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Abstract—Motor fault detection and diagnosis involves process-
ing a large amount of information of the motor system. With the
combined synergy of fuzzy logic and neural networks, a better
understanding of the heuristics underlying the motor fault de-
tection/diagnosis process and successful fault detection/diagnosis
schemes can be achieved. This paper presents two neural fuzzy
(NN/FZ) inference systems, namely, Fuzzy Adaptive Learning
Control/Decision Network (FALCON) and Adaptive Network
Based Fuzzy Inference System (ANFIS), with applications to
induction motor fault detection/diagnosis problems. The general
specifications of the NN/FZ systems are discussed. In addition, the
fault detection/diagnosis structures are analyzed and compared
with regard to their learning algorithms, initial knowledge re-
quirements, extracted knowledge types, domain partitioning, rule
structuring and modifications. Simulated experimental results are
presented in terms of motor fault detection accuracy and knowl-
edge extraction feasibility. Results suggest new and promising
research areas for using NN/FZ inference systems for incipient
fault detection and diagnosis in induction motors.

Index Terms— Fuzzy inference systems, induction motors,
knowledge extraction, motor fault diagnosis, neural/fuzzy
systems.

I. INTRODUCTION

A. Importance of Motor Fault Detection and Diagnosis
for Industrial Applications

I NDUCTION motors are the workhorses of industry because
of their roughness and versatility. Different articles have

discussed the key issues for successful motor operation: a
quality motor, understanding of the application, choice of the
proper type of motor for the application, and proper mainte-
nance of the motor. However, the use of induction motors in
today’s industry is extensive, and the motors can be exposed
to different hostile environments, misoperation, manufacturing
defects, etc. Different internal motor faults (e.g., short circuit
of motor leads, interturn short circuits, ground faults, worn
out/broken bearings, broken rotor bars) along with external
motor faults (e.g., phase failure, asymmetry of mains supply,
mechanical overload, blocked rotor, underload) are expected
to happen sooner or later. Furthermore, the wide variety of
environments and conditions that the motors are exposed to
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can age the motor and make it subject to incipient faults
[1]–[3]. These types of faults usually refer to the gradual
deterioration in the motor that can lead to motor failure if left
undetected. Motor problems can cause crises that are expensive
and are quite annoying, in particular, if the problem could have
been prevented. Actually, many motor faults could be avoided
if the application, environment, and the cause–effect of motor
faults were understood [4]. Therefore, reliability demands
for electric motors are constantly increasing due to some of
the important motor applications, and the advancement in
technologies.

B. Importance of System Monitoring and Fault Detection

Many engineers and researchers have focused on incipient
fault detection and preventive maintenance, which aim at
preventing motor faults from happening [5]–[9]. Usually,
devices such as fuses, overload relays, and circuit breakers
protect induction motors. Research has focused on different
motor failure mechanisms, causes of stator and rotor failures,
analyses of these failures, methodologies to determine whether
a motor is suitable for extended service, test methods, the test
equipment needed, application and limitations of these test
procedures, data gathering, specific benefits, and costs [10],
[11]. In addition to developing motor protection schemes in
reaction to faults due to misoperation, disturbances, sudden
failure, etc., motor incipient fault detection problems have
also been attracting significant attention and interest. On-
line monitoring of induction machines in critical applications
has been increasingly necessary to improve their reliability
and to minimize catastrophic failures. Microprocessor-based
monitoring systems are of particular interest because they can
be used for regular analysis of machine variables and to predict
possible fault conditions, so that preventive maintenance can
be organized in a cost-effective manner. Different researchers
have addressed the importance and economic benefits of on-
line motor monitoring and fault detection approaches [1], [11].
General methods of cost–benefit analysis have been applied to
investigate the financial viability of such systems. Methods for
the evaluation of the improvement of machine reliability by
monitoring of systems have also been discussed [12].

