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Abstract— In least squares support vector machines (LS-
SVMs), the optimal separating hyperplane is obtained by solving
a set of linear equations instead of solving a quadratic program-
ming problem. But since SVMs and LS-SVMs are formulated
for two-class problems, unclassifiable regions exist when they
are extended to multiclass problems.

In this paper, we discuss fuzzy least squares support vector ma-
chines that resolve unclassifiable regions for multiclass problems.
We define a membership function in the direction perpendicular
to the optimal separating hyperplane that separates a pair of
classes. Using the minimum or average operation for these
membership functions, we define a membership function for each
class. Using some benchmark data sets, we show that recognition
performance of fuzzy LS-SVMs with the minimum operator is
comparable to that of fuzzy SVMs, but fuzzy LS-SVMs with the
average operator showed inferior performance.

I. INTRODUCTION

Support vector machines proposed by Vapnik (1998) are
trained by solving a quadratic optimization problem. Least
squares SVMs proposed by Suykens and Vandewalle (1999)
are trained by solving a set of linear equations. But since
SVMs and LS-SVMs are formulated for two-class classi-
fication problems, an extension to multiclass problems is
not unique. There are roughly four types of support vector
machines that handle multiclass problems:

1) one-against-all support vector machines (Vapnik, 1998),
2) pairwise support vector machines (Kreßel, 1999),
3) error-correcting-output code (ECOC) support vector ma-

chines (Dietterich & Bakiri, 1995),
4) all-at-once support vector machines (Vapnik, 1998).

According to Vapnik’s formulation, in one-against-all sup-
port vector machines, a k-class problem is converted into k
two-class problems and for the ith two-class problem, class i is
separated from the remaining classes. But by this formulation
unclassifiable regions exist if we use the discrete decision
functions. One way to solve this problem is to use continuous
decision functions. Another is to introduce fuzzy membership
functions as proposed in Inoue & Abe (2000).

In pairwise support vector machines, the k-class problem
is converted into k(k − 1)/2 two-class problems which cover
all pairs of classes. But by this method also unclassifiable
regions exist. Similar to Inoue & Abe (2000) unclassifiable
regions can be resolved by introducing membership functions
(Abe & Inoue, 2002).

In this paper, to resolve unclassifiable regions in LS-SVMs,
we introduce fuzzy membership functions in the similar way as

discussed in Abe & Inoue (2002), in which the membership
function for a class is defined using the minimum operator.
Here, we use the average operator as well as the minimum
operator. By the minimum operator, the contour surface is
parallel to the decision functions, thus the fuzzy SVM always
outperforms the SVM. But this is not guaranteed for the
average operator. In ECOC to resolve unclassifiable regions,
the continuous Hamming distance is used. We can show
that the average operator is complementary to the continuous
Hamming distance.

Our purpose is to resolve the unclassifiable regions of LS-
SVMs by the introduction of membership functions and then
to clarify which operator is suited for LS-SVMs by computer
experiments using several benchmark data sets.

This paper is organized as follows. In Section II, we describe
the architectures of the SVM and the LS-SVM. In Section
III, we discuss fuzzy LS-SVMs that resolve unclassifiable
regions in multiclass problems. And in Section IV we show
performance comparison of fuzzy SVMs and fuzzy LS-SVMs
using some benchmark data sets.

II. LEAST SQUARES SUPPORT VECTOR MACHINES

In this section, we describe SVMs and LS-SVMs for two-
class problems and the training method of LS-SVMs.

A. Architecture of SVMs

Let m-dimensional training data be xi (i = 1, ...,M) and
their class labels be yi, where yi = 1 and yi = −1 for Classes
1 and 2, respectively. If these input data are linearly separable
in the feature space, we can determine the following decision
function:

D(x) = wtg(x) + b, (1)

where g(x) is a mapping function that maps x into the l-
dimensional space, w is an l-dimensional vector and b is a
scalar. To separate data linearly, the decision function satisfies
the following condition:

yi(wtg(xi) + b) ≥ 1 for i = 1, ...,M. (2)

If the problem is linearly separable in the feature space, there
are an infinite number of decision functions that satisfy (2).
Among them we require that the hyperplane has the largest
margin between two classes. Here the margin is the minimum
distance from the separating hyperplane to the input data and
this is given by |D(x)|/||w||. And we call the separating



hyperplane with the maximum margin optimal separating
hyperplane.

