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FUZZY LINEAR FRACTIONAL SET COVERING
PROBLEM WITH IMPRECISE COSTS

Rashmi Gupta
1

and Ratnesh Rajan Saxena
2

Abstract. Set covering problems are in great use these days, these
problems are applied in many disciplines such as crew scheduling prob-
lems, location problems, testing of VLSI circuits, artificial intelligence
etc. In this paper α-acceptable optimal solution is given for the fuzzy
linear fractional set covering problem where fuzziness involved in the
objective function. At first the fuzzy linear fractional problem is being
converted in to crisp parametric linear fractional set covering problem
then a linearization technique is used to obtain an optimal solution to
this parametric problem. This optimal solution will also be the fuzzy
optimal solution for the original problem. An example is also provided
to illustrate the algorithm.

Keywords. Fuzzy fractional set covering problem, α-optimal solution,
fuzzy solution.
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1. Introduction

Mathematical programming problems finds an extreme use in a large num-
ber of domains. An important class of mathematical programming is Fractional
Set Covering Problems which tackles the situations where a ratio of functions is
to be minimized. Fractional Programming has attracted the attention of many
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researchers in the past but not much attention is being given to fuzzy fractional
set covering problems though they have many applications in real life. Scheduling
is a major application of the set covering problems. Other application areas are
for example resource allocation, pattern recogonization and machine learning. Re-
cently fuzzy set covering problem have been studied by Saxena and Gupta [11,12],
Stanojević and Stanojević [14], Huang et al. [2], Sahraeian and Sdeq Kazemi [9],
Shavandi and Mahlooji [13], Zimmermann [17], Li and Kwan [5,6]. They discussed
various approaches for solving set covering problems. In this paper our objective is
to consider a fuzzy linear fractional set covering problem with fuzzy cost coefficient
and develop an algorithm which provides a range in the solution for the decision
maker i.e. a fuzzy solution.

Often, a decision maker is supposed to be able to exactly fit all numerical values
taking part in the problem, but frequently he does not know those exact values,
rather he knows some approximations of them and therefore he may feel more
comfortable in specifying vague (fuzzy) values rather than point values. This paper
considered the case in which a decision maker has a set covering problem in which
the coefficients defining the objective function are given by fuzzy numbers whereas
the constraints set is a conventional one. Thus the existence of the membership
function is assumed. These membership functions will capture the knowledge that
the decision maker has about each cost taking part in to account.

The paper has the following structure. In Section 2, Fuzzy Linear Fractional Set
Covering Problems and some definitions are presented. In Section 3, algorithm is
presented to solve the given fuzzy linear fractional set covering problem. In Sec-
tion 4, numerical example is given in support of the proposed algorithm. Section 5,
concludes the paper.

2. Theoretical development

Linear set covering problems (CP)

Set covering problem is a classical problem in computer science and complexity
theory and is one of the most important discrete optimization problem because
it serves as a model for real world problems. Real world problem that can be
modeled as set covering problem include facility location problem and airline crew
scheduling problem, etc.

Analytically the problem is, consider a set I = {1, 2, . . . , m} and a set P =
{P1, P2, . . . , Pn}, where Pj ⊆ I for each j ∈ J = {1, 2, . . . , n}. A subset J∗ of J is
said to be a cover of I if

⋃
j∈J∗ Pj = I. Let a cost cj > 0 be associated with every

j ∈ J . Then the total cost of the cover J∗ is equal to
∑

j∈J∗ cj .
The linear set covering problem (CP) is to find a cover of minimum cost subject

to the condition that at least one of the utility is satisfied. Mathematically, the
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problem is

(CP) min f(x) =
n∑

j=1

cjxj

subject to
n∑

j=1

aijxj ≥ 1, i ∈ I (2.1)

xj = 0 or 1, j ∈ J (2.2)

where xj =

{
1 if j is in the cover
0 otherwise

and aij =

{
1 if i ∈ Pj

0 otherwise.
In matrix form, (CP) can be written as

min f(x) = cx

subject to Ax ≥ b,

where xT = (x1, x2, . . . , xn) with xj = 0 or 1, j = 1, 2, . . . , n. Here c =
(c1, c2, . . . , cn) ∈ R

n is a row vector. A is an m × n matrix of zeros and ones
and bT = (1, 1, . . . , 1) is a row vector of ones.

