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Fuzzy Interpolative Reasoning for Sparse
Fuzzy-Rule-Based Systems Based on the Areas

of Fuzzy Sets
Yu-Chuan Chang, Shyi-Ming Chen, Senior Member, IEEE, and Churn-Jung Liau

Abstract—Fuzzyinterpolative reasoning is an inference tech-
nique for dealing with the sparse rules problem in sparse fuzzy-
rule-based systems. In this paper, we present a new fuzzy interpola-
tive reasoning method for sparse fuzzy-rule-based systems based
on the areas of fuzzy sets. The proposed method uses the weighted
average method to infer the fuzzy interpolative reasoning results
and has the following advantages: 1) it holds the normality and the
convexity of the fuzzy interpolative reasoning result, 2) it can deal
with fuzzy interpolative reasoning with complicated membership
functions, 3) it can deal with fuzzy interpolative reasoning when
the fuzzy sets of the antecedents and the consequents of the fuzzy
rules have different kinds of membership functions, 4) it can handle
fuzzy interpolative reasoning with multiple antecedent variables,
5) it can handle fuzzy interpolative reasoning with multiple fuzzy
rules, and 6) it can handle fuzzy interpolative reasoning with log-
ically consistent properties with respect to the ratios of fuzziness.
We use some examples to compare the fuzzy interpolative reason-
ing results of the proposed method with those of the existing fuzzy
interpolative reasoning methods. In terms of the six evaluation in-
dices, the experimental results show that the proposed method per-
forms more reasonably than the existing methods. The proposed
method provides us a useful way to deal with fuzzy interpolative
reasoning in sparse fuzzy-rule-based systems.

Index Terms—Fuzzy interpolative reasoning, fuzzy rules,
multiple antecedent variables, multiple fuzzy rules interpolation,
polygonal fuzzy sets, ratios of fuzziness, sparse fuzzy-rule-based
systems.

I. INTRODUCTION

FUZZY interpolative reasoning is an important inference
technique for sparse fuzzy-rule-based systems, where the

fuzzy sets appearing in the antecedents of the fuzzy rules do not
cover the whole input universe of discourse. In other words, there
is an empty space between two adjacent membership functions
of the fuzzy sets appearing in the antecedents of the fuzzy rules.
If an observation occurs in the empty space, there is no rule fired
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and no consequence will be derived. In recent years, some fuzzy
interpolative reasoning methods have been presented for sparse
fuzzy-rule-based systems [1]–[16], [18]–[23]. Baranyi et al. [1]
presented a fuzzy interpolation method that can infer the fuzzy
interpolative reasoning result based on the fuzzy relation and
the semantic relation of fuzzy sets. Baranyi et al. [2] presented
a fuzzy interpolative reasoning method that modifies the α-cut-
based rule interpolation method to avoid abnormal conclusions.
Bouchon et al. [3] presented a fuzzy interpolative reasoning
method based on the concept of graduality, which infers a con-
clusion by means of the transformations of location and shape
gradually. Hsiao et al. [5] presented an interpolative reasoning
method based on the slopes of triangular fuzzy sets. Huang and
Shen [7] presented a fuzzy interpolative reasoning method based
on the representative values of fuzzy sets and presented their
scale and move transformation operators to deal with fuzzy inter-
polative reasoning. Huang [8] improved the method [7] to handle
multiple fuzzy rules interpolation and fuzzy rule extrapolation.
Jenei [9] presented an approach of interpolation and extrapola-
tion based on compact fuzzy quantities. Jenei [10] presented a
method for dealing with multidimensional fuzzy interpolative
reasoning. Koczy and Hirota [11]–[13] presented a linear fuzzy
interpolative reasoning method, which uses the proportions of
fuzzy distance between the observation and rule antecedents to
infer the fuzzy interpolative reasoning result. Li et al. [14] pre-
sented a weighted fuzzy interpolative reasoning method based
on the like-gravity-center of trapezoidal fuzzy sets. Marsala
et al. [15] presented a fuzzy interpolative reasoning method with
multiple variable rules. Qiao et al. [16] presented a similarity
transfer reasoning model to improve Koczy-and-Hirota’s fuzzy
interpolative reasoning method in sparse fuzzy-rule-based sys-
tems. Shi et al. [17] pointed out that the Koczy-and-Hirota’s
fuzzy interpolative reasoning method [11] does not always
lead to convex conclusions. Tikk and Baranyi [18] compared
the modified α-cuts-based fuzzy interpolation method [21] and
Koczy-and-Hirota’s fuzzy interpolative reasoning method [11]
and made a comprehensive analysis. Wang et al. [19] presented
a new fuzzy interpolative reasoning method to infer a conclusion
based on the similarities of fuzzy sets. Wong et al. [20] presented
an improved fuzzy rule interpolation technique to handle mul-
tidimensional input spaces. Yam et al. [22] presented a fuzzy
interpolative reasoning method with function space representa-
tion of membership functions. Yam and Koczy [23] presented
a method for representing membership functions as points
in high-dimensional spaces for fuzzy interpolation and fuzzy
extrapolation.
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Although many methods have been proposed to deal with
fuzzy interpolative reasoning, there have been some drawbacks
in these methods. Some methods cannot preserve the convex-
ity of the fuzzy interpolative reasoning result [6], [11]; some
methods can only deal with triangular membership functions
and trapezoidal membership functions [3], [5], [6], [14]; some
methods cannot deal with the interpolation when the antecedents
and the consequences of the given fuzzy rules are different kinds
of membership functions [5], [6], [14]; some methods do not
deal with the fuzzy interpolative reasoning with multiple an-
tecedent variables [3], [5], [6], [9], [11], [13], [15], [16], [19];
and some methods do not deal with the fuzzy interpolative rea-
soning of multiple fuzzy rules [3], [5], [6], [9]–[16], [19], [20]–
[23]. For simplicity and efficiency, most interpolation methods
handle fuzzy interpolative reasoning based on the two nearest
fuzzy rules. However, the interpolation based on the two selected
fuzzy rules is not flexible enough to deal with the fuzzy inter-
polative reasoning in sparse fuzzy-rule-based systems. Multiple
fuzzy rule interpolation is desirable for getting more relation-
ships between the fuzzy rules in sparse fuzzy rule bases. If we
can perform fuzzy interpolative reasoning involving more rules,
then there is room for more flexibility.

In this paper, we present a new fuzzy interpolative reason-
ing method based on the areas of fuzzy sets. It can overcome
the drawbacks mentioned earlier. The proposed method has
the following advantages: 1) it preserves the normality and the
convexity of the fuzzy interpolative reasoning result, 2) it can
deal with fuzzy interpolative reasoning with complicated mem-
bership functions (e.g., polygonal membership functions and
Gaussian membership functions), 3) it can deal with fuzzy in-
terpolative reasoning when the fuzzy sets of the antecedents
and the consequences of the fuzzy rules have different kinds of
membership functions, 4) it can handle fuzzy interpolative rea-
soning with multiple antecedent variables, 5) it can handle fuzzy
interpolative reasoning with multiple fuzzy rules, and 6) it can
handle fuzzy interpolative reasoning with logically consistent
properties with respect to the ratios of fuzziness. We use some
examples to compare the proposed method with the existing
methods and the comparison shows that the fuzzy interpolative
reasoning results of the proposed method are more reasonable
than those of the KH method [11], the HCL method [5], the
HTY method [6], and the HS method [7].

The rest of this paper is organized as follows. In Section II, we
present a new fuzzy interpolative reasoning method for sparse
fuzzy-rule-based systems based on the areas of fuzzy sets and
present the logically consistent properties with respect to the
ratios of fuzziness. In Section III, we use some examples [7], [8]
to compare the proposed method with the existing methods in
terms of the six evaluation indices. The conclusions are given
in Section IV.

II. NEW FUZZY INTERPOLATIVE REASONING METHOD

In this section, we present a new fuzzy interpolative reasoning
method for sparse fuzzy-rule-based systems based on the areas
of membership functions of fuzzy sets. In the following, we

Fig. 1. Triangular fuzzy set.

Fig. 2. Fuzzy interpolative reasoning using triangular membership functions.

describe the proposed method by means of different kinds of
membership functions.

A. Fuzzy Interpolative Reasoning With Triangular Fuzzy Sets

Triangular membership functions are widely used in fuzzy-
rule-based systems. A triangular fuzzy set is typically denoted
by (a, b, c), as shown in Fig. 1, where a, b, and c are called
the “left extreme point,” the “normal point,” and the “right
extreme point,” respectively. An example of fuzzy interpolative
reasoning using triangular fuzzy sets is shown in Fig. 2.