Assuming that the margin is ρ, the following condition
needs to be satisfied:

yiD(xi)
||w|| ≥ ρ for i = 1, ...,M. (3)

We fix the product of ρ and ||w||:
ρ||w|| = 1. (4)

Then, in order to obtain the optimal separating hyperplane with
the maximum margin, we must find w with the minimum ||w||
that satisfy (3). From (4), this leads to solving the following
optimization problem. Namely, minimize

1
2
wtw (5)

subject to the constraints:

yi(wtg(xi) + b) ≥ 1 for i = 1, ...,M. (6)

When training data are not linearly separable, we introduce
slack variables ξi (> 0) into (2) as follows:

yi(wtg(xi) + b) ≥ 1 − ξi, ξi ≥ 0 for i = 1, ...,M. (7)

The optimal separating hyperplane is determined so that the
maximization of the margin and the minimization of the
training error are achieved. Namely, minimize

1
2
wtw +

C

2

n∑
i=1

ξp
i (8)

subject to the constraints:

yi(wtg(xi) + b) ≥ 1 − ξi, ξi ≥ 0 for i = 1, ...,M, (9)

where C is a parameter that determines the tradeoff between
the maximum margin and the minimum classification error and
p is 1 or 2. When p = 1, the SVM is called L1 soft margin
SVM (L1-SVM), and when p = 2, L2 soft margin SVM (L2-
SVM). In the conventional SVM, optimal separating hyper-
plane is obtained by solving the above quadratic programming
problem.

B. Architecture of LS-SVMs

In contrast to the SVM, the LS-SVM is trained by mini-
mizing

1
2
wtw +

C

2

M∑
i=1

ξ2
i (10)

subject to the equality constraints:

yi(wtg(xi) + b) = 1 − ξi for i = 1, · · · , M. (11)

In the LS-SVM, we use equality constraints instead of
inequality ones employed in the conventional SVM. Therefore,
the optimal solution can be obtained by solving a set of
linear equations instead of solving a quadratic programming
problem.

To derive the dual problem of (10) and (11), we introduce
the Lagrange multipliers as follows:

Q(w, b, α, ξ) =
1
2
wtw +

C

2

M∑
i=1

ξ2
i

−
M∑
i=1

αi{yi(wtg(xi) + b) − 1 + ξi},

where α = (α1, · · · , αM )t is Lagrange multipliers, which can
be positive or negative in case of LS-SVM formulation. The
conditions for optimality are derived by differentiating (12)
with respect to w, ξi, b, and αi and equating the resulting
equations to zero:

w =
M∑
i=1

αiyig(xi), (12)

M∑
i=1

αiyi = 0, (13)

αi = Cξi. (14)

In a matrix form, (12), (13), (14), and (11) are expressed by[
Ω Y
Yt 0

] [
α
b

]
=
[

1
0

]
, (15)

where Ω, Y and 1 are, respectively

Ωij = yiyjg(xi)tg(xj) +
δij

C
, (16)

Y = (y1, · · · , yM )t, (17)

1 = (1, · · · , 1)t. (18)

Here,

δij =
{

1 i = j,
0 i �= j.

C. Training of LS-SVMs

An LS-SVM is trained by solving (15). From (16), Ω is
positive definite. Thus,

α = Ω−1(1 − Yb). (19)

Substituting (19) into the second matrix equation in (15), we
obtain

b =
YtΩ−11
YtΩ−1Y

. (20)

Here, since Ω is positive definite, Ω−1 is also positive definite.
In addition, since Y is non zero vector, YtΩ−1Y > 0. Thus,
b is always obtained.

Substituting (20) into (19), we obtain α. In solving (20),
we use the Cholesky factorization.

Applying the Cholesky factorization to matrix Ω, it is
decomposed into the product of two symmetric matrix as



Ω = LLt. Here, L and Lt are lower and upper triangular
matrixes, respectively, and each elements of L are given by

lop =

(
qop −

p−1∑
n=1

lpnlon

)
/lpp

for o = 1, ...,m, p = 1, ..., o − 1, (21)

laa =

√√√√qaa −
a−1∑
n=1

l2an for a = 1, ...,m. (22)

Although Ω is positive definite, the Cholesky factorization
becomes unstable if Ω is near positive semi-definite. Then, to
prevent this, if

qaa =
a−1∑
n=1

l2an ≤ η (23)

where η = (> 0), we set

laa =
√

η. (24)

In this paper, we set η at 10−5.
Then letting

Ωa = LLta = Y, (25)

where a is an M -dimensional vector, we can solve (25)
without matrix inversion. Using a, b given by (20) reduces
to

b =
at1
Yta

. (26)

Similarly, we can obtain α.

