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Abstract—A brain–computer interface (BCI) system using elec-5
troencephalography signals provides a convenient means of com-6
munication between the human brain and a computer. Motor7
imagery (MI), in which motor actions are mentally rehearsed with-8
out engaging in actual physical execution, has been widely used as9
a major BCI approach. One robust algorithm that can successfully10
cope with the individual differences in MI-related rhythmic pat-11
terns is to create diverse ensemble classifiers using the subband12
common spatial pattern (SBCSP) method. To aggregate outputs13
of ensemble members, this study uses fuzzy integral with parti-14
cle swarm optimization (PSO), which can regulate subject-specific15
parameters for the assignment of optimal confidence levels for clas-16
sifiers. The proposed system combining SBCSP, fuzzy integral, and17
PSO exhibits robust performance for offline single-trial classifica-18
tion of MI and real-time control of a robotic arm using MI. The19
main contribution of this paper is that it represents the first attempt20
to utilize fuzzy fusion technique to attack the individual differ-21
ences problem of MI applications in real-world noisy environment.22
The results of this study demonstrate the practical feasibility of23
implementing the proposed method for real-world applications.24

Index Terms—Brain–computer interface (BCI), electroen-25
cephalography (EEG), fuzzy integral, motor imagery (MI), particle26
swarm optimization (PSO).27

I. INTRODUCTION28

BRAIN–COMPUTER interfaces (BCIs) [1] based on the29

user’s voluntary modulations of electroencephalography30

(EEG) [2] signals provide an alternative method of communica-31

tion between humans and machines. Despite the many pivotal32

Manuscript received November 13, 2015; revised March 9, 2016; accepted
May 2, 2016. Date of publication August 11, 2016; date of current version. This
work was supported in part by the Aiming for the Top University Plan of National
Chiao Tung University, sponsored by the Ministry of Education, Taiwan, under
Grant 105W963; in part by the Cognition and Neuroergonomics Collaborative
Technology Alliance Annual Program Plan, sponsored by the Army Research
Laboratory under Cooperative Agreement W911NF-10-2-0022; in part by the
VGHUST Joint Research Program, Tsou’s Foundation, Taiwan, under Contract
VGHUST105-G7-10-3; and in part by MOST104-2221-E-009-191.

S.-L. Wu and T.-Y. Hsieh are with the Institute of Electrical Control Engineer-
ing, National Chiao Tung University, Hsinchu 30010, Taiwan, R.O.C (e-mail:
slwu19870511@gmail.com; aaron.eecs98@g2.nctu.edu.tw).

Y.-Y. Lin is with the Electronic Systems Research Division, National Chung-
Shan Institute of Science and Technology, Taoyuan 32546, Taiwan, R.O.C
(e-mail: oliver.yylin@gmail.com).

C.-Y. Chen is with the Brain Research Center, National Chiao Tung Univer-
sity, Hsinchu 30010, Taiwan, R.O.C (e-mail: abc7765kimo@hotmail.com).

Y.-T. Liu, C.-H. Chuang, and C.-T. Lin are with the Brain Research Center,
National Chiao Tung University, Hsinchu 30010, Taiwan, R.O.C, and also with
the Faculty of Engineering and Information Technology, University of Technol-
ogy Sydney, Sydney, NSW 2007, Australia (e-mail: tingting76319@gmail.com;
cch.chuang@gmail.com; ctlin@mail.nctu.edu.tw).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TFUZZ.2016.2598362