Assume that there are two adjacent and disjoint fuzzy rules
A1 ⇒ B1 and A2 ⇒ B2 , where the triangular fuzzy sets A1
and A2 are the antecedent fuzzy sets of the fuzzy rules and
the triangular fuzzy sets B1 and B2 are the consequences of
the fuzzy rules. Assume that the observation fuzzy set A∗ oc-
curs between the fuzzy sets A1 and A2 , and fuzzy set B∗

denotes the fuzzy interpolative reasoning result. In Fig. 2,
a1 , a

∗, a2 , b1 , b
∗, and b2 are the normal points of the triangu-

lar fuzzy sets A1 , A
∗, A2 , B1 , B

∗, and B2 , respectively. The
proposed fuzzy interpolative reasoning method with triangular
fuzzy sets is now presented as follows.

Step 1: Calculate the normal point b∗ of the triangular fuzzy
set B∗ by the linear interpolation, which is defined as follows:

b2 − b1

a2 − a1
=

b∗ − b1

a∗ − a1
. (1)

From (1), the normal point b∗ is calculated as follows:

b∗ = b1 +
(a∗ − a1) × (b2 − b1)

(a2 − a1)
. (2)

Step 2: Determine the left and the right extreme points of the
fuzzy set B∗. We divide a triangular fuzzy set A into the left
area SL and the right area SR , as shown in Fig. 3, where dl and
dr denote the “left bottom length” and the “right bottom length”
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Fig. 3. Left area SL and the right area SR of the triangular fuzzy set.

of A, respectively. We use (3) to calculate the left area SL (B∗)
and the right area SR (B∗) of B∗, respectively, where

SK (B∗)=




SK (A∗)×
2∑

i=1,
SK (Ai )>0

Wi×SK (Bi)
SK (Ai)

, if ∃iSK (Ai) > 0

SK (A∗), if ∀iSK (Ai) = 0
(3)

K ∈ {L, R}, SL (B∗) denotes the left area of B∗, SR (B∗)
denotes the right area of B∗,W1 = 1 − (a∗ − a1)/(a2 −
a1),W2 = 1 − (a2 − a∗)/(a2 − a1), and W1 + W2 = 1.

Step 3: From Fig. 3, we can see that SL (B∗) is also equal to
(dl(B∗) × h)/2 and SR (B∗) is also equal to (dr (B∗) × h)/2,
where dl(B∗) denotes the left bottom length of B∗ and dr (B∗)
denotes the right bottom length of B∗, and h denotes the height
of B∗. Because the value of h is equal to 1 when the fuzzy set
B∗ is normal, the values of dl(B∗) and dr (B∗) are equal to
2SL (B∗) and 2SR (B∗), respectively. Then, we can obtain the
left extreme point b∗ − 2SL (B∗) and the right extreme point
b∗ + 2SR (B∗) of the fuzzy set B∗, respectively. Finally, the
fuzzy interpolative reasoning result B∗ is derived, where B∗ =
(b∗ − 2SL (B∗), b∗, b∗ + 2SR (B∗)).

The top equation of (3) is used to infer the areas of the in-
terpolated fuzzy set B∗ if there exists a fuzzy rule whose area
of the antecedent part is larger than zero. Otherwise, the bot-
tom equation of (3) is used when the areas of the antecedent
part of the given fuzzy rules are zero (e.g., both the antecedent
fuzzy sets have vertical slopes at their left-hand sides). Gener-
ally speaking, the larger the area of the membership function of
a fuzzy set is, the more fuzziness the fuzzy set has. The fuzzy in-
terpolative reasoning result inferred by (3) satisfies the logically
consistent properties with respect to the ratios of fuzziness based
on the two-fuzzy-rules interpolative reasoning technique, where
the ratio of fuzziness RFK (A,B) of the consequence fuzzy set
B with respect to the antecedent fuzzy set A is calculated as
follows:

RFK (A,B) =
SK (B)
SK (A)

(4)

where SK (A) > 0,K ∈ {L, R}, the fuzzy sets A and B are the
antecedent fuzzy set and the consequence fuzzy set of a fuzzy
rule, respectively, RFL (A,B) denotes the ratio of fuzziness of
the left area of B with respect to the left area of A,RFR (A,B)
denotes the ratio of fuzziness of the right area of B with respect
to the right area of A,SL (A) and SL (B) denote the left areas
of A and B, respectively, and SR (A) and SR (B) denote the
right areas of A and B, respectively. For example, from Fig. 4,

Fig. 4. Fuzzy interpolative reasoning results for the gradual observations.

we can see that RFL (A1 , B1) = 1/2, RFL (A2 , B2) = 2, and
RFR (A1 , B1) = RFR (A2 , B2) = 1. For the ratio of fuzziness
RFK (A,B) shown in (4), it does not consider the situation that
the antecedent fuzzy sets have vertical slopes at their left-hand
side or right-hand side (i.e., SL (A) = 0 or SR (A) = 0).

Assume that there are two adjacent fuzzy rules A1 =>
B1 , A2 => B2 and one observation A∗, where A∗ occurs be-
tween A1 and A2 . The fuzzy interpolative reasoning result B∗

obtained by (3) satisfies the following two properties.
Property 1: Min(RFK (A1 , B1), RFK (A2 , B2)) ≤ RFK

(A∗, B∗) ≤ Max(RFK (A1 , B1), RFK (A2 , B2)), where
K∈{L,R}.

Proof: Based on (3) and (4), the value of RFK (A∗, B∗) is
calculated as follows:

RFK (A∗, B∗)=
W1 × RFK (A1 , B1) + W2 × RFK (A2 , B2)

W1 + W2
(5)

where 0 ≤ W1 ≤ 1, 0 ≤ W2 ≤ 1,W1 + W2 = 1, and K ∈
{L,R}. Let W1 = 1 − W2 . Then, (5) becomes

RFK (A∗, B∗)

= (1 − W2) × RFK (A1 , B1) + W2 × RFK (A2 , B2) (6)
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Fig. 5. Trapezoidal fuzzy set.

Fig. 6. Fuzzy interpolative reasoning using trapezoidal membership functions.

where 0 ≤ W2 ≤ 1 and K ∈ {L,R}. From (6), we can see that
Min(RFK (A1 , B1), RFK (A2 , B2) ) ≤ RFK (A∗, B∗) ≤
Max(RFK (A1 , B1), RFK (A2 , B2)), where K ∈ {L,R}. �

Property 2: If RFK (A1 , B1) = RFK (A2 , B2) = C, then
RFK (A∗, B∗) = C, where C ≥ 0 and K ∈ {L,R}.

Proof: Based on Property 1, if RFK (A1 , B1) = RFK

(A2 , B2) = C, then we can see that Min(RFK (A1 , B1),
RFK (A2 , B2)) = Max(RFK (A1 , B1), RFK (A2 , B2)) = C
and RFK (A∗, B∗) = C, where C ≥ 0 and K ∈ {L,R}. �

It is obvious that Property 1 and Property 2 are logically
consistent with respect to the ratios of fuzziness based on the
two-fuzzy-rules interpolative reasoning technique. Based on (3),
the weight Wi of RFK (Ai,Bi) contributing to RFK (A∗, B∗)
is determined by the distance of the normal points between
Ai and A∗. That is, the closer the normal point of A∗ to the
normal point of Ai , the larger the weight of RFK (Ai,Bi),
where i = 1, 2 and K ∈ {L,R}. From Fig. 4, we can see that
RFL (A∗, B∗) is closer to RFL (A1 , B1) when the normal point
of A∗ is closer to the normal point of A1 , and RFL (A∗, B∗) is
closer to RFL (A2 , B2) when the normal point of A∗ is closer
to the normal point of A2 .

B. Fuzzy Interpolative Reasoning With Trapezoidal Fuzzy Sets

Assume thatthe fuzzy sets of the given fuzzy rules and the
observation are trapezoidal fuzzy sets. A trapezoidal fuzzy set
A is typically denoted by (a0 , a1 , a2 , a3), as shown in Fig. 5,
where a1 and a2 are called the “left normal point” and the
“right normal point,” respectively, and a0 and a3 are called the
“left extreme point” and the “right extreme point,” respectively.
An example of fuzzy interpolative reasoning using trapezoidal
fuzzy sets is shown in Fig. 6.

The proposed fuzzy interpolative reasoning method with
trapezoidal fuzzy sets is now presented as follows.