D. Kernel Functions

One of the characteristic of the SVM is that it uses the
technique called kernel trick. In (16), defining

K(x,x′) = g(x)tg(x′), (27)

where K(x,x′) is a kernel function, we can avoid treating
variables in the feature space. In the following study, we use
the kernel functions as follows:

• dot product kernels: K(x,x′) = xtx′;
• polynomial kernels: K(x,x′) = (xtx′ + 1)d, where d is

a positive integer;
• RBF kernels: K(x,x′) = exp(−γ||x − x′||2), where γ

is a positive parameter.
If the problem has a very large number of input variables,

the value of a kernel function becomes so small or large that
training of support vector machines becomes difficult.

For a polynomial kernel with degree d, the maximum value
is (m+1)d if the range of input variables is [0, 1]. Thus, when
m is very large, we normalize polynomial kernels as follows:

K(x,x′) =
(xtx′ + 1)d

(m + 1)d
. (28)

Similarly, for RBF kernels, the maximum value of ||x − x||2
is m. Thus we normalize RBF kernels as follows:

K(x,x′) = exp(− γ

m
||x − x′||2). (29)

III. MULTICLASS CLASSIFICATION

The formulation of SVMs is based on a two-class classifi-
cation problem. Since SVMs determine the decision boundary
directly, an extension to multiclass problem is not unique.
Vapnik (1998) uses one-against-all classification, in which one
class is separated from the remaining classes. By this formu-
lation, however, we need to solve a set of linear equations
with the number of variables equal to the number of training
data. Therefore, long training time is necessary for training a
problem with a large number of training data.

Considering the computational burden in training, here we
use pairwise classification (Kreßel, 1999). In one-against-all
and pairwise classifications, unclassifiable regions exist (Inoue
& Abe, 2000; Abe & Inoue, 2002). Thus similar to Abe &
Inoue (2002) we introduce fuzzy membership functions to
resolve unclassifiable regions in pairwise classification.

In pairwise classification we require a binary classifier for
each possible pair of classes and the number of the total pairs
is k(k−1)/2 for a k-class problem. The decision function for
the pair of classes i and j is given by

Dij(x) = wt
ijg(x) + bij , (30)

where Dij(x) = −Dji(x). Then for the datum x we calculate

Di(x) =
k∑

j �=i,i=1

sign(Dij(x)), (31)

where

sign(a) =
{ 1 a > 0,

0 otherwise,

and this datum is classified into the class

arg max
i=1,...,k

Di(x). (32)

If (32) is satisfied for one i, x is classified into class i. But
if (32) is satisfied for plural i’s, x is unclassifiable. In Fig.1,
if x is in the shaded region, Di(x) = 1 for i = 1, 2, 3. Thus,
from (32), x is unclassifiable. Therefore, the shaded region in
the figure is unclassifiable.

Class 1

Class 2

Class 3

D13(x) = 0

D23(x) = 0

D12(x) = 0

Fig. 1. An Unclassifiable Region by Pairwise Classification



To avoid this, similar to Abe & Inoue (2002), we introduce
the fuzzy membership function. First, we define the one-
dimensional membership function mij(x) in the direction
perpendicular to the optimal separating hyperplane Dij(x) as
follows:

mij =
{

1 for Dij(x) ≥ 1,
Dij(x) otherwise. (33)

Here, we allow negative degree of membership to make any
data except those on the decision boundary be classified.

In Abe & Inoue (2002), the minimum operator is used for
defining the membership function, mi(x), of x for class i.
Here, we use the average operator as well as the minimum
operator. The average operator is complementary to the contin-
uous Hamming distance used in error correcting output codes
(Dietterich & Bakiri, 1995).