Different invasive and noninvasive approaches for motor
incipient fault detection/diagnosis have been reported [2],
[5]–[8]. Many of the motor incipient fault detection/diagnosis
schemes can be applied noninvasively on-line without the need
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of expensive monitoring equipment by using a microprocessor.
With proper monitoring and fault detection/diagnosis schemes,
the incipient faults can be detected in their early stages;
thus, maintenance and downtime expenses can be reduced,
and reliability can be improved. System identification and
parameter estimation have previously been proposed for fault
detection/diagnosis in motors [5]–[8], [13], [14]. As opposed to
conventional techniques, where expensive equipment or accu-
rate mathematical models are required, fuzzy logic and neural
network (NN) technologies can be used to provide inexpensive
but effective fault detection mechanism alternatives [15].

C. Fuzzy Logic and NN Technologies for Fault Detection

Fuzzy-rule-base modeling is to identify the structures and
the parameters of a fuzzy if–then rule base so that a desired
input/output mapping is achieved. Recently, using adaptive
networks to fine tune membership functions of a fuzzy rule
base has received more attention [16]. Many methods have
been proposed for implementing and optimizing fuzzy reason-
ing via NN structures [15]–[21]. Parameters in fuzzy systems
have clear physical meanings so that rule-based and lin-
guistic information can be incorporated into adaptive fuzzy
systems systematically. On the other hand, there exist powerful
algorithms to train various NN models to adapt difficult
input–output mappings. The idea behind the fusion of these
two technologies is to use the learning ability of NN’s to
implement and automate the fuzzy systems, which utilize the
high-level human-like reasoning capability [22].

Different NN structures have proven to be successful in
solving the motor fault detection/diagnosis problem [1], [15],
[23]–[25]. Following the techniques developed for general
process fault detection/diagnosis [5]–[8], [26], and system
identification via NN’s [27], [28], the studies on the use of
NN’s for fault detection have been structured around several
concepts. One of these concepts is to estimate system output,
given a number of previous input and output values [24].
Another approach is to train the NN for on-line or off-line
estimation of certain system parameters. The NN is trained
to estimate system parameters under different fault conditions
using appropriate inputs and outputs (and/or certain observed
variables) of the system, in a supervised learning environ-
ment. References [1], [9], [23]–[25], and [29] present similar
approaches to design feedforward artificial NN’s to perform
motor fault detection/diagnosis. Human expert approaches and
the use of fuzzy logic to optimize such NN structures were
presented in [30].

The artificial NN fault detection/diagnosis method, by itself,
cannot provide heuristic knowledge of the motor or the fault
detection process because of its blackbox approach [2]. On
the other hand, fuzzy logic is a tool that can easily implement
and utilize heuristic reasoning, but it is, in general, difficult
to provide exact solutions. Fuzzy sets have been used for
fault diagnosis [31]–[33]. However, most of these schemes
are “static,” i.e., a general fuzzy inference system is formed
and is not allowed to change throughout the experiments. The
faults are classified using this static inference engine, rather
than adapting to different operating conditions.

With the combined synergy of fuzzy logic and NN’s, a better
understanding of the detection/diagnosis process of the system
can be achieved and, also, the fault detector can be adapted
to provide more accurate solutions under different operation
conditions. In spite of the fact that there has been extensive
research on artificial NN’s for motor fault detection/diagnosis,
the use of a hybrid neural/fuzzy system is a fairly new concept
in the motor fault detection area. Most of the studies in
this area are application oriented. A detailed methodology is
presented in [15], where a hybrid neural/fuzzy fault detector
is used to solve the motor fault detection problem. In these
applications, the neural/fuzzy fault detector is used to monitor
the condition of the motor bearing and the insulation. The fault
detector not only provides accurate fault detector performance,
but also the heuristic reasoning behind the fault detection
process and the actual motor fault conditions.

In [34], an adaptive neural fuzzy (NN/FZ) system was used
to classify faults in a power system and to bring heuristic
explanation to the process. Other approaches using an NN/FZ
system include [35], where an NN/FZ model is used to detect
faults in nonlinear dynamic systems. In other studies, an
adaptive threshold test based upon fuzzy modeling of the
process is employed [36]. Another scheme is given in [37],
where the dynamical update of three parameters of the NN, the
training rate, momentum, and the activation function slope, is
performed by a fuzzy structure. Another technique is to add a
fuzzification layer to a conventional feedforward NN to track
faults [38].