techniques developed by the pattern recognition community that 33

have been applied and evaluated within the context of EEG- 34

based BCI, the overall performance of BCIs is still not robust 35

because of inter- and intrasubject variability. This variability in- 36

troduces a large number of uncertainties that severely degrade 37

the performance of BCIs. 38

Among existing BCIs [3], efforts to develop EEG-based BCI 39

systems relying on motor imagery (MI) [4] have attracted in- 40

creasing attention in recent years. The brain dynamics of MI 41

are predominantly observed in the primary sensorimotor area 42

and resemble those observed during the actual execution of 43

movement. A variety of feature extraction methods have been 44

proposed to differentiate between the brain dynamics of left- and 45

right-hand MI. In addition to event-related potentials [5], many 46

methods [6], [7] focus on observing the difference in spectral 47

power between the cerebral hemispheres during MI. Among the 48

existing feature extraction methods [8]–[11], the common spa- 49

tial pattern (CSP) method is one of the most effective approaches 50

for constructing optimal spatial filters that are sensitive to dif- 51

ferences between left and right imagery [12], [13]. However, the 52

performance of these spatial filters depends on the operational 53

frequency band. Searching for the optimal frequency range for 54

each subject can be very time-consuming. To address this issue, 55

the subband CSP (SBCSP) method [14] employs a filter bank 56

to decompose EEG signals into different subbands as inputs 57

to the CSP analysis. The SBCSP approach is used to extract 58

useful features of brain activity during MI tasks; subsequently, 59

multiple linear discriminant analysis (MLDA) [15] is applied to 60

recognize the EEG signals in each subband spectrum. After the 61

subband decisions are obtained from each LDA, a classifier en- 62

semble is constructed for each subband, and a fusion algorithm 63

is then employed to obtain a final decision. Because the deci- 64

sion is derived from different subband classifiers, a combination 65

of classifiers promises to offer better uncertainty identification 66

performance than a single classifier. 67

Recently, the fuzzy fusion approach [16], [17] has been shown 68

to improve the BCI performance in terms of classification accu- 69

racy and system stationarity. One commonly used fuzzy fusion 70

approach is fuzzy integral [18], [19], which allows the uncertain, 71

imprecise, and incomplete information available from EEG sig- 72

nals to be represented and processed using the concept of fuzzy 73

measures introduced by Sugeno [20]. This study attacks the 74

misclassification problem that many current BCI systems ex- 75

perience because of variations among individuals. A judicious 76

use of multiple sources effectively reduces individual uncer- 77

tainty, and serves to enhance the reliability of the system’s 78

performance. Because the fuzzy integral [21]–[25] integrates 79



2

Fig. 1. System architecture of the proposed MI-based BCI fuzzy fusion.