Using the minimum operator the membership function,
mi(x), of x for class i is given by

mi(x) = min
j=1,...,k

mij(x). (34)

Using the minimum operator, the shape of the membership
function is a truncated polyhedral pyramid (Abe, 2001) in the
feature space, and the contour surface, in which the degree of
membership is the same, is parallel to the decision function
as shown in Fig. 2.

mi(x) = 1

mi(x) = 0.5

mi(x) = 0

Class i

Fig. 2. Contour Lines of Membership Functions with Minimum Operator

Using the average operator the membership function,
mi(x), of x for class i is given by

mi(x) =
1

k − 1

k∑
j �=i,j=1

mij(x). (35)

Using the average operator, the shape of the membership
function is a truncated polyhedral pyramid but some part of
the contour surface is not parallel to the decision function as
shown in Fig.3.

Using either (34) or (35), the data x is classified into the
class

arg max
i=1,...k

mi(x). (36)

Comparing the minimum and average operators, the regions
where mi(x) = 1 are the same, but the regions where

mi(x) = 1

mi(x) = 0.5

mi(x) = 0

Class i

Fig. 3. Contour Lines of Membership Functions with Average Operator

mi(x) < a and a < 1, are different. We can show that
the decision boundaries with the minimum operator are the
same with those given by (31) for classifiable regions but the
decision boundaries for the average operator are not. Thus the
recognition rate using the minimum operator is always better
than or equal to that by the conventional pairwise SVM. But
this does not hold for the average operator.

Using the minimum operator, the unclassifiable region
shown in Fig.1 is resolved as shown in Fig.4.

Class 1

Class 2

Class 3

D13(x) = 0

D23(x) = 0

D12(x) = 0

Fig. 4. Resolution of the Unclassifiable Region by the Minimum Operator

IV. PERFORMANCE EVALUATION

A. Condition of Experiments

Using the iris data (Fisher, 1936; Bezdek, Keller, Krish-
napuram, Kuncheva, & Pal, 1999), the numeral data for
license plate recognition (Takenaga, Abe, Takatoo, Kayama,
Kitamura, & Okuyama, 1991), the thyroid data (Weiss &
Kapouleas, 1999), the blood cell data (Hashizume, Motoike, &
Yabe, 1988), and the hiragana data (Abe, 2001) listed in Table
I, we compared the performance of the fuzzy LS-SVM (FLS-
SVM) with minimum and average operators, the conventional
LS-SVM, and the conventional L1 soft margin FSVM. The
LS-SVM was used to show the improvement of the recognition
rates by the FLS-SVM.



TABLE I

BENCHMARK DATA SPECIFICATION

Data Inputs Classes Training data Test data
Iris 4 3 75 75
Numeral 12 10 810 820
Thyroid 21 3 3772 3428
Blood cell 13 12 3097 3100
Hiragana-50 50 39 4610 4610
Hiragana-105 105 38 8375 8356
Hiragana-13 13 38 8375 8356

For the hiragana-105 and hiragana-50 data sets, the numbers
of input valuables are over 50. Thus, we normalized the
kernels. The value of the margin parameter C affects the
recognition rates of the training and test data, but we evaluated
the performance fixing C at 5000. We used the dot product,
polynomial, and RBF kernels. The simulations were done on
a Pentium III 1GHz PC.

B. Results and Discussions

Table II shows the results of the conventional FSVM, the
LS-SVM, and the FLS-SVM with minimum and average
operators. The highest recognition rates of the test data are
shown in boldfaces. The FSVM performed best for 13 cases
and the FLS-SVM with the minimum operator performed best
for 16 cases. The FLS-SVM always outperforms the LS-SVM,
which does not resolve unclassifiable regions. This is because
the decision boundaries for the classifiable regions of the LS-
SVM are the same with those of the FLS-SVM with the
minimum operator. But this is not true for the FLS-SVM with
the average operator. Performance of the FLS-SVM with the
average operator is unstable; for some cases the performance
is inferior to that of the LS-SVM.

C. Iris Data

The Fisher iris data are widely used for evaluating classi-
fication performance of classifiers. They consist of 150 data
with four features and three classes; 50 data per class. We
used the first 25 data of each class as the training data and the
remaining 25 data of each class as the test data.

From Table II, the LS-SVM and the FLS-SVM show the
same performance. This means that there are no data in the
unclassifiable regions. The LS-SVM and the FLS-SVMs out-
performed the FSVMs. But the FLS-SVMs with the average
operator is inferior to the LS-SVM and the FLS-SVM.