This paper focuses on the applications of two popular
NN/FZ structures to solve the induction motor fault de-
tection/diagnosis problem: the Fuzzy Adaptive Learning
Control/Decision Network (FALCON)-Based Fault Detector
(FFD), and the Adaptive-Network-Based Fuzzy Inference
System (ANFIS)-Based Fault Detector (AFD). The complete
methodology for employing these structures for motor fault
detection is provided. In Section II, the issues related to
the construction of fault detectors for induction motors
are discussed. Section III briefly describes the architectures
and training procedures of the NN/FZ systems. Section IV
analyzes and compares the FFD and AFD motor fault detector
structures with respect to their learning algorithms, initial
knowledge requirements, extracted knowledge types, domain
partitioning, and rule structuring and revising. Section V
gives the comparative evaluation of simulated experimental
results in terms of motor fault detection accuracy and
knowledge extraction capability. Section VI is the discussion
and conclusions.

II. DESCRIPTION OF THEMOTOR FAULT DETECTION PROBLEM

A. Induction Motor System

In a three-phase induction motor framework, stator currents
and rotor angular velocity are measured under different

motor friction and load torque The magnitude of motor
friction and load torque affect motor operations, which, in
turn, affect speed and current measurements. However, the
magnitude of the motor frictioncannotbe measured directly.
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Fig. 1. Conceptual diagram of the fault detector structure.

Fig. 2. The FFD structure.

Furthermore, the effects of incipient motor friction faults
are highly coupled with effects of load torque. The aim of
this paper is to estimate motor friction based on appropriate
measurements.

A three-phase induction motor simulation program, Mo-
torSIM, is used to provide the experimental data for the
motor under different operating conditions to evaluate NN/FZ
motor fault detector [2], [39], [40]. Nonlinear effects, such
as temperature and saturation, were also incorporated into the
simulation model. The specifications of this motor are given
in [2], [39], and [40]. The data consist of three-phase stator

currents and rotor angular velocity acquired under variable
motor friction and load torque values.

B. Motor Friction Fault

This paper uses one of the most common motor incipient
faults, the motor friction fault, to demonstrate the NN/FZ
technology for motor fault detection/diagnosis. To simplify
our discussion without loss of generality, the friction fault is
assumed balanced, i.e., the fault will not cause unbalanced
effect on an individual phase so that we can use single-
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Fig. 3. AFD structure.

TABLE I
SPECIFICATIONS OF THEFUZZY INFERENCESYSTEMS FORAFD AND FFD

phase measurement to represent a three-phase case. As the
motor ages, a bearing will change shape due to an imbalance
of the motor or just fragmentation of the bearing itself;
the lubricant will turn crisp and increase friction. These
deformations eventually contribute to failures in other parts
of the motor. The study in [41] provides an overview of the
types of antifriction bearings most commonly used, factors
affecting bearing life, and the relationship between the motor
friction and temperature rise in induction motors. In the Motor-
Sim, rotor angular velocity is described by the differential
equation

(1)

where is the moment of inertia for the rotor, is the rotor
speed, is the friction coefficient of the rotor, is the rotor
torque of the induction motor, and is the external (or load)
torque. To simulate motor friction effect, the value ofis
increased. Ideal condition with no motor friction would imply

It is noted that the relation given in (1) is for the simulation
model of the motor system, and provides the means for ac-
quiring simulation data. However, the fault detection/diagnosis
scheme is not dependent on the knowledge of this model; it
is assumed that noa priori knowledge about the torque–speed
relation of the system exists. This nonmodel-based approach
to fault detection supports application of the technique to
different motor systems without the requirement of precise
model knowledge.