Step 1: Use (7) to calculate the composite normal
points a1c , a2c , a

∗
c , b1c , and b2c of trapezoidal fuzzy sets

A1 , A2 , A
∗, B1 , and B2 , respectively, where

The composite normal point

=
the left normal point + the right normal point

2
(7)

(e.g., a1c = (a11 + a12)/2), and then, calculate the composite
normal point b∗c of the interpolated fuzzy set B∗ based on (2).

Step 2: Calculate the left normal point b∗1 and the right normal
point b∗2 of the fuzzy set B∗ using (8)–(10), where

b∗1 = b∗c −
b∗1b

∗
2

2
(8)

b∗2 = b∗c +
b∗1b

∗
2

2
(9)

the distance b∗1b
∗
2 between the left normal point b∗1 and the right

normal point b∗2 is calculated as follows:

b∗1b
∗
2 =




a∗
1a

∗
2 ×

2∑
i = 1,

a i 1 a i 2
>0

Wi × bi 1 bi 2
ai 1 ai 2

, if ∃ai1ai2 > 0

a∗
1a

∗
2 , if ∀ai1ai2 = 0

(10)
where W1 = 1 − (a∗

c − a1c)/(a2c − a1c),W2 = 1 − (a2c −
a∗

c)/(a2c − a1c), and W1 + W2 = 1.
Step 3: Calculate the left triangular area SL (B∗) of B∗ be-

tween b∗0 and b∗1 and the right triangular area SR (B∗) of B∗

between b∗2 and b∗3 by (3), respectively. From Fig. 5, we can
also see that SL (B∗) is equal to (b∗1 − b∗0)/2 and SR (B∗) is
equal to (b∗3 − b∗2)/2. Therefore, the left extreme point b∗0 and
the right extreme point b∗3 of the fuzzy interpolative reasoning
result B∗ are b∗1 − 2SL (B∗) and b∗2 + 2SR (B∗), respectively.
Finally, the fuzzy interpolative reasoning result B∗ is derived,
where B∗ = (b∗1 − 2SL (B∗), b∗1 , b∗2 , b∗2 + 2SR (B∗)).

The top equation of (10) is used if there exists an antecedent
fuzzy set of the given fuzzy rules having a top support larger
than zero. Otherwise, the bottom equation of (10) is used if all
the top supports of the antecedent fuzzy sets of the given fuzzy
rules are zero.

C. Fuzzy Interpolative Reasoning With Hexagonal Fuzzy Sets

Assume that the fuzzy sets of the given fuzzy rules and the
observation are hexagonal fuzzy sets. Let us consider a hexago-
nal fuzzy set A denoted by (a0 , a1 , a2 , a3 , a4 , a5), as shown in
Fig. 7, where a2 and a3 are called the “left normal point” and the
“right normal point,” respectively, a0 and a5 are called the “left
extreme point” and the “right extreme point,” respectively, and
a1 and a4 are called the “left intermediate point” and the “right
intermediate point,” respectively. In Fig. 7, SL (A) denotes the
triangular area between a0 and a1 of the hexagonal fuzzy set
A,SL1 (A) denotes the trapezoidal area between a1 and a2 of
the hexagonal fuzzy set A,SR1 (A) denotes the trapezoidal area
between a3 and a4 of the hexagonal fuzzy set A, and SR (A)
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Fig. 7. Hexagonal fuzzy set.

Fig. 8. Fuzzy interpolative reasoning using hexagonal membership functions.

denotes the triangular area between a4 and a5 of the hexagonal
fuzzy set A.

An example of fuzzy interpolative reasoning using hexagonal
fuzzy sets is shown in Fig. 8.

The proposed fuzzy interpolative reasoning method with
hexagonal fuzzy sets is now presented as follows.

Step 1: Calculate the composite normal points
a1c , a2c , a

∗
c , b1c , and b2c of the hexagonal fuzzy sets A1 , A2 ,

A∗, B1 , and B2 by (7), respectively. Then, calculate the
composite normal point b∗c of the interpolated fuzzy set B∗

based on (2).
Step 2: Calculate the left normal point b∗2 and the right normal

point b∗3 of fuzzy set B∗ using (8)–(10).
Step 3: Calculate the trapezoidal area SL1 (B

∗), the trape-
zoidal area SR1 (B

∗), the triangular area SL0 (B
∗), and the

triangular area SR0 (B
∗) of B∗ by (3), respectively. From

Fig. 7, we can also see that SL1 (B
∗) is equal to [(α + 1)

|b∗2 − b∗1 |]/2 and SR1 (B
∗) is equal to [(α + 1) |b∗4 − b∗3 |]/2,

the left intermediate point b∗1 and the right interme-
diate point b∗4 are b∗2 − [2SL1(B∗)/(α + 1)] and b∗3 +
[2SR1(B∗)/(α + 1)], respectively. From Fig. 7, we can also
see that SL0 (B

∗) is equal to α |b∗1 − b∗0 | /2 and SR0 (B
∗)

is equal to α |b∗5 − b∗4 | /2, the left extreme point b∗0 and
the right extreme point b∗5 are b∗1 − [2SL0 (B

∗)/α] and b∗4 +
[2SR0 (B

∗)/α], respectively. Finally, the fuzzy interpolative
reasoning result B∗ denoted by (b0 , b1 , b2 , b3 , b4 , b5) is de-
rived, where b∗0 = b∗2 − [2SL1 (B

∗)/(α + 1)] − [2SL0 (B
∗)/α],

b∗1 = b2 − [2SL1 (B
∗)/(α + 1)], b∗4 = b∗3 + [2SR1 (B

∗)/(α +
1)], and b∗5 = b∗3 + [2SR1 (B

∗)/(α + 1)] + [2SR0 (B
∗)/α].

Fig. 9. Polygonal fuzzy set.

D. Fuzzy Interpolative Reasoning With Polygonal Fuzzy Sets

Assume that the given fuzzy rules and the observation are
polygonal fuzzy sets. A polygonal fuzzy set A denoted by n
characteristic points (a0 , . . . , an−2 , an−1) is shown in Fig. 9,
where a�(n−1)/2	 and a
(n−1)/2� are called the “left normal
point” and the “right normal point,” respectively, a0 and an−1
are called the “left extreme point” and the “right extreme point,”
respectively, and the others are called the “intermediate points.”
There are �(n − 1)/2	 + 1 membership levels including the bot-
tom level and the top level in the fuzzy set, where their member-
ship degrees are α0 , α1 , . . . , and α�(n−1)/2	, respectively (i.e.,
α0 = 0 and α�(n−1)/2	 = 1).

From the previous discussion of the fuzzy interpolation of
triangular, trapezoidal, and hexagonal fuzzy sets, we can see that
the proposed method can preserve the normality and convexity
of the fuzzy interpolative reasoning result when the fuzzy sets
of the given fuzzy rules are normal and convex fuzzy sets of
the same shape. In the following, we will see that when the
fuzzy sets of the fuzzy rules are normal, convex, and arbitrary
polygonal fuzzy sets, the fuzzy interpolative reasoning result of
the proposed method is still a normal and convex fuzzy set.

Assume that the fuzzy sets of the given fuzzy rules
A1 ⇒ B1 and A2 ⇒ B2 are polygonal fuzzy sets, where
the polygonal fuzzy sets A1 = (a10 , a11 , . . . , a1,n−1) and
A2 = (a20 , a21 , . . . , a2,n−1) are the antecedents and the
polygonal fuzzy sets B1 = (b10 , b11 , . . . , b1,n−1) and B2 =
(b20 , b21 , . . . , b2,n−1) are the consequences. The observation
A∗ = (a∗

0 , a∗
1 , . . . , a∗

n−1) occurs between the fuzzy sets A1
and A2 , and B∗ = (b∗0 , b∗1 , . . . , b∗n−1) denotes the fuzzy in-
terpolative reasoning result. The proposed fuzzy interpolative
reasoning method with polygonal fuzzy sets is presented as fol-
lows.

Step 1: Calculate the composite normal points a1c , a2c ,
a∗

c , b1c , and b2c of polygonal fuzzy sets A1 , A2 , A∗, B1 , and
B2 by (7), respectively. Then, calculate the composite normal
point b∗c of the interpolated fuzzy set B∗ based on (2).

Step 2: Calculate the left normal point b∗�(n−1)/2	 and the
right normal point b∗
(n−1)/2� of the fuzzy set B∗ using (8)–(10),
where b∗�(n−1)/2	 and b∗
(n−1)/2� are the same when n is odd.
From (8)–(10), we can see that the value of the left normal
point is smaller than or equal to the value of the right normal
point. Therefore, the fuzzy interpolative reasoning result cannot
become a twisted nonconvex fuzzy set.