decisions from different sources, using a combination of clas-80

sifiers holds the promise of achieving better performance in81

uncertainty identification than the recognition technique based82

on the single feature. The fuzzy integral [26] is regarded as a83

numeric-based connective aggregation approach for obtaining84

collaborative decisions by integrating information from multiple85

classifiers.86

In MI tasks, there are two main difficulties in real-world MI87

applications: individual difference and noisy environment. The88

individual differences include not only inter- but also intrain-89

dividual differences, which arise from the fact that individuals90

continually change over time due to factors such as fatigue,91

attention, and stress. Likewise, physiological signals are non-92

stationary and can change over time due to movement artifacts,93

sensor configuration, and intrinsic noise in the environment.94

Accordingly, features obtained from different subjects under95

different tempo-spatial environments might vary widely. That96

is, some effective features can be found in recordings from one97

subject but not from another. Hence, each possesses its own set98

of reliabilities and potential uncertainties. As a result, the per-99

formance of traditional MI systems using a single classifier to100

recognize all the feature usually degraded obviously under the101

situations of individual differences and noisy environments. To102

solve this problem, the proposed MI-based BCI system in this103

paper employs the fuzzy integral with particle swarm optimiza-104

tion (PSO) to classify EEG feature vectors. The fuzzy integral is105

a fusion technique that exploits multiple decisions from different106

sources to reap collaborative inferences to achieve the objectives107

under investigation, a result that is infeasible to achieve from108

each individual source separately.109

In this paper, diverse LDA classifiers following the SBCSP110

approach are established as an ensemble of classifiers to collab-111

oratively recognize the user’s mental representation of move-112

ments from EEG patterns recorded during an MI task. Two113

fuzzy integral methods, i.e., the Sugeno integral [27], [28] and114

the Choquet integral [29], are applied to integrate the informa-115

tion from this ensemble of classifiers and then make a joint116

decision. To effectively assign confidence levels to particu-117

lar classifiers, PSO [30] is employed to determine the con-118

fidence of the employed classifiers. The proposed method is119

demonstrated in the real-time MI control of a robotic arm.120

The remainder of the paper is organized as follows. In 121

Section II, the proposed BCI for deciphering the mental re- 122

hearsal of motor actions is introduced. In Section III, an MI 123

experiment is presented. The classification results obtained us- 124

ing the proposed approach are compared with those obtained 125

using conventional ones. Finally, a brief conclusion is presented 126

and future studies are suggested in Section IV. 127

II. MATERIALS AND METHOD 128

The proposed MI-based BCI system is schematically illus- 129

trated in Fig. 1. During the MI task, the EEG signals are mea- 130

sured by a wireless acquisition device with dry electrodes. A 131

filter bank is then used to extract frequency components (rang- 132

ing from 1 to 30 Hz) from the EEG recordings. The CSP method 133

leads to optimal variances for the discrimination of two popula- 134

tions of EEG related to left- and right-hand MI. Multiple LDA 135

classifiers are established that employ CSP features to integral 136

multiclassifiers. Finally, a fuzzy integral with PSO is then ap- 137

plied to fuse the decisions of classifiers and decipher the mental 138

rehearsal of motor actions. 139

A. EEG Acquisition Device 140

The EEG acquisition device [31] was designed to measure 141

scalp EEG signals using dry electrodes [32] [see Fig. 2(a)– 142

(c)] from the sensorimotor area [see Fig. 2(d)]. The acquisition 143

device consists of a preamplifier unit, a microcontroller unit, 144

and a Bluetooth transmission unit. The wireless integrated- 145

circuit-based acquisition module has dimensions of approxi- 146

mately 55.08 × 38.8 × 5 mm3. The gain of the preamplifier 147

unit is set to 1361 V/V, and the cut-off frequency is regulated 148

to 0.2 Hz by a high-pass filter. The microcontroller unit is used 149

to regulate the signal sampling rate and for noise reduction. 150

The microcontroller unit digitizes the analog EEG signal at a 151

sampling rate of 512 Hz. A sinc filter is used to remove frequen- 152

cies above 128 Hz. Moreover, the ac power line noise (60 Hz) 153

in the amplified EEG signal is reduced by the microcontroller 154

unit using a moving average. Then, the processed EEG signal is 155

transmitted to the computer using Bluetooth (v2.1+ enhanced 156

data rate). The power is supplied by a commercial 700 mAh 157

Li-ion battery, which provides over 10 h of operation. 158
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Fig. 2. Wireless and portable EEG device. (a) Dry electrodes. (b) Wireless
EEG acquisition system, which consisting a preamplifier, a filter, a microcon-
troller, and a wireless module. Each circuit board has a width of 55.08 mm.
(c) EEG headset. (d) Placement of the four recording electrodes.

B. CSP and Linear Discriminant Analysis159

Applying the proper spatial filter can improve the discrimi-160

nation of data from different classes, thereby facilitating classi-161

fication. The CSP approach [33] is a popular method that yields162

the optimal variances for the discrimination of two EEG popu-163

lations related to left- and right-hand MI. In this study, the CSP164

method is applied to each set of filtered data E to find a spa-165

tial filter matrix W that maximizes the variance of the spatially166

filtered data of one class Σ1 , and simultaneously minimizes the167

variance of the spatially filtered data of the other class, Σ2 .168

Mathematically, the CSP criterion is written as169

maximize tr
(
WTΣ1W

)
subject to WT (Σ1 + Σ2) W = I (1)

where170

Σ1 = exp
En ∈{class 1}

EnET
n

tr (EnET
n )

and

Σ2 = exp
En ∈{class 2}

EnET
n

tr (EnET
n )

. (2)