C. Motor Fault Detector Structures

Successful fault detection/diagnosis relies on the appropri-
ate information being monitored. If the motor develops an
incipient fault, we need to use the monitored information
to detect the fault and determine its severity. It was pre-
viously demonstrated in [42] that, for a balanced friction
fault, monitoring stator currents and rotor speed could lead
to successful fault detection/diagnosis. In the presence of
varying load situations, however, it is observed that the
impact of load on motor current and speed is similar to
that of the motor friction. For example, an increase in motor
friction increases the current, and decreases the speed, which
is similar to the effect of an increase in load. Therefore, if
information about load is not included in our fault detection
scheme during varying load torque operation, changes in load
torque may lead to incorrect fault detection/diagnosis results.
This paper employs two NN/FZ systems, which perform
motor fault detection under different load conditions, and
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TABLE II
SUMMARY OF GENERAL SPECIFICATIONS OF THEUTILIZED ARCHITECTURES

are able to extract heuristics for the fault detection process.
The conceptual diagram of the NN/FZ motor fault detection
structure is depicted in Fig. 1.

The fault detector is a fuzzy inference system implemented
on an adaptive network structure. The stator currentrotor
speed and load torque of the motor are the inputs of
the fault detector, and are used to estimate the motor friction

The universes of discourse of the current, speed, and load
torque are defined as

(2)

respectively. Here, are constants representing
the upper and lower bounds for the feasible current and speed
measurements in the operating range, and is the upper
limit of feasible values for load torque in the operating range
under consideration. Three fuzzy sets are defined on each of
the input spaces, corresponding to low, medium, and high for
each variable, and labeled and respectively, with

The input space is defined as the Cartesian
product of the current, speed, and load torque spaces

(3)

The output of the fault detector is the friction coefficient
The output space of the fault detector is defined as

(4)

where represents the upper limit of the friction
coefficient. The fault detection process may be viewed as a
mapping from the input space to the output space, which maps
the operating current, speed, and load torque to motor friction.

III. NN/FZ M OTOR FAULT DETECTION ARCHITECTURES

A. FFD

The FFD structure is based on the model of the FALCON
proposed in [17]. This is an adaptive fuzzy inference sys-
tem constructed automatically via training with system data.
The FFD architecture is a five-layered feedforward network-
based fuzzy inference system. The connectionist structure is
isomorphic to an NN, with layers corresponding to input
states, decision states, and hidden layers that substitute the
fuzzy inference engine in terms of aggregation, defuzzification,

and decision making [43]. Fuzzy rules of the motor fault
detection/diagnosis problem and membership functions used
in these rules are implemented in the hidden-layer nodes.
The membership functions are parameterized with center and
width values [17]. The FFD structure for the motor fault
detection/diagnosis problem is shown in Fig. 2. The structure
mimics a fuzzy inference system; the calculations are carried
out in a distributed manner.

The FFD training procedure includes both unsupervised
(self-organized) and supervised learning schemes. The unsu-
pervised training providesa priori fuzzy partitioning of the
input space by defining the initial membership functions and
finding the existence of the rules. The second part of the
training is an optimal adjustment phase of the membership
parameters. The training minimizes an error function, with
given input, desired output, and fuzzy partitions of the input
and output spaces. Different on-line structure/parameter learn-
ing algorithms based on the FALCON were also proposed in
[43].

B. AFD

The AFD is based on Jang’s ANFIS [44], which is an-
other fuzzy inference system implemented on the architec-
ture of a five-layer feedforward network. By using a hybrid
learning procedure, the AFD can construct an input–output
mapping based on both human knowledge (in the form of
Takagi–Sugeno-type if–then rules) and input–output data ob-
servations. Takagi–Sugeno-type if–then rules used in this paper
have fuzzy antecedents, but a crisp consequence, which is a
linear combination of the input values, e.g.,

(5)

The membership functions that form the antecedents, as
well as the functions that form the consequence parts, are
parameterized using a method similar to the one in the FFD.
The AFD structure for the motor fault detection/diagnosis
problem is shown in Fig. 3.