Step 3: Calculate the area SK (B∗) of area K of
the fuzzy set B∗ by (3), where K = L�(n−1)/2	−1 ,
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Fig. 10. Gaussian fuzzy set.

R�(n−1)/2	−1 , L�(n−1)/2	−2 , R�(n−1)/2	−2 , . . . , L1 ,R1 , L0 , R0 .
We also can see that SLi(B∗) is equal to (αi + αi+1)∣∣b∗i − b∗i+1

∣∣ /2 and SRi(B∗) is equal to (αn−i + αn−i−1)∣∣b∗n−i − b∗n−i−1

∣∣ /2. Finally, the fuzzy interpolative reasoning
result B∗ denoted by (b∗0 , b∗1 , . . . , b∗n−1) is derived, as in (11),
shown at the bottom of this page.

Because b∗0 ≤ b∗1 ≤ · · · ≤ b∗n−1 , we can see that the proposed
method can preserve the convexity of the fuzzy interpolative
reasoning result with arbitrary polygonal fuzzy sets.

E. Fuzzy Interpolative Reasoning With Gaussian Membership
Functions

Let us consider bell-shaped membership functions, such as
the Gaussian membership function A = e−(x−c)2 /2σ 2

, as shown
in Fig. 10, where c and σ denote the mean and the standard de-
viation, respectively. The normal point of the Gaussian fuzzy
set A is the mean of the Gaussian membership function. As-
sume that the fuzzy sets of the given fuzzy rules and the ob-
servation are Gaussian fuzzy sets. An example of fuzzy in-
terpolative reasoning using Gaussian fuzzy sets is shown in
Fig. 11, where a1 , a2 , a

∗, b1 , b2 , and b∗ are the normal points
of fuzzy sets A1 , A2 , A

∗, B1 , B2 , and B∗, respectively, and
σA 1 , σA 2 , σA ∗ , σB1 , σB2 , and σB ∗ are the standard deviations
of the fuzzy sets A1 , A2 , A

∗, B1 , B2 , and B∗, respectively.
The proposed fuzzy interpolative reasoning method with

Gaussian fuzzy sets is now presented as follows:
Step 1: Calculate the normal point b∗ of the Gaussian fuzzy

set B∗ by (2).
Step 2: Calculate the standard deviation σB ∗ of B∗ as follows:

σB ∗ =


 σA ∗ ×

2∑
i=1,σA i

>0

(
Wi × σB i

σA i

)
, if ∃σAi

> 0

σA ∗ , if ∀σAi
= 0

(12)

where σB ∗ denotes the standard deviation of the
fuzzy set B∗,W1 = 1 − [(a∗ − a1)/(a2 − a1)],W2 = 1 −

Fig. 11. Fuzzy interpolative reasoning using Gaussian membership functions.

[(a2 − a∗)/(a2 − a1)], and W1 + W2 = 1. Then, based on the
normal point b∗ and the value of σB ∗ , the Gaussian membership
function of the consequence fuzzy set B∗ = e−(x−b∗)2 /2σ 2

B ∗ is
derived.

F. Fuzzy Interpolative Reasoning With Multiple Antecedent
Variables

Consider the situation that the interpolation between two ad-
jacent fuzzy rules has multiple antecedent variables. The mul-
tiple antecedent variables fuzzy interpolative reasoning scheme
is shown as follows.

Rule 1: If X1 is A11 and X2 is A12 and · · · and Xm is
A1m then Y is B1 .

Rule 2: If X1 is A21 and X2 is A22 and · · · and Xm is
A2m then Y is B2 .

Observation: X1 is A∗
11 and X2 is A∗

12 and · · · and Xm is A∗
m .

Conclusion: Y is B∗.
An example of fuzzy interpolative reasoning with two an-

tecedent variables is shown in Fig. 12, where the antecedent
fuzzy set Aij is denoted by (aij0 , aij1 , aij2 , aij3 ), where i
= 1, 2 and j = 1, 2, the observation fuzzy set A∗

j is de-
noted by (a∗

j0 , a∗
j1 , a∗

j2 , a∗
j3),where j = 1, 2, the consequent

fuzzy set Bi is denoted by (bi0 , bi1 , bi2 , bi3), where i = 1, 2,
and the fuzzy interpolative reasoning result B∗ is denoted by
(b∗0 , b∗1 , b∗2 , b∗3).

The proposed multiple antecedent variables fuzzy interpola-
tive reasoning method is now presented as follows.

Step 1: Calculate the composite normal points a11c , a21c ,
a12c , a22c , a

∗
1c , a

∗
2c , b1c , and b2c of the trapezoidal fuzzy sets

A11 , A21 , A12 , A22 , A
∗
1 , A

∗
2 , B1 , and B2 by (7), respectively.

b∗i =




b∗� n −1
2 	 −

2SL � n −1
2 	−1

(B ∗)

α� n −1
2 	−1

+α� n −1
2 	

−
2SL � n −1

2 	−2
(B ∗)

α� n −1
2 	−2

+α� n −1
2 	−1

− · · · − 2SL i
(B ∗)

αi +αi + 1
if i = 0, 1, . . . ,

⌊
n−1

2

⌋
− 1

b∗
 n −1
2 � +

2SR
i−
 n −1

2 �−1
(B ∗)

α
i−
 n −1

2 �−1
+α

i−
 n −1
2 �

+
2SR

i−
 n −1
2 �−2

(B ∗)

α
i−
 n −1

2 �−2
+α

i−
 n −1
2 �−1

+ · · · +
2SR

i−
 n −1
2 �−� n −1

2 	
(B ∗)

α
i−
 n −1

2 �−� n −1
2 	+α

i−
 n −1
2 �−(� n −1

2 	−1)
if i =

⌈
n−1

2

⌉
+ 1,

⌈
n−1

2

⌉
+ 2, . . . , n − 1.

(11)
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Fig. 12. Multiple antecedent variables fuzzy interpolative reasoning using
trapezoidal membership functions.

Calculate the composite normal point b∗c of the interpolated
fuzzy set B∗ as follows:

wij = 1 −
∣∣∣∣ aijc − a∗

jc

a2jc − a1jc

∣∣∣∣ (13)

Wi =

∑m
j=1 wij

m
(14)

b∗c = W1b1c + W2b2c (15)

where 0 ≤ wij ≤ 1, w1j + w2j = 1,W1 + W2 = 1, i = 1, 2,
j = 1, 2, . . . ,m, and m denotes the number of antecedent vari-
ables of the given fuzzy rules.

Step 2: Calculate the left normal point b∗1 and the right normal
point b∗2 of the fuzzy set B∗, as in (16), shown at the bottom of
this page.

b∗1 = b∗c −
b∗1b

∗
2

2

b∗2 = b∗c +
b∗1b

∗
2

2
where Wi =

∑m
j=1 wij /m,wij = 1 − |(a∗

jc − aijc)/(a2jc

− a1jc)|, i = 1, 2, j = 1, 2, . . . ,m,W1 + W2 = 1, and m
denotes the number of antecedent variables of the given fuzzy
rules.

Step 3: Calculate the left area SL (B∗) and the right area
SR (B∗) of the fuzzy set B∗, as in (17), shown at the bot-
tom of this page, where K ∈ {L,R}, SL (B∗) denotes the
left area of B∗, SR (B∗) denotes the right area of B∗,Wi =∑m

j=1 wij /m,wij = 1−
∣∣(a∗

jc − aijc)/(a2jc − a1jc)
∣∣ , i = 1,

2, j = 1, 2, . . . ,m,W1 + W2 = 1, and m denotes the number
of antecedent variables of the given fuzzy rules. From Fig. 12,
we can also see that SL (B∗) is equal to (b∗1 − b∗0)/2 and SR (B∗)
is equal to (b∗3 − b∗2)/2. Therefore, the left extreme point b∗0 and
the right extreme point b∗3 of the fuzzy interpolative reasoning
result B∗ are b∗1 − 2SL (B∗) and b∗2 + 2SR (B∗), respectively.
Finally, the fuzzy interpolative reasoning result B∗ is derived,
where B∗ = (b∗1 − 2SL (B∗), b∗1 , b∗2 , b∗2 + 2SR (B∗)).