D. Numeral Data

The numeral data were collected to identify Japanese license
plates of running cars. They include numerals, hiragana and
kanji characters. The original image taken from a TV camera
was preprocessed and each numeral was transformed into 12
features such as the number of holes and the curvature of a
numeral at some point.

In Table II, the recognition rates by the FSVM for d = 3, 4
are very low. This may be caused by a convergence problem
since the recognition rates of the training data are low. The
FSVM and the FLS-SVM with the minimum operator show

comparable performance. For three cases out of four, the
minimum operator performed better than the average operator
did.

E. Thyroid Data

Thyroid data include 15 digital features and more than 92%
of the data belong to one class. Thus the recognition rate
smaller than 92% is useless.

The recognition rates of both training and test data by the
FLS-SVM with minimum and average operators are much
lower than those of the FSVM. The reason is not clear but this
may be caused by the fact that almost all the input variables
are discrete and that almost all the training data belong to one
class. The results of the average operator are almost the same
as those of the minimum operator.

F. Blood Cell Data

Blood cell classification involves classifying optically
screened white blood cells into 12 classes using 13 features.
This is a very difficult problem; class boundaries for some
classes are ambiguous because the classes are defined accord-
ing to the growth stages of white blood cells.

The FLS-SVM with minimum and average operators per-
formed better than the FSVM on average and the FLS-SVM
with the minimum operator performed better than the FLS-
SVM with the average operator except for the polynomial
kernel with degree 2.

G. Hiragana Data

Hiragana-50 and hiragana-105 data are gathered from
Japanese license plates. The original gray-scale images of
hiragana characters were transformed into 5 × 10-pixel and
7 × 15-pixel images, respectively with the gray-scale range
being from 0 to 255. Then by performing gray-scale shift,
position shift, and random noise addition to the images, the
training and test data were generated. For the hiragana-105
data to reduce the number of input variables, i.e., 7×15 = 105,
the hiragana-13 data were generated by calculating the 13
central moments (Cash & Hatamian, 1989). For the hiragana-
105 and hiragana-50 data, we normalized the kernels.

For the hiragana-50, 105, and 13 data, the FLS-SVM with
the minimum operator and the conventional FSVM show
comparable performance except for dot product kernels. In
case of the average operator, in most cases results are not
good. Especially, they are very bad for dot product kernels.

H. Training Speed

Table III shows the training time of the FLS-SVM and con-
ventional FSVM for the blood cell data. In training the FSVM,
we used the primal-dual interior-point method with variable
chunking. Starting from 50 training data, 50 data were added
successively. In training the FLS-SVM, we used the Cholesky
factorization method to solve the set of linear equations. The
FLS-SVM requires 25 to 30 times longer training time than the
FSVM. This is because the matrix Ω shown in (15) becomes
large if the number of input data become large. Therefore, as



TABLE II

PERFORMANCE OF FSVM AND FLS-SVM

Data Kernel FSVM LS-SVM FLS-SVM (Min) FLS-SVM (Avg.)
Test (%) Train. (%) Test (%) Train. (%) Test (%) Train. (%) Test (%) Train. (%)

Iris Dot 93.33 (100) 97.33 (100) 97.33 (100) 92.00 (100)
Poly d = 2 94.67 (100) 98.67 (100) 98.67 (100) 96.00 (100)

d = 3 94.67 (100) 96.00 (100) 96.00 (100) 96.00 (100)
Numeral Dot 99.63 (100) 99.27 (99.51) 99.39 (99.75) 99.15 (94.04)

Poly d = 2 99.88 (100) 97.56 (100) 98.17 (100) 98.54 (100)
d = 3 89.88 (92.47) 98.17 (100) 98.78 (100) 98.66 (100)
d = 4 89.63 (92.35) 98.42 (100) 98.78 (100) 98.66 (100)

Thyroid Dot 97.49 (98.65) 93.35 (93.37) 93.79 (94.04) 93.73 (93.90)
Poly d = 2 97.58 (99.44) 94.75 (96.10) 95.10 (96.42) 95.27 (95.27)

d = 3 96.79 (99.87) 93.20 (97.85) 93.85 (97.93) 93.70 (98.20)
d = 4 95.95 (98.46) 90.67 (98.62) 92.12 (98.65) 92.01 (98.81)