The hybrid learning procedure is composed of a forward
pass and a backward pass. In the forward pass, the antecedent
parameters are fixed and the consequence parameters are
optimized via least-squares estimation. Once the optimum
consequence parameters are found, the backward pass stage
starts. In this stage, gradient descent is used to optimally
adjust the antecedent membership parameters corresponding
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Fig. 4. Flow chart for rule revision and extraction from the FFD.

to the fuzzy sets in the input domain. The output of the NN is
calculated by fixing the consequence parameters to the values
found in the forward pass. The output error of the NN is
then used to adapt the antecedent parameters using a standard
backpropagation algorithm. Similar structures have also been
used in various applications, including gain scheduling [45]
and system parameter identification [46].

IV. COMPARISON OF AFD AND FFD

A. Fuzzy Inference System Specifications

As mentioned previously, the NN/FZ fault detector struc-
tures can be viewed as fuzzy inference systems built on

Fig. 5. Output error versus epoch for FFD and AFD for motor friction.

TABLE III
EXTRACTED RULES FOR MOTOR FRICTION FROM THE FFD

adaptive architectures. The specifications of the fuzzy infer-
ence systems underlying the NN/FZ structures are given in
Table I, for the AFD and the FFD. The membership functions
mentioned in the table correspond to the input and output
membership functions for the FFD, and the input membership
functions only, for the AFD.

B. Architectural Specifications

This section gives the specifications of the adaptive struc-
tures on which the fuzzy inference systems were built. A
summary of the AFD and FFD in terms of learning algorithms,
initial knowledge requirements, extracted knowledge types,
domain partitioning, and rule structuring and revising are given
in Table II. In the table,Structural Changeindicates that
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TABLE IV
EXTRACTED RULES FOR MOTOR FRICTION FROM THE AFD

the architecture enables a change in the rule structure, i.e.,
a combination of different antecedents with different conse-
quences, during the evolution of the fuzzy inference system. A
fuzzy inference system (with noninteractive fuzzy information)
can be viewed as a partition in the multidimensional feature
space, where the number of partitions in each dimension
corresponds to the number of fuzzy sets and the corresponding
membership functions that are defined in that dimension. An
Adaptive Partitioningmeans that the parameters of the fuzzy
sets defined in each dimension are allowed to change in an
effort to optimize the network with respect to an error measure.
Required Initial Knowledgeis the knowledge that is externally
supplied to the architecture initially.Extracted Knowledge
stands for the knowledge that can be transparently acquired
from the structure after training.

1) Knowledge Extraction:A clear advantage of the FFD
system is that knowledge in terms of fuzzy if–then rules can
be extracted from the system in a straightforward manner. The
layer-4 weight matrix of the FFD, after the self-organized
training, provides the necessary structural information. The
knowledge acquired from the AFD system is not as transparent
as the FFD. In the rules in the AFD, the estimate of function,
which is the consequence part of the rules, is in the form of
a weighted average, not a fuzzy proposition. Therefore, it is
not obvious how to extract heuristic fuzzy if–then rules from
the AFD.

The unsupervised training in the FFD leads to structuring of
rules. Using the weight update method given in [17], the layer-

4 connection weights are updated so that the final connections
provide the strongest antecedent–consequence relations, which
are then selected as the rules. The weights at layer-4 connect
the th antecedent node to theth consequence node. Higher
connection weights can be interpreted as implying that the
corresponding rules have larger impact in the fault diagnosis
process. After this elimination, if there exist no connections
from a layer-4 node to any layer-3 node, then this layer-4 node
is eliminated as it has no impact on the output. The flow chart
of the rule structuring and modification procedure is given in
Fig. 4.

V. RESULTS OFINCIPIENT MOTOR FAULT

DETECTION USING FFD AND AFD

The performances of both FFD and AFD architectures for
the motor fault detection evaluated in terms of accuracy in
fault detection and extracted knowledge quality are discussed
in this section.