Equation (17) is used to handle multiple antecedent variables
fuzzy interpolative reasoning based on two selected fuzzy rules.
The top equation of (17) is used to infer the areas of the interpo-
lated fuzzy set B∗ if there exists a fuzzy rule that at least one of
the areas of its antecedent parts is larger than zero. Otherwise,
the bottom equation of (17) is used when all the areas of the an-
tecedent parts of the given fuzzy rules are zero. The fuzzy inter-
polative reasoning result inferred by (17) satisfies the logically
consistent properties with respect to the ratios of fuzziness based
on the multiple antecedent variables fuzzy interpolative reason-
ing, where the ratio of fuzziness RFK ((A1 , A2 , . . . , Am ), B)
of the consequence fuzzy set B with respect to the antecedent
fuzzy sets A1 , A2 , . . . , Am is calculated as follows:

RFK ((A1 , A2 , . . . , Am ), B) =
SK (B)

1/m(
∑m

j=1 SK (Aj ))
(18)

where K∈{L,R}, the fuzzy sets A1 , A2 , . . . , Am are the an-
tecedent fuzzy sets of a fuzzy rule and B is the consequence
fuzzy set of a fuzzy rule, RFL ((A1 , A2 , . . . , Am ), B) denotes
the ratio of fuzziness of the left area of B with respect to the
left areas of A1 , A2 , . . . , Am ,RFR ((A1 , A2 , . . . , Am ), B) de-
notes the ratio of fuzziness of the right area of B with respect to
the right areas of A1 , A2 , . . . , Am , SL (Aj ) denotes the left ar-
eas of Aj , respectively, where j = 1, 2, . . . ,m, SR (A) denotes
the right areas of Aj , respectively, where j = 1, 2, . . . ,m, and
SL (B) and SR (B) denote the left area and the right area of B,
respectively.

b∗1b
∗
2 =





 m∑

j=1

a∗
j1a

∗
j2


 ×




2∑
i = 1 ,

∃jai j 1 ai j 2 >0

Wi ×
bi1bi2∑m

j=1 aij1aij2


 , if ∃ij aij1aij2 > 0

∑m

j = 1
a∗

j1a
∗
j2

m , if ∀ij aij1aij2 = 0

(16)

SK (B∗) =





 m∑

j=1

SK (A∗
j )


 ×




2∑
i=1

∃jSK (Ai j )>0

Wi ×
SK (Bi)∑m

j=1 SK (Aij )


 , if ∃ij SK (Aij ) > 0

∑m
j=1 SK (A∗

j )
m

, if ∀ij SK (Aij ) = 0

(17)
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Assume that there are two fuzzy rules A11 ∧ A12
∧ · · · ∧ A1m => B1 , A21 ∧ A22 ∧ · · · ∧ A2m => B2 and
m observations A∗

1 , A∗
2 , . . . , A∗

m , where A∗
j occurs be-

tween A1j and Amj and j = 1, 2, . . . ,M . Let MINRFK =
Min(RFK ( (A11 , A12 , . . . , A1m ), B1), RFK ( (A21 , A22 , . . . ,
A2m )B2)), and let MAXRFK = Max(RFK ((A11 ,
A12 , . . . , A1m ), B1), RFK ((A21 , A22 , . . . , A2m ), B2)),
where K∈{L,R}. The fuzzy interpolative reasoning result B∗

obtained by (17) satisfies the following two properties.
Property 3: MIN RFK ≤ RFK ((A∗

1 , A∗
2 , . . . , A∗

m ), B∗) ≤
MAX RFK , where K∈{L,R}.

Proof: Based on (17) and (18), the value of
RFK ((A∗

1 , A∗
2 , . . . , A∗

m ), B∗) is calculated as follows:

RFK ((A∗
1 , A

∗
2 , . . . , A∗

m ), B∗)

=

(
m∑

j=1
SK (A∗

j )

)
×


 2∑

i=1
∃jSK (Ai j )>0

Wi×
(
SK (Bi)/

m∑
j=1

SK (Aij )

)
1/m

(
m∑

j=1
SK (A∗

j )
)

= m ×
2∑

i=1

Wi ×
SK (Bi)

m∑
j=1

SK (Aij )

=
2∑

i=1

Wi ×
SK (Bi)

1/m

(
m∑

j=1
SK (Aij )

)

=
2∑

i=1

Wi × RFK ((Ai1 , Ai2 , . . . ,Aim ), Bi) (19)

where 0 ≤ W1 ≤ 1, 0 ≤ W2 ≤ 1,W1 + W2 = 1, and K∈
{L,R}. From (19), we can see that

2∑
i=1

Wi × RFK ((Ai1 , Ai2 , . . . ,Aim ), Bi)

≥
2∑

i=1

Wi × MINRFK = MINRFK (20)

2∑
i=1

Wi × RFK ((Ai1 , Ai2 , . . . ,Aim ), Bi)

≤
2∑

i=1

Wi × MAXRFK = MAXRFK (21)

where 0 ≤ W1 ≤ 1, 0 ≤ W2 ≤ 1,W1 + W2 = 1, and K∈
{L,R}. Therefore, we can see that MINRFK ≤
RFK ((A∗

1 , A∗
2 , . . . , A∗

m ), B∗) ≤ MAXRFK , where K∈
{L,R}. �

Property 4: If RFK ((A11 , A12 , . . . , A1m ), B1) = RFK

((A21 , A22 , . . . , A2m ), B2) = C then RFK ((A∗
1 , A∗

2 , . . . , A∗
m ),

B∗) = C, where C > 0 and K∈{L,R}.
Proof: Based on Property 3, if RFK ((A11 , A12 , . . . ,

A1m ), B1) = RFK ((A21 , A22 , . . . , A2m )B2) = C, then we

can see that MINRFK = MAXRFK = C and RFK ((A∗
1 ,

A∗
2 , . . . , A∗

m ), B∗) = C, where C > 0 and K∈{L,R}. �
It is obvious that Property 3 and Property 4 are logically

consistent with respect to the ratios of fuzziness based on the
two fuzzy rules interpolative reasoning technique with mul-
tiple antecedent variables. From (19), we can see that the
weight Wi of RFK ((Ai1 , Ai2 , . . . , Aim ), Bi) contributing to
RFK ((A∗

1 , A∗
2 , . . . , A∗

m ), B∗) is determined by the distance
of the composite normal points between Ai1 and A∗

1 , the dis-
tance of the composite normal points between Ai2 and A∗

2 ,
. . . , and the distance of the composite normal points between
Aim and A∗

m , respectively, where i = 1, 2 and K∈{L,R}.
That is, the closer the composite normal points of A∗

j to the
composite normal points of Aij , where j = 1, 2, . . . , m, the
larger the weight of RFK ((Ai1 , Ai2 , . . . , Aim ), Bi), where i =
1, 2 and K∈{L,R}. Moreover, from (19), we can see that
the proposed method uses the weighted average method to cal-
culate RFK ((A∗

1 , A∗
2 , . . . , A∗

m ), B∗) based on the weights of
RFK ((Ai1 , Ai2 , . . . , Aim ), Bi), where i = 1, 2 and K∈{L,R}.

G. Fuzzy Interpolative Reasoning With Multiple Fuzzy Rules
and Multiple Antecedent Variables

Let us consider the interpolation with multiple fuzzy rules and
multiple antecedent variables. The multiple antecedent variables
fuzzy interpolative reasoning scheme with multiple fuzzy rules
is shown as follows:

Rule 1: If X1 is A11 and X2 is A12 and · · · and Xm is
A1m then Y is B1 .

Rule 2: If X1 is A21 and X2 is A22 and · · · and Xm is
A2m then Y is B2 .
...

Rule n: If X1 is An1 and X2 is An2 and · · · and Xm is
Anm then Y is Bn.

Observation: X1 is A∗
11 and X2 is A∗

12 and · · · and Xm is A∗
m .

Conclusion: Y is B∗.

An example of four fuzzy rules interpolative reasoning with
two antecedent variables is shown in Fig. 13, where four adja-
cent fuzzy rules A11 ∧ A12 ⇒ B1 , A21 ∧ A22 ⇒ B2 , A31 ∧
A32 ⇒ B3 and A41 ∧ A42 ⇒ B4 are given; the antecedent
fuzzy set Aij is denoted by (aij0 , aij1 , aij2 , aij3 ), where i =
1, 2, 3, 4 and j = 1, 2; the observation fuzzy sets A∗

1 and A∗
2

are denoted by (a∗
10 , a∗

11 , a∗
12 , a∗

13) and (a∗
20 , a∗

21 , a∗
22 , a∗

23),
respectively; the consequent fuzzy set Bi is denoted by
(bi0 , bi1 , bi2 , bi3), where i = 1, 2, 3, 4, and the fuzzy inter-
polative reasoning result B∗ is denoted by (b∗0 , b∗1 , b∗2 , b∗3).