This problem can be solved as a generalized eigenvalue prob-171

lem. With the spatial filter transformation W thus obtained, the172

spatially filtered data Z = WTE are then used as the feature173

vector for LDA classifiers.174

LDA [34] is a well-known binary classification method based175

on the estimation of the mean vectors and covariance matrices176

of individual classes to find the linear combination of features177

that maximizes the separability between distinct classes. LDA178

can be formulated in terms of a Bayes rule that aims to assign179

each sample to the class with the maximal posterior probability.180

In this study, multiple LDA classifiers are trained from each181

subband to serve as base classifiers constituting an ensemble182

system. The decisions derived from each LDA classifier, i.e.,183

the posterior probabilities of left- and right-hand movements, 184

are then fused by means of a fuzzy integral. 185

C. Fuzzy Integrals 186

The purpose of fuzzy integral is to utilize information regard- 187

ing the uncertainty or confidence of various candidate informa- 188

tion sources during the decision-making process as represented 189

using a fuzzy measure. For classifier fusion, an extension of the 190

integral operator is used in the fuzzy integral to gather the objec- 191

tive evidence supplied by the classifiers in the form of certainty 192

measures. Given the aforementioned benefits of this approach, 193

the combination of classifiers based on fuzzy measures and inte- 194

grals can enhance the robustness and reliability of BCI systems. 195

In this paper, the combination of classifiers is performed by 196

means of the Sugeno integral [27], [28] and the Choquet in- 197

tegral [29], which have been successfully implemented in the 198

pattern recognition community. 199

The Sugeno integral is a type of integral with respect to a fuzzy 200

measure that is defined for functions whose range is 0–1. Given 201

the outputs of k classifiers xk ∈ [0, 1], the Sugeno integral over 202

the set A = {x1 , . . . , xi , . . . , xk} of a membership function h 203

with respect to the confidence g is defined as 204

Sg (h) =
∫

A

h (xi)
◦ g = sup

α∈[0,1]
[min (α, g (A∩Fα ))] (3)

where Fα = { x|h(x) ≥ α }. 205

The Choquet integral is another type of integral with respect 206

to a fuzzy measure. The choice of this integral is inspired by 207

both a theoretical property and a practical one. Specifically, it is 208

a proper generalization of the normal integral operator. In addi- 209

tion, the learning task can be regarded as a convex quadratic 210

program and can therefore be solved using well-known 211

algorithms. The Choquet integral is defined as 212

Cg (h) =
k∑

i=1

[h (xi) − h (xi−1)] g (Ai) (4)

where h(x0) = 0. 213

Note that the confidence g of each classifier is heuristically 214

assigned. In this study, g is proposed to be determined via PSO 215

(see Section II-D). 216

The joint confidence of the entire set of sources g(Ai) can be 217

obtained as 218

g (Ai) = g ({h1 , .., hi−1}) + g ({hi})
+ λ × g ({h1 , .., hi−1}) × g ({hi}) (5)

where λ ∈ (−1,∞) and λ can be obtained by solving the 219

following equation: 220

λ + 1 =
k∏

i=1

(λgi + 1) . (6)

Then, the final decision is determined by the class with the 221

largest fuzzy probability. 222
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Fig. 3. Experimental paradigm.

D. Particle Swarm Optimization223

To effectively assign confidence levels to the classifiers used224

in the fuzzy integral, PSO [21] is employed to update the con-225

fidence of the classifiers. The PSO algorithm is a well-known226

swarm intelligence technique that was developed to imitate the227

behavior of a flock of birds or a school of fish. The objective of228

PSO is to optimize a model by iteratively attempting to improve229

upon a candidate solution with regard to a given measure of230

quality. The PSO algorithm involves two critical steps, which231

are as follows:232

1) Initialize a population of particles with a random233

distribution within the desired range of the search space.234

2) Update the particle positions and velocities as follows:235

vi,d ← ωvi,d + φprp (pi,d − gi,d)

+ φf rf (fd − gi,d) , gi ← gi + vi (7)