A. Fault Detection Accuracy

Fault detection accuracy is calculated in terms of the rms
and maximum error for both the FFD and AFD. The output
error is defined as where is the experiment
index, are the actual values of motor friction (or damping)
coefficient, and are the fault detector estimates for the motor
friction coefficient. The error vector is

(6)
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(a) (b)

(c) (d)

Fig. 6. The final membership functions for (a) current, (b) speed, (c) load, and (d) motor friction for friction fault detection with the FFD.

where is the total number of data observations. We define
the two-norm error and the -norm error as

(7)

respectively. Following these definitions, Fig. 5 presents the
rms output error defined as versus training epochs
for the motor friction, for FFD and AFD. It is observed
that both NN/FZ fault detectors can provide accurate fault
detection/diagnosis. Convergence speed depends on certain
learning coefficients used in the process of supervised learning
of both NN/FZ architectures. There is a visible difference in
the convergence speed, yet the performance of the final fault
detectors is about the same. The convergence speed, as well as
performance, may be improved further by fine tuning several
coefficients related to the training of the fault detectors.

These two fault detector structures are compared in terms
of and The AFD performs better with regard
to - and two-norm output error, with and

For the FFD, and
The orders of the two-norm and-norm errors

are observed to be smaller for the AFD.

B. Extracted Knowledge

As mentioned previously, knowledge is extracted from the
FFD in terms of if–then fuzzy rules. The list of the rules

extracted from the FFD is given in Table III for motor friction.
Even though noa priori knowledge was incorporated into the
fault detection/diagnosis process, the rules are observed to be
in agreement with our knowledge about the system, which
states that the impact of motor friction on stator current and
rotor speed is similar to that of the load. The extracted rules are
consistent with our expectations. For example, for low-current
and high-speed propositions for current and speed, there are
two rules in our database in the form

(8)

(9)

The extracted information suggests that low current and high
speed, when combined with medium load, would imply a low
friction condition. However, the same conditions for current
and speed, when combined with low load, imply a medium
friction condition.

On the other hand, the AFD presents information about the
output space in the form linear functions of inputs, rather than
like the extracted information in Table III. Thus, the AFD is
not as transparent as the FFD to extract information in the
form of if–then fuzzy rules. The list of Takagi–Sugeno rules
extracted from the AFD is given in Table IV for the motor
friction.

The final membership functions for the current, speed, load
torque, and friction coefficient are given in Fig. 6 for the FFD.
The final input space membership functions for the AFD are
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(a) (b)

(c)

Fig. 7. Final membership functions for (a) current, (b) speed, and (c) load for friction fault detection with the AFD.

given in Fig. 7. The initial membership functions are also plot-
ted in Figs. 6 and 7, with dashed lines. After the initial training
step of the AFD, which is the optimization of the consequence
parameters, the system adapts such that the motor friction
estimate is significantly close to the actual motor friction with
regard to two-norm. Therefore, in the backward pass, which
uses gradient descent to adapt membership function shapes,
the network structure does not change significantly. Hence,
the output error converges without a large change in the input
membership mean and variance values.

VI. DISCUSSION AND CONCLUSIONS

This paper has described and illustrated the application of
two popular NN/FZ systems, the AFD and the FFD, for motor
fault detection/diagnosis. Both structures can provide good
fault detection/diagnosis under varying load torque, with the
results of the AFD being slightly more accurate. Yet, from
the FFD, consistent heuristic information can be extracted in
terms of fuzzy if–then rules, which is probably one of the
main advantages of the structure. However, for the specific
case considered, the fault detection scheme is slower in
convergence when compared to the AFD. Furthermore, the
initial unsupervised pretraining is mandatory for the prelim-
inary structuring of the fuzzy inference system. The AFD,
on the other hand, is faster in convergence. Furthermore, it
provides better results when applied without any pretraining.
However, the extracted knowledge in the AFD is not as

easy and straightforward as in the case of the FFD due to
the tradeoff made by utilizing linear output space functions
(and using least-squares estimation in training). Therefore,
the final knowledge extracted is not in the form of pure
heuristic rules, i.e., rules that can be expressed purely by
linguistic terms. This reduces the effectiveness of the fault
detector, because it is hard to provide heuristic interpretation
to the solution. An ideal neural/fuzzy fault detector architecture
would combine the rule extraction power of the FFD and the
speed and accuracy of the AFD, for high-dimensional fault
detection problems. These results suggest new and promising
research areas utilizing NN/FZ systems in induction motor
fault detection and diagnosis.
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