The proposed multiple antecedent variables and multiple
fuzzy rules interpolative reasoning method is now presented
as follows:

Step 1: Calculate the composite normal points a11c ,
a21c , a31c , a41c , a∗

1c a12c , a22c , a32c , a42c , a∗
2c , b1c , b2c b3c

and b4c of the trapezoidal fuzzy sets A11 , A21 , A31 ,
A41 , A

∗
1 , A12 , A22 , A32 , A42 , A

∗
2 , B1 , B2 , B3 , and B4 by (7),

respectively. Calculate the composite normal point b∗c of the
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Fig. 13. Four fuzzy rules interpolative reasoning using trapezoidal member-
ship functions.

interpolated fuzzy set B∗ as follows:

wij = 1 −
∣∣∣∣ aijc − a∗

jc

anjc − a1jc

∣∣∣∣ (22)

Wi =

∑m
j=1 wij∑n

i=1
∑m

j=1 wij
(23)

b∗c =
n∑

i=1

Wibic (24)

where 0 ≤ wij ≤ 1, i = 1, 2, . . . , n, j = 1, 2, . . . ,m,m de-
notes the number of antecedent variables of the given fuzzy
rules, and n denotes the number of given fuzzy rules (i.e., m =
2 and n = 4).

Step 2: Calculate the left normal point b∗1 and the right normal
point b∗2 of fuzzy set B∗ as follows:

b∗1b
∗
2 =




(
m∑

j=1
a∗

j1a
∗
j2

)
×


 n∑

i = 1 ,

∃i jai j 1 ai j 2 >0

Wi× bi 1 bi 2
m∑

j = 1

ai j 1 ai j 2


 ,

if ∃ij aij1aij2 > 0
m∑

j = 1

a∗
j 1 a∗

j 2

m ,
if ∀ij aij1aij2 = 0

(25)

b∗1 = b∗c −
b∗1b

∗
2

2

b∗2 = b∗c +
b∗1b

∗
2

2

where Wi =
∑m

j=1 wij /
∑n

i=1
∑m

j=1 wij , wij = 1 − |(a∗
jc −

aijc ) / ( anjc − a1jc) |, 0 ≤ wij ≤ 1,
∑n

i = 1 Wi = 1, i =
1, 2, . . . , n, j = 1, 2, . . . ,m,m denotes the number of an-
tecedent variables of the given fuzzy rules, and n denotes the
number of given fuzzy rules (i.e., m = 2 and n = 4).

Step 3: Calculate the left triangular area SL (B∗) of the
fuzzy set B∗ between b∗0 and b∗1 and calculate the right
triangular area SR (B∗) of the fuzzy set B∗ between b∗2 and b∗3 ,
respectively, where (26) as shown at the bottom of this page,
SL (B∗) denotes the left area of B∗, SR (B∗) denotes the right
area of B∗,Wi =

∑m
j=1 wij /

∑n
i=1

∑m
j=1 wij , wij = 1 −∣∣ (a∗

jc − aijc) / (anjc − a1jc)
∣∣ , 0 ≤ wij ≤ 1,

∑n
i=1 Wi = 1,

i = 1, 2, . . . , n, j = 1, 2, . . . ,m,m denotes the number of
antecedent variables of the given fuzzy rules, and n denotes
the number of given fuzzy rules (i.e., m = 2 and n = 4). From
Fig. 12, we also can see that SL (B∗) is equal to (b∗1 − b∗0)/2
and SR (B∗) is equal to (b∗3 − b∗2)/2. Therefore, the left extreme
point b∗0 and the right extreme point b∗3 of the fuzzy interpolative
reasoning result B∗ are b∗1 − 2SL (B∗) and b∗2 + 2SR (B∗), re-
spectively. Finally, the fuzzy interpolative reasoning result B∗ is
derived, where B∗ = (b∗1 − 2SL (B∗), b∗1 , b∗2 , b∗2 + 2SR (B∗)).

Equation (26) is used to handle multiple antecedent variables
fuzzy interpolative reasoning based on multiple fuzzy rules. The
top equation of (26) is used to infer the areas of the interpolated
fuzzy set B∗ if there exists a fuzzy rule that at least one of
the areas of its antecedent parts is larger than zero. Otherwise,
the bottom equation of (26) is used when all the areas of the
antecedent parts of the given fuzzy rules are zero. The fuzzy
interpolative reasoning result inferred by (26) satisfies the two
logically consistent properties with respect to the ratios of fuzzi-
ness based on the multiple antecedent variables and multiple
fuzzy rules interpolation.

Assume that there are n fuzzy rules with m antecedent
variables A11 ∧ A12 ∧ · · · ∧ A1m => B1 , A21 ∧ A22 ∧ · · · ∧
A2m => B2 , . . . , An1 ∧ An2 ∧ · · · ∧ Anm => Bn , and
assume that there are m observations A∗

1 , A∗
2 , . . . , and A∗

m ,
where A∗

1 occurs between At1 and A(t+1)1 , A
∗
2 occurs

between At2 and A(t+1)2 , . . . , A∗
m occurs between

Atm and A(t+1)m , and 1 ≤ t ≤ n. Let MINRFK =
Min(RFK ((A11 , A12 , . . . , A1m ), B1), RFK ((A21 , A22 , . . . ,
A2m ), B2) , . . . , RFK ((An1 , An2 , . . . , Anm ), Bn )), and
let MAXRFK = Max(RFK ((A11 , A12 , . . . , A1m ), B1),
RFK ((A21 , A22 , . . . , A2m ), B2) , . . . , RFK ((An1 , An2 , . . . ,
Anm ), Bn )). The fuzzy interpolative reasoning result B∗ ob-
tained by (26) satisfies the following logically consistent
properties.

Property 5: MINRFK ≤ RFK ((A∗
1 , A∗

2 , . . . , A∗
m ), B∗)

≤ MAXRFK , where K∈{L,R}.

SK (B∗) =





 m∑

j=1

SK (A∗
j )


×




n∑
i = 1 ,

∃jSK (Ai j )>0

Wi ×
SK (Bi)∑m

j=1 SK (Aij )


, if ∃ij SK (Aij ) > 0

∑m

j = 1
SK (A ∗

j )

m , if ∀ij SK (Aij ) = 0

(26)
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Proof: Based on (18) and (26), the value of
RFK ((A∗

1 , A∗
2 , . . . , A∗

m ), B∗) is calculated as follows:

RFK ((A∗
1 , A

∗
2 , . . . , A∗

m ), B∗)

=

(
m∑

j=1
SK (A∗

j )

)
×


 n∑

i = 1 ,

∃jSK (Ai j )>0

Wi ×
(

SK (Bi )∑m

j = 1
SK (Ai j )

)
(1/m)

m∑
j=1

SK (A∗
j )

= m ×
n∑

i=1

Wi ×
SK (Bi)

m∑
j=1

SK (Aij )

=
n∑

i=1

Wi×
SK (Bi)

1/m

(
m∑

j=1
SK (Aij )

)

=
n∑

i=1

Wi×RFK ((Ai1 , Ai2 , . . . ,Aim ), Bi) (27)

where 0 ≤ Wi ≤ 1,
∑n

i=1 Wi = 1, and K∈{L,R}. From (27),
we can see that

n∑
i=1

Wi × RFK ((Ai1 , Ai2 , . . . ,Aim ), Bi)

≥
n∑

i=1

Wi × MINRFK = MINRFK (28)

n∑
i=1

Wi × RFK ((Ai1 , Ai2 , . . . ,Aim ), Bi)

≤
n∑

i=1

Wi × MAXRFK = MAXRFK (29)

where 0 ≤ Wi ≤ 1,
n∑

i=1
Wi = 1, and K∈{L,R}. Therefore, we

can see that MAXRFK ≤ RFK ((A∗
1 , A∗

2 , . . . , A∗
m ), B∗) ≤

MAXRFK , where K∈{L,R}. �
Property 6: If RFK ((Ai1 , Ai2 , . . . , Aim ), Bi) = C, then

RFK ((A∗
1 , A∗

2 , . . . , A∗
m ), B∗) = C, where C > 0, i =

1, 2, . . . , N and K∈{L,R}.
Proof: Based on Property 5, if RFK ((Ai1 , Ai2 , . . . ,

Aim ), Bi) = C, i = 1, 2, . . . , N , then we can see that
MINRFK = MAXRFK = C and RFK ((A∗

1 , A∗
2 ,

. . . , A∗
m ), B∗) = C, where C > 0 and K∈{L,R}. �

It is obvious that Property 5 and Property 6 are logi-
cally consistent with respect to the ratios of fuzziness based
on multiple fuzzy rules interpolative reasoning with multi-
ple antecedent variables. From (27), we can see that the
weight Wi of RFK ((Ai1 , Ai2 , . . . , Aim ), Bi) contributing to
RFK ((A∗

1 , A∗
2 , . . . , A∗

m ), B∗) is determined by the distance
of the composite normal points between Ai1 and A∗

1 , the dis-
tance of the composite normal points between Ai2 and A∗

2 , . . . ,
and the distance of the composite normal points between Aim

and A∗
m respectively, where i = 1, 2, . . . , n and K∈{L,R}.