The mathematical format of Linear Fractional Set-Covering Problem is

(LFP) min f(x) =

n∑
j=1

cjxj + p

n∑
j=1

djxj + q

subject to
n∑

j=1

aijxj ≥ 1, i ∈ I (2.3)

xj = 0 or 1, j ∈ J, (2.4)

where xj =

{
1 if j is in the cover
0 otherwise

and aij =

{
1 if i ∈ Pj

0 otherwise.
It is assumed that cj ’s and dj ’s are non-negative numbers, p and q are constants

such that
n∑

j=1

djxj + q > 0.

In matrix form, (LFP) can be written as

Minimize f(x) =
cx + p

dx + q

subject to Ax ≥ b

where xT = (x1, x2, . . . , xn) with xj = 0 or 1, j = 1, 2, . . . , n. Here c =
(c1, c2, . . . , cn) ∈ R

n and d = (d1, d2, . . . , dn) ∈ R
n are row vectors, A is an m × n

matrix of zeros and ones and bT = (1, 1, . . . , 1) is a row vector of ones, q is a scalar
such that dx + q > 0.
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Fuzzy linear fractional set covering problem (FLP)

If the coefficient and the constants in the objective function of problem (LFP)
becomes fuzzy in nature then problem (LFP) translates to fuzzy linear fractional
set covering problem (FLP) i.e.

(FLP) Min f(x) =

n∑
j=1

c̃jxj + p̃

n∑
j=1

d̃jxj + q̃

subject to
n∑

j=1

aijxj ≥ 1, i ∈ I (2.5)

xj = 0 or 1, j ∈ J, (2.6)

where xj =

{
1 if j is in the cover
0 otherwise

and aij =

{
1 if i ∈ Pj

0 otherwise.

It is assumed that c̃j ’s and d̃j ’s are non-negative and q̃ is a scalar such that∑n
j=1 d̃jxj + q̃ > 0.
In matrix form, (FLP) can be written as

Minimize f(x) =
c̃x + p̃

d̃x + q̃

subject to Ax ≥ b,

where xT = (x1, x2, . . . , xn) with xj = 0 or 1, j = 1, 2, . . . , n. Here c̃ =
(c̃1, c̃2, . . . , c̃n), d̃ = (d̃1, d̃2, . . . , d̃n), p̃ = (p̃1, p̃2, . . . , p̃n) and q̃ = (q̃1, q̃2, . . . , q̃n) are
fuzzy row vectors, A is an m × n matrix of zeros and ones and bT = (1, 1, . . . , 1)
is a row vector of ones.
Following definitions are used in the development of the theory:

2.1 Cover Solution: a solution X which satisfies (2.1) and (2.2) is said to be a
cover solution.

2.2 Redundant Cover: given a cover J of I, a column j∗ ∈ J is said to be
redundant if J − j∗ is also a cover. If a cover contains one or more redundant
columns, it is called a redundant cover.
Note that a column j∗ is redundant with respect to the cover J iff

∑
j∈J aij ≥

2 for all i ∈ Pj∗ .
2.3 Prime Cover: a cover J∗ is said to be a prime cover, if none of the columns

corresponding to j ∈ J∗ is redundant. A solution corresponding to the prime
cover is called a prime cover solution.

Following theorems forms the basis for the algorithm to enumerate (FLP).

Theorem 2.1 ([10]). If J∗ = {j : xj = 1} is any prime cover of (LFP) then
x = {xj} is an extreme point of the convex set formed by feasible region.
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Theorem 2.2. If the objective function in (LFP) has finite value then, there
exists a prime cover solution where this value is attained.