where f is the best known position of the entire swarm and pi,d236

is the best known position of particle i. When ω is less than 1,237

the particle velocities may tend toward 0, causing the particles238

to fall into a local minimum and delaying convergence.239

The confidential weights g of the Sugeno integral and the240

Choquet integral are determined by PSO in this study. The initial241

vector that contains the fuzzy integral parameters is randomly242

chosen; ω is the inertial weight, φp and φf are acceleration243

constants, and rp and rf are random numbers drawn from the244

uniform distribution U (0,1). The confidential weights updated245

via PSO are calculated according to (7). When a particle finds246

a better position than its previous best position, the previous247

position is dropped and the new one is stored in the population.248

This value is called the personal best position of that particle,249

i.e., pbest . The mechanism retains a satisfactory confidential250

weight until the predefined number of iterations is reached.251

Meanwhile, the global best position, i.e., fbest , of the particle252

swam as a whole is updated by the particle swarm optimizer253

based on the particles that exist in the population. The distances254

between the positions of the particles and the values of fbest255

and pbest decrease during optimization. This procedure allows256

us to search for the optimal weights for each information source257

to obtain an optimized output during the training phase.258

III. RESULTS AND DISCUSSION 259

Ten male subjects, aged 22–26 years old, were recruited to 260

participate in the MI experiment. All participants were neuro- 261

logically healthy. Before the experiment, the participants were 262

required to complete an informed consent form. Each partic- 263

ipant was seated comfortably in front of a monitor, and the 264

MI task was explained via written instructions on the screen. 265

Five dry electrodes were used (four channels to record the 266

EEG signals and one for reference) to measure EEG signals 267

from the sensorimotor area. The MI experiment consisted of 268

three phases. The first phase was a baseline-constructing task 269

to establish an individual MI model of the proposed system, 270

with the aim of constructing the features for the imagery of 271

left- and right-hand movements. Twenty trials were performed 272

in this baseline-constructing phase for the imagery of both 273

left- and right-hand movements. The second phase was designed 274

to train the participants in imaging left- and right-hand move- 275

ments for EEG measurements. Each of the two directions was 276

tested 40 times. In each training trial, an arrow pointing either 277

to the left or to the right would randomly appear on the screen. 278

After each imagery trial, a picture was displayed on the screen 279

for a randomly determined period of time to help the subjects 280

relax between trials. The training phase was used to calibrate 281

the parameters of the proposed measurement system for each 282

user, with the aim of identifying each user’s EEG features. The 283

last phase was the actual experiment, also with 40 MI trials per 284

direction. Upon seeing an arrow indicating a direction, the users 285

were instructed to perform imagery of the corresponding left- 286

or right-hand movement. The wireless EEG acquisition device 287

was used during the MI experiment. 288

A. Experimental Procedure 289

The experimental paradigm is illustrated in Fig. 3. A subject 290

was seated in a comfortable chair, with his hands placed on 291

a table. A blank screen was displayed for 2 s, followed by a 292

cross displayed at the center of the screen for 2 s. Then, the 293

subject was instructed to perform left/right MI as indicated by a 294

left/right-pointing arrow, which was presented for 8 s. Finally, a 295

picture was shown on the screen for 9–12 s to allow the subject 296

to rest. 297
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TABLE I
CLASSIFICATION RESULTS (AUC) FOR THE BASE CLASSIFIERS AND VARIOUS

CONVENTIONAL AND FUZZY FUSION APPROACHES WITH FOURFOLD

CROSS-VALIDATION APPLIED TEN TIMES

Area Under ROC Curve T Test

Single LDA Delta LDA 0.915 ± 0.020 –
Theta LDA 0.904 ± 0.027 –
Alpha LDA 0.890 ± 0.050 –
Beta LDA 0.880 ± 0.044 –

All-band LDA 0.900 ± 0.040 –

Conventional Methods Voting 0.962 ± 0.082 p < 0.05
Weighted Summation 0.990 ± 0.015 p < 0.05

SVM 0.993 ± 0.022 p < 0.05

Fuzzy Fusion Sugeno Integral 0.968 ± 0.063 p < 0.05
Choquet Integral 0.992 ± 0.014 p < 0.05

TABLE II
CLASSIFICATION RESULTS FOR THE SUGENO INTEGRAL AND THE CHOQUET

INTEGRAL AFTER PSO TRAINING WITH FOURFOLD CROSS-VALIDATION

APPLIED TEN TIMES

Fuzzy Fusion w/o PSO w/ PSO

Fuzzy Fusion Sugeno 0.968 ± 0.063 0.998 ± 0.040
Choquet 0.992 ± 0.014 0.998 ± 0.003