That is, the closer the composite normal points of A∗
j to

the composite normal points of Aij , where j = 1, 2, . . . , m,
the larger the weight of RFK ((Ai1 , Ai2 , . . . , Aim ), Bi), where
i = 1, 2, . . . , n and K∈{L,R}. Moreover, from (27), we can see
that the proposed method uses the weighted average method to
calculate RFK ((A∗

1 , A∗
2 , . . . , A∗

m ), B∗) based on the weights
of RFK ((Ai1 , Ai2 , . . . , Aim ), Bi), where i = 1, 2, . . . , n and
K∈{L,R}.

III. EXPERIMENTAL RESULTS

In this section, we compare the fuzzy interpolative reasoning
results of the proposed method with the ones of the KH method
[11], the HCL method [5], the HTY method [6], and the HS
method [7] by using some examples.

Example 3.1 [7]: Let us consider the situation that the fuzzy
sets of the given fuzzy rules and the observation are triangular
fuzzy sets. All the conditions and the fuzzy interpolative reason-
ing results are shown in Fig. 14. From Fig. 14, we can see that the
KH method [11] generated an abnormal fuzzy set, whereas the
HCL method [5], the HTY method [6], the HS method [7], and
the proposed method have convex results. Based on (4) and Ta-
ble I, we can see that RFL (A1 , B1) = 0.4 and RFL (A2 , B2) =
0.5. In the same way, we can see that RFL (A∗, B∗) of the HCL
method [5], the HTY method [6], the HS method [7], and the
proposed method are 0.22, 0.66, 0.43, and 0.44, respectively.
We can see that both RFL (A∗, B∗) of the proposed method and
the HS method [7] satisfy Property 1. Based on (4) and Table I,
we can also see that RFR (A1 , B1) = RFR (A2 , B2) = 2, and
RFR (A∗, B∗) of the HCL method [5], the HTY method [6], the
HS method [7], and the proposed method are 0.8, 0.88, 1.12,
and 2, respectively. We can see that only RFR (A∗, B∗) of the
proposed method satisfies Property 2. Therefore, we can see
that only the fuzzy interpolative reasoning result of the pro-
posed method is logically consistent in terms of Property 1 and
Property 2.

Example 3.2 [7]: Let us consider the situation that the
antecedents of the given fuzzy rules are crisp values and
the observation is a fuzzy set, where all the conditions and
the fuzzy interpolative reasoning results are shown in Ta-
ble II and Fig. 15. From Fig. 15, we can see that the KH
method [11], the HCL method [5], the HS method [7], and
the proposed method generated a convex triangular fuzzy set,
whereas the HTY method [6] cannot handle the situation in this
example.

Example 3.3 [7]: Let us consider the situation that the an-
tecedents of the given fuzzy rules are fuzzy sets, but the ob-
servation is a crisp value. The conditions and the fuzzy inter-
polative reasoning results are shown in Table III and Fig. 16.
From Fig. 16, we can see that the KH method [11] gener-
ated an abnormal fuzzy set and the HCL method [5] gener-
ated a rectangular fuzzy set. The HTY method [6], the HS
method [7], and the proposed method generated the single-
ton results, which are more reasonable than the KH method
[11] and the HCL method [5] in terms of the shapes of the
observations.
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Fig. 14. A comparison of fuzzy interpolative reasoning results of Example
3.1 for different methods.

TABLE I
FUZZY INTERPOLATIVE REASONING RESULTS OF EXAMPLE 3.1

Example 3.4 [7]: Let us consider the situation that the fuzzy
sets of the given fuzzy rules are trapezoidal fuzzy sets and the
observation is a rectangular fuzzy set. The conditions and the
fuzzy interpolative reasoning results are shown in Table IV and
Fig. 17. There is no obvious indication for the HCL method [5]
to handle trapezoidal fuzzy sets. From Fig. 17, we can see that
the KH method [11] generated an abnormal trapezoidal fuzzy set
and the HTY method [6] generated a twisted abnormal fuzzy
set. The HS method [7] and the proposed method generated
convex trapezoidal fuzzy sets. Based on (4) and Table IV, we
can see that RFR (A1 , B1) = RFR (A2 , B2) = 1. In the same
way, we can see that RFR (A∗, B∗) of the HS method [7] and
the proposed method are 0.71 and 1, respectively. Therefore,
we can see that only RFR (A∗, B∗) of the proposed method is
consistent in terms of Property 2.

TABLE II
FUZZY INTERPOLATIVE REASONING RESULTS OF EXAMPLE 3.2

TABLE III
FUZZY INTERPOLATIVE REASONING RESULTS OF EXAMPLE 3.3

Fig. 15. A comparison of fuzzy interpolative reasoning results of Example
3.2 for different methods.

Example 3.5 [7]: Let us consider the situation that the fuzzy
sets of the given fuzzy rules are hexagonal fuzzy sets. The con-
ditions and the fuzzy interpolative reasoning results are shown
in Table V and Fig. 18. In Table V, the HS1 method [7], the
HS2 method [7], the HS3 method [7], and the HS4 method [7]
use four different strategies (i.e., the average, the compati-
ble, the weighted average, and the center of core) to calcu-
late the representative value, respectively. There is no obvious
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Fig. 16. A comparison of fuzzy interpolative reasoning results of Example
3.3 for different methods.

TABLE IV
FUZZY INTERPOLATIVE REASONING RESULTS OF EXAMPLE 3.4

indication for the HCL method [5] and the HTY method [6] to
handle hexagonal fuzzy sets. From Fig. 18, we can see that the
KH method [11] generated an abnormal hexagonal fuzzy set.
The HS1 method [7], the HS2 method [7], the HS3 method [7],
the HS4 method [7], and the proposed method all generated
convex hexagonal results.

Example 3.6 [7]: Let us consider the situation that the fuzzy
sets of the given fuzzy rules and the observation are Gaussian
fuzzy sets. The conditions and the fuzzy interpolative reasoning
results are shown in Table VI and Fig. 19. There is no obvi-
ous indication for the KH method [11], the HCL method [5],
and the HTY method [6] to handle Gaussian fuzzy sets. From
Fig. 19, we can see that both the HS method [7] and the proposed
method generated the Gaussian fuzzy sets. Based on Table VI,

Fig. 17. A comparison of fuzzy interpolative reasoning results of Example
3.4 for different methods.

TABLE V
FUZZY INTERPOLATIVE REASONING RESULTS OF EXAMPLE 3.5

we can see that the ratio of fuzziness RFK (A1 , B1) = 0.5 and
RFK (A2 , B2) = 3, where K∈{L,R}. In the same way, we
can see that RFK (A∗, B∗) of the HS method [7] and the pro-
posed method are 1.24 and 2.06, respectively, where K∈{L,R}.
Therefore, we can see that both RFK (A∗, B∗) of the proposed
method and the HS method [7] are logically consistent in terms
of Property 1.

Example 3.7: Let us consider the situation that the antecedents
of the given fuzzy rules are triangular fuzzy sets and the con-
sequences of the given fuzzy rules are trapezoidal fuzzy sets.
The conditions and the fuzzy interpolative reasoning results
are shown in Table VII and Fig. 20. There is no obvious in-
dication for the HCL method [5] to handle trapezoidal fuzzy
sets. From Fig. 20, we can see that the KH method [11] gener-
ated an abnormal trapezoidal fuzzy set, whereas the proposed
method, the HTY method [6], and the HS method [7] generated
a convex trapezoidal fuzzy set. Based on (4) and Table VII,
we can see that RFL (A1 , B1) = 0.4 and RFL (A2 , B2) = 0.5.
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Fig. 18. A comparison of fuzzy interpolative reasoning results of Example
3.5 for different methods.

