after training. The performances of both FFD and AFD architectures for

1) Knowledge Extraction:A clear advantage of the FFDthe motor fault detection evaluated in terms of accuracy in
system is that knowledge in terms of fuzzy if-then rules cggult detection and extracted knowledge quality are discussed
be extracted from the system in a straightforward manner. Tiethis section.
layer-4 weight matrix of the FFD, after the self-organized
training, provides the necessary structural information. The Fault Detection Accuracy

knowledge acquired from the AFD system is not as transparenkault detection accuracy is calculated in terms of the rms
as the FFD. In the rules in the AFD, the estimate of function y

apd maximum error for both the FFD and AFD. The output

which is the consequence part of the rules, is in the form Qor is defined as; = |f; — fi|7 wherei is the experiment

a we|gh_ted average, not a fuzzy proposm(_)n. Therefore, it i'ﬁsdex, f; are the actual values of motor friction (or damping)
not obvious how to extract heuristic fuzzy if—then rules fro

rEoefﬁcient, andf; are the fault detector estimates for the motor
the AFD. &

. L . fr*'ction coefficient. The error vector is
The unsupervised training in the FFD leads to structuring o

rules. Using the weight update method given in [17], the layer- e=[e1 e - en]¥ (6)
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Fig. 6. The final membership functions for (a) current, (b) speed, (c) load, and (d) motor friction for friction fault detection with the FFD.

where N is the total number of data observations. We defirextracted from the FFD is given in Table Il for motor friction.
the two-norm errotje||2 and theoco-norm error|le||.. as Even though na priori knowledge was incorporated into the
12 fault detection/diagnosis process, the rules are observed to be
]\T . . .
) in agreement with our knowledge about the system, which
lell2 = <Z 5i> el = In?X(|5i|) (7)  states that the impact of motor friction on stator current and
rotor speed is similar to that of the load. The extracted rules are
respectively. Following these definitions, Fig. 5 presents tlgensistent with our expectations. For example, for low-current
rms output error defined a%~1/2||¢||», versus training epochs and high-speed propositions for current and speed, there are
for the motor friction, for FFD and AFD. It is observedtwo rules in our database in the form
that both NN/FZ fault detectors can provide accurate fault .
detection/diagnosis. Convergence speed depends on certain (i € I)Aw € Qy)A(r € Tr) = (f € F1) (8)
learning coefficients used in the process of supervised learning (i € LA(w € Q)A(T € T1) = (f € I2). 9)
of both NN/FZ architectures. There is a visible difference iﬁl e extracted information suaaests that low current and hiah
the convergence speed, yet the performance of the final faur} . | SUGgES . 9
ﬁeed, when combined with medium load, would imply a low

detectors is about the same. The convergence speed, as well.as " "
9 P jon condition. However, the same conditions for current

perfo.rr_nance, may be |mproyeq further by fine tuning sever d speed, when combined with low load, imply a medium

coefficients related to the training of the fault detector.s. friction condition.

ofT||:T|5e 2’:’13 1|E|6fl:‘l|1||2t d_?;eeCtX::;trgzt#(rﬁ;srsefg?B\‘;’}:ﬁdrg;;i;m n the othe_r hand, the _AFD prese_nts infqrmation about the

{0 co- O;nd two—no'rm output error, withie = 0.00171 and qutput space in thg form Imear_ functions of inputs, rather than
’ L like the extracted information in Table Ill. Thus, the AFD is

leflz = 0.00113. For the FFD, [lefloc = 0.00953, and not as transparent as the FFD to extract information in the

le = 0.00872. The orders of the two-norm and-norm errors form of if—then fuzzy rules. The list of Takagi—Sugeno rules

=1

are observed to be smaller for the AFD. extracted from the AFD is given in Table IV for the motor
friction.
B. Extracted Knowledge The final membership functions for the current, speed, load

As mentioned previously, knowledge is extracted from therque, and friction coefficient are given in Fig. 6 for the FFD.
FFD in terms of if-then fuzzy rules. The list of the rulesThe final input space membership functions for the AFD are
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Fig. 7. Final membership functions for (a) current, (b) speed, and (c) load for friction fault detection with the AFD.

given in Fig. 7. The initial membership functions are also ploeasy and straightforward as in the case of the FFD due to
ted in Figs. 6 and 7, with dashed lines. After the initial traininthe tradeoff made by utilizing linear output space functions
step of the AFD, which is the optimization of the consequendand using least-squares estimation in training). Therefore,
parameters, the system adapts such that the motor frictibe final knowledge extracted is not in the form of pure
estimate is significantly close to the actual motor friction witheuristic rules, i.e., rules that can be expressed purely by
regard to two-norm. Therefore, in the backward pass, whitihguistic terms. This reduces the effectiveness of the fault
uses gradient descent to adapt membership function shapiesector, because it is hard to provide heuristic interpretation
the network structure does not change significantly. Hende,the solution. An ideal neural/fuzzy fault detector architecture
the output error converges without a large change in the inpubuld combine the rule extraction power of the FFD and the
membership mean and variance values. speed and accuracy of the AFD, for high-dimensional fault

detection problems. These results suggest new and promising

research areas utilizing NN/FZ systems in induction motor

VI. DISCUSSION AND CONCLUSIONS fault detection and diagnosis.

This paper has described and illustrated the application of
two popular NN/FZ systems, the AFD and the FFD, for motor
fault detection/diagnosis. Both structures can provide good
fault detection/diagnosis under varying load torque, with the1] M. Y. Chow, R. N. Sharpe, and J. C. Hung, “On the application and

results of the AFD being inghtIy more accurate. Yet. from design of artificial neural networks for motor fault detection—Part 1,”
’ IEEE Trans. Ind. Electron.vol. 40, pp. 181-188, Apr. 1993.

the FFD, consistent heuristic information can be extracted igz] M. Y. Chow, Methodologies of Using Artificial Neural Network and
terms of fuzzy if-then rules, which is probably one of the  Fuzzy Logic Technologies for Motor Incipient Fault DetectioiBinga-

i ifi~ pore: World Scientific, 1997.
main advantages of the structure. However, for the SpECIflfé] K. F. Martin, “Review by discussion of condition monitoring and fault

case considered, the fault detection scheme is slower IN" giagnosis in machine toolsjit. J. Mach. Tools Manufvol. 34, no. 4,

convergence when compared to the AFD. Furthermore, th[(?l] W.RSZFY—E%L 1d9g4-R Borke. “Troubleshooi bleniEEE
s . . . i | . R. Finley and R. R. Borke, “Troubleshooting motor proble
initial unsupervised pretraining is mandatory for the prelim Trans. Ind. Applicat.vol. 30, pp. 1383-1939, Sept./Oct. 1992.

inary structuring of the fuzzy inference system. The AFD,|5] A.K.Sood, A. A. Fahs, and N. A. Henein, “Engine fault analysis, part I:

on the other hand, is faster in convergence. Furthermore, it ﬁtatisgg?slsmethOdS’TEEE Trans. Ind. Electron.vol. 32, pp. 294-300,
. . - . ov. .
prowdes better results when applled without any pretram'nQG] __, “Engine fault analysis part Il: Parameter estimation approach,”

However, the extracted knowledge in the AFD is not as IEEE Trans. Ind. Electron.vol. 32, pp. 301-307, Nov. 1985.
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