B. Fuzzy Fusion Performance298

In MLDA, classifiers are constructed using a combination of299

features from multiple frequency bands, including four separate300

frequency bands (i.e., the delta, theta, alpha, and beta bands) and301

the full-band signal ranging from 1 to 30 Hz. In each frequency302

band, an LDA classifier is constructed using features extracted303

via CSP projection. Consequently, the MLDA is established us-304

ing the spatial pattern features from these five frequency bands.305

The separate frequency bands provide the features of each band306

in greater detail and allow more features to be obtained. Ac-307

cordingly, the Sugeno integral or the Choquet integral is used308

for fuzzy fusion to integrate the MLDA decisions constructed309

using the five base classifiers, namely, the delta, theta, alpha,310

beta, and all-band LDA classifiers, in the proposed system. Af-311

ter the aggregation of the results from different bands, the fuzzy312

fusion mechanism is applied to make the final decision. Ini-313

tially, the weights of each classifier in the Sugeno integral and314

the Choquet integral are all set to 0.2. The PSO algorithm is315

later applied to update these weights.316

The performances of the two fuzzy integrals and of several317

conventional fusion methods were evaluated in terms of the area318

under the ROC curve (AUC). As shown in Table I, each fusion319

technique outperformed each single classifier, with the proposed320

fusion architecture yielding not only higher AUC values but also321

smaller standard deviations. In comparison with existing fusion322

techniques, the weighted summation approach, the support vec-323

tor machine (SVM) approach [35], and the Choquet integral324

outperformed the voting approach [36] and the Sugeno integral.325

As shown in Table II, after the application of PSO to update326

the weights of the classifiers, the results of both the Sugeno and327

Choquet integrals exhibited improvements, from 0.968 ± 0.063328

to 0.998 ± 0.040 and from 0.992 ± 0.014 to 0.998 ± 0.003, 329

respectively. The AUC was improved and the standard devia- 330

tion was reduced, indicating that the system achieved higher 331

accuracy and better stability. 332

C. Proposed Online BCI System and Its Application 333

The flow chart for a subsequent online experiment is shown 334

in Fig. 4. The offline experiment reported above was initially 335

required for advance model generation. The models thus gen- 336

erated could subsequently be applied in an online experiment 337

using the proposed BCI system. When performing the online 338

experiment, each subject wore an EEG acquisition system on 339

the top of his head along the central sulcus, and the reference 340

was recorded at the earlobes on both sides. Each subject was 341

required to perform a full experiment consisting of four sessions 342

(160 trials), and the model previously derived for that subject 343

was applied in the online system. 344

In each trial, the user interface of the online system presented 345

a randomly generated cue, namely, an arrow pointing to the left 346

or to the right at the center of the screen. Each classification re- 347

sult was recorded as a score of +1 or −1; the total accumulated 348

score was calculated after every trial. If the final score was above 349

+ 25 or below −25, the system made a final decision of either 350

a left command or a right command, respectively. Because the 351

computing speed of the online system was 25 Hz, if the subject 352

wished to issue a left or right command, he was required to con- 353

tinuously think about the same direction for 1 s. After each trial, 354

the classification result accumulated over 1 s was plotted as a 355

bar. The accuracy rate was recorded at the top of the window. 356

The processing time (from the input of the raw data to the output 357

of the result) was 40.1715 ms, as shown in Fig. 5. In other words, 358

this system is capable of computing at a rate of approximately 359

25 Hz when performing online computations. This computation 360

rate was the basis for the selection of a value of 25 points as the 361

threshold for the online interface. The accuracy rate achieved in 362

the online test was approximately 86%. Depending on the clas- 363

sification result, a robotic arm would immediately grasp a glass 364

to either the left or the right. The robotic arm used in this ex- 365

periment is commercially available on the rehabilitation market 366

(Kinova, Canada). It consists of a six-axis robotic manipulator 367

arm with a three-fingered hand. This robotic arm can perform a 368

wide variety of functions with graceful movements. 369

D. Reliability Test 370

A further test was performed to confirm the model reliability. 371

In this test, the performance of the algorithm was evaluated us- 372

ing data acquired from the same subject but on a different day. 373

The training set included data recorded continuously from four 374

experimental sessions (160 trials) in a single day for one sub- 375

ject. The test set included data from two experimental sessions 376

(80 trials) recorded on a different day for the same subject. Af- 377

ter a model was generated from the training set, that model was 378

applied to the test data to evaluate its performance. The accu- 379

racy rate of prediction was found to be 91.25%, indicating good 380

model stability. 381
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Fig. 4. Flow chart of the proposed MI-based BCI system application.

Fig. 5. Signal processing time within the proposed online system.

IV. CONCLUSION382

In this study, we propose an innovative ensemble method with383

swarm-optimized fuzzy integral for an MI recognition task. The384

fuzzy integral provides an effective mechanism for represent-385

ing and processing the uncertainty of the outputs of individual386

ensemble members using the concept of fuzzy measures. Fur-387

thermore, PSO is used to update the confidence of the employed388

classifiers. The experimental results derived from a typical MI389

task show that the best classification accuracy is achieved when390

applying the Choquet integral with PSO training in the fusion391

phase. Additionally, the results demonstrate the feasibility of392

implementing the proposed system in real-time robotic arm393

control. In the future, developing a more advanced BCI sys-394

tem with fuzzy theory will be necessary to enable the execution395

of multidirectional movements.396
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