In the same way, we can see that RFL (A∗, B∗) of the HTY
method [6], the HS method [7], and the proposed method are
0.33, 0.43, and 0.44, respectively. Both RFL (A∗, B∗) of the pro-
posed method and the HS method [7] satisfy Property 1. Based
on (4) and Table VII, we can also see that the ratios of fuzzi-
ness RFR (A1 , B1) = RFR (A2 , B2) = 1, and RFR (A∗, B∗) of
the HTY method [6], the HS method [7], and the proposed
method are 0.21, 0.67, and 1, respectively. We can see that
only RFR (A∗, B∗) of the proposed method satisfies Property
2. Therefore, we can see that only the fuzzy interpolative rea-
soning results of the proposed method are logically consistent
in terms of Property 1 and Property 2.

Example 3.8: Contrary to Example 3.7, the antecedents of
the given fuzzy rules are trapezoidal fuzzy sets and the con-
sequences of the given fuzzy rules are triangular fuzzy sets.
The conditions and the fuzzy interpolative reasoning results
are shown in Table VIII and Fig. 21. There is no obvious in-
dication for the HCL method [5] to handle trapezoidal fuzzy
sets. From Fig. 21, we can see that the KH method [11] gen-

TABLE VI
FUZZY INTERPOLATIVE REASONING RESULTS OF EXAMPLE 3.6

Fig. 19. A comparison of fuzzy interpolative reasoning results of Example
3.6 for different methods.

TABLE VII
FUZZY INTERPOLATIVE REASONING RESULTS OF EXAMPLE 3.7

erated an abnormal fuzzy set and the HTY method [6] gen-
erated a twisted abnormal fuzzy set, whereas the proposed
method and the HS Method [7] generated a convex triangu-
lar fuzzy set. Based on (4) and Table VIII, we can see that
RFR (A1 , B1) = RFR (A2 , B2) = 2, and RFR (A∗, B∗) of the
HS method [7] and the proposed method are 3.11 and 2, re-
spectively. Therefore, we can see that only RFR (A∗, B∗) of the
proposed method is logically consistent in terms of Property 2.

Example 3.9 [7]: Let us consider the situation of the fuzzy
interpolation with multiple antecedent variables. Assume that
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Fig. 20. A comparison of fuzzy interpolative reasoning results of Example
3.7 for different methods.

TABLE VIII
FUZZY INTERPOLATIVE REASONING RESULTS OF EXAMPLE 3.8

the fuzzy sets of the given fuzzy rules and the observation
are trapezoidal fuzzy sets, where the given fuzzy rules
A11 ∧ A12 ⇒ B1 , A21 ∧ A22 ⇒ B2 and the observations
A∗

1 and A∗
2 are given to determine the consequence B∗.

The conditions and the fuzzy interpolative reasoning results
are shown in Table IX and Fig. 22. There is no obvious
indication for the HCL method [5] and the HTY method [6]
to handle the fuzzy interpolation with multiple antecedent
variables. From Fig. 22, we can see that the KH method [11],
the HS method [7], and the proposed method all generated
convex results. Based on (4) and Table IX, we can see
that Min(RFL ((A11 , A12), B1), RFL ((A21 , A22), B2)) =
Min(0.8, 1) = 0.8 and Max(RFL ((A11 , A12), B1), RFL

((A21 , A22), B2)) = Max(0.8, 1) = 1. In the same way, we
can see that the values of RFL ((A∗

1 , A
∗
2), B

∗) of the KH
method [11], the HS method [7], and the proposed method
are 0.33, 0.79, and 0.9, respectively. We can see that only the
fuzzy interpolative reasoning results of the proposed method
satisfy Property 3. Based on (4) and Table IX, we can also see
that RFR ((A11 , A12), B1) = RFR ((A21 , A22), B2) = 1, and

Fig. 21. A comparison of fuzzy interpolative reasoning results of Example
3.8 for different methods.

TABLE IX
FUZZY INTERPOLATIVE REASONING RESULTS OF EXAMPLE 3.9

RFR ((A∗
1 , A

∗
2), B

∗) of the KH method [11], the HS method [7],
and the proposed method are 0.59, 0.93, and 1, respectively.
Only the fuzzy interpolative reasoning result of the proposed
method satisfies Property 4. Therefore, we can see that only
the fuzzy interpolative reasoning results of the proposed are
logically consistent in terms of Property 3 and Property 4.

Example 3.10 [8]: Let us consider the situation of the multiple
fuzzy rules interpolation with multiple antecedent variables.
Assume that the fuzzy sets of the given fuzzy rules and the
observation are triangular fuzzy sets, where the fuzzy rules
A11 ∧ A12 ⇒ B1 , A21 ∧ A22 ⇒ B2 , A31 ∧ A32 ⇒ B3 and
the observations A∗

1 and A∗
2 are given to determine the conse-

quence B∗. The conditions and the fuzzy interpolative reasoning
results are shown in Table X and Fig. 23. From Fig. 23, we can
see that the HS method [8] and the proposed method generated
a convex result, whereas there is no obvious indication for the
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Fig. 22. A comparison of fuzzy interpolative reasoning results of Example
3.9 for different methods.

KH method [11], the HCL method [5], and the HTY method [6]
to handle multiple fuzzy rules interpolation with multiple
antecedent variables. Based on (4) and Table X, we can see that
Min(RFL ((A11 , A12), B1), RFL ((A21 , A22), B3), RFL ((A31 ,
A32), B3)) = Min(2, 0.66, 0.66) = 0.66 and Max(RFL

((A11 , A12), B1), RFL ((A21 , A22), B3), RFL ((A31 , A32),
B3)) = Max(2, 0.66, 0.66) = 2. In the same way, the
values of RFL ((A∗

1 , A
∗
2), B

∗) of the HS method [7]
and the proposed method are 1.09 and 1.17, respec-
tively. Based on (4) and Table X, we can also see
that Min(RFR ((A11 , A12), B1), RFR ((A21 , A22), B3),
RFR ((A31 , A32), B3)) = Min(0.66, 1, 1) = 0.66 and
Max(RFR ((A11 , A12), B1), RFR ((A21 , A22), B3), RFR ((A31 ,
A32), B3)) = Max(0.66, 1, 1) = 1. In the same way, we can see
that the values of RFR ((A∗

1 , A∗
2), B∗) of the HS method [7]

and the proposed method are 0.66 and 0.87, respectively.
Therefore, we can see that both the fuzzy interpolative reason-
ing results of the proposed method and the HS method [7] are
logically consistent in terms of Property 5.

In the following, we use six evaluation indices (i.e., “nor-
mality and convexity,” “whether handle complicated member-
ship functions,” “whether the antecedent membership functions
and the consequent membership functions can be different,”
“whether handle multiple antecedent variables,” “whether han-

TABLE X
FUZZY INTERPOLATIVE REASONING RESULTS OF EXAMPLE 3.10

Fig. 23. A comparison of fuzzy interpolative reasoning results of Example
3.10 for different methods.

dle multiple fuzzy rules interpolation,” and “logically consistent
with respect to the ratios of fuzziness”) to compare the proposed
method with the four existing methods (i.e., the KH method [11],
the HCL method [5], the HTY method [6], and the HS method
[7]), as shown in Table XI. From Table XI, we can see that only
the proposed method satisfies these six evaluation indices.

IV. CONCLUSION

In this paper, we have presented a new fuzzy interpolative
reasoning method for sparse fuzzy-rule-based systems based
on the areas of fuzzy sets. The proposed method can hold
the normality and the convexity of the fuzzy interpolative re-
sults. Besides triangular membership functions and trapezoidal
membership functions, the proposed method can handle fuzzy
interpolative reasoning with complicated membership func-
tions, such as hexagonal membership functions, Gaussian mem-
bership functions, and polygonal membership functions. Espe-
cially, the proposed method can generate normal and convex
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TABLE XI
COMPARISON OF THE EVALUATION INDICES OF THE PROPOSED METHOD WITH

FOUR EXISTING METHODS

results when the antecedents and the consequences of the fuzzy
rules have different kinds of membership functions. The pro-
posed method can handle multiple antecedent variables fuzzy in-
terpolative reasoning with multiple fuzzy rules. From Table XI,
we can see that only the proposed method satisfies the six eval-
uation indices. That is, the proposed method performs more
reasonably than the KH method [11], the HCL method [5], the
HTY method [6], and the HS method [7]. The proposed method
provides us a usefulway to deal with fuzzy interpolative reason-
ing in sparse fuzzy-rule-based systems.
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