RBF γ = 0.5 97.41 (98.57) 94.55 (95.84) 94.72 (95.56) 94.49 (95.33)
γ = 1 97.20 (98.78) 94.55 (95.71) 95.94 (94.78) 94.75 (95.81)

Blood cell Dot 90.90 (96.71) 92.48 (94.74) 92.61 (94.80) 88.32 (90.38)
Poly d = 2 92.19 (99.32) 93.52 (97.55) 93.71 (97.58) 92.72 (94.84)

d = 3 91.97 (99.94) 92.16 (99.26) 93.25 (99.26) 93.13 (99.16)
d = 4 92.84 (98.39) 90.13 (99.84) 92.10 (99.84) 92.16 (99.84)

RBF γ = 0.5 92.94 (97.32) 94.07 (96.48) 94.10 (96.51) 92.16 (94.51)
γ = 1 92.97 (98.03) 93.84 (96.87) 93.97 (96.93) 92.84 (95.35)

Hiragana-50a Dot 98.31 (100) 96.51 (99.96) 97.53 (99.96) 93.43 (98.48)
Poly d = 2 98.94 (100) 98.50 (100) 99.11 (100) 97.46 (100)

d = 3 98.92 (100) 98.48 (100) 99.15 (100) 97.20 (100)
d = 4 98.98 (100) 98.92 (100) 99.07 (100) 96.51 (100)

Hiragana-105 Dot 99.93 (100) 99.83 (99.90) 99.88 (100) 98.25 (98.97)
Poly d = 2 100 (100) 100 (100) 100 (100) 99.99 (100)

Hiragana-13 Dot 99.35 (99.95) 98.55 (99.45) 98.85 (99.57) 92.40 (96.17)
Poly d = 2 99.62 (100) 99.64 (99.96) 99.70 (99.96) 97.57 (99.98)

d = 3 99.56 (100) 99.69 (100) 99.79 (100) 99.61 (100)

TABLE III

TRAINING TIME

Kernel FSVM (sec) FLS-SVM (sec)
Dot 3 86
Poly d = 2 3 91

d = 3 3 96
d = 4 3 100

RBF γ = 0.5 4 98
γ = 1 4 98

indicated in Suykens & Vandewalle (1999), we need to use
iterative methods for speedup.

I. Influence of the Outliers

Since LS-SVMs use equality constraints instead of inequal-
ity constraints, they are vulnerable to outliers (Suykens &
Vandewalle, 1999). Only the difference between LS-SVMs and
L2-SVMs is that the former uses equality constraints while the
latter uses the inequality constraints. Thus, we compared their
recognition performance when outliers were included.

For evaluation, we used the blood cell data belonging to
Classes 2 and 3, which overlap heavily and are difficult to
classify. As outliers, we added 10 data belonging to classes

other than 2 and 3 to Class 2 training data. We used the
polynomial kernel with degree 2.
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Fig. 5. Influence of Outliers to LS-SVM

Figures 5 and 6 show the recognition rates against the mar-
gin parameter C for the LS-SVM and L2-SVM, respectively.
In the figures, the dotted lines show the recognition rates of
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Fig. 6. Influence of Outliers to L2-SVM

the training data and the solid lines show those of test data. We
calculated the recognition rate of the training data excluding
outliers.

In Fig. 5, the recognition rates of the training data for the
LS-SVM did not change much for 100 < C < 10000 even if
the outliers were included. But the recognition rate of the test
data dropped rapidly, especially when outliers were included.

In Fig. 6, the recognition rates of the training data for the
L2-SVM increased as the value of C was increased and there
is no much difference between the recognition rates with and
without outliers. In addition, the recognition rate of the test
data with outliers was almost constant for the change of C and
for a large value of C, it is better than that without outliers.

Comparing Figs. 5 and 6, we can see that the L2-SVM is
more robust than the LS-SVM for outliers.

V. CONCLUSIONS

In this paper, we discussed fuzzy least squares support vec-
tor machines that resolve unclassifiable regions for multiclass
problems. In defining membership functions for a class, we
used minimum and average operators.

We evaluated the effectiveness of our method using several
benchmark data sets. In most cases the fuzzy least squares
support vector machine with the minimum operator showed
comparable performance with the fuzzy support vector ma-
chine but the fuzzy least squares support vector machine with
the average operator showed the worst performance.
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