Proof. Let a finite optimal solution of (LFP) exists at x0 ∈ S then the optimal
value is

f(x0) =
cx0 + p

dx0 + q
·

Let J0 be the cover corresponding to the solution x0. If J0 is the prime cover,
then it is done, otherwise a prime cover can be derived from J0 by dropping the
redundant columns. Let J1 be the prime cover obtained from J0 and x1 be the
corresponding solution of (LFP) such that

f(x1) =
cx1 + p

dx1 + q
·

Since c, d ≥ 0, p and q are positive numbers and J1 ⊆ J0, therefore,

cx1 + p

dx1 + q
≤ cx0 + p

dx0 + q

or
f(x1) ≤ f(x0).

As f(x0) is the optimal value of f(x), therefore, f(x1) ≥ f(x0). Hence f(x1) =
f(x0). Which proves that there exist a prime cover solution yielding the optimal
value of the objective function of (LFP). �

Theorem 2.3 ([10]). Let f(x) be a pseudo convex function defined on feasible set
S and x∗ ∈ S then x∗ is an optimal solution for the program

Minimize
x∈S

f(x)

if and only if, x∗ is an optimal solution for the program

Minimize
x∈S

∇f(x∗)T x

where S is the feasible region.

3. Development of the algorithm

Let F (R)denotes the set of all fuzzy numbers and let r̃ ∈ F (R) with membership
function μr̃ which assigns a real number μr̃(x) ∈ [0, 1] to each element, where the
value μr̃(x) at x represents the grade of membership of x in r̃. Then r̃ satisfies:

1. {x : x ∈ R, μr̃(x) = 1} �= φ i.e., r̃ is normal.
2. μr̃ is an upper semi-continuous quasi-concave function on R.
3. Closure of the support set of μr̃, i.e. cl{x ∈ R : μr̃(x) > 0} is bounded.
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The α-cut of the fuzzy number r̃ is given by

r̃α =

{{x | x ∈ R, μr̃(x) ≥ α} if α ∈ (0, 1]

cl{x | x ∈ R, μr̃(x) > 0} if α = 0
.

It is clear from above that, for every α ∈ [0, 1], the α-cut set of r̃ is a finite closed
interval [rL

α , rR
α ] on R. Let us call [rL

α , rR
α ] an α-interval of confidence of the fuzzy

number r̃ which has a specific well-known meaning in fuzzy arithmetic.
Since the set F (R) is not linearly ordered, in order to rank two fuzzy numbers in

F (R) we need to define a suitable ordering in F (R). Dubois and Prade [1] proposed
the possibility and the necessity indices to rank the fuzzy numbers. In this paper
we make use of following possibility and necessity indices described by Dubois and
Prade [1], and Wu [15].

We take the ordering between two fuzzy numbers, r̃, s̃ ∈ F (R), as follows:
r̃ �α s̃, iff Poss (r̃ 	 s̃) ≥ α and Ness (r̃ � s̃) ≥ α.

The proof of the following proposition can be found in Wu [15].

Proposition 3.1. r̃ �α s̃, iff rL
α ≥ sL

α and rR
α ≥ sR

α ∀ α ∈ [0.5, 1].

In what follows, we will write s̃ �α r̃, iff r̃ �α s̃. Also by r̃ ≺α s̃, we will mean
that rL

α < sL
α and rR

α < sR
α , ∀ α ∈ [0.5, 1], and we will say, r̃ 	α s̃, iff s̃ ≺α r̃.

A fuzzy number r̃ will be called non-negative fuzzy number, denoted by r̃ � 0,
if for every α ∈ [0.5, 1], we have [rL

α , rR
α ] ⊂ R+, the non-negative real orthant. Also

a fuzzy number r̃ will be termed as positive fuzzy number, denoted by r̃ 	 0, if
for every α ∈ [0.5, 1], we have, [rL

α , rR
α ] ⊂ R+\{0} := R++.

Denote the sets of non-negative and positive fuzzy numbers, respectively by
F (R+) and F (R++).

Applying the interval arithmetic, some main operations for fuzzy numbers r̃, s̃ ∈
F (R) are described as below (Kaufmann and Gupta [3], Zimmermann [17]).

1. Addition: (r̃ + s̃)α =
[
rL
α + sL

α, rR
α + sR

α

]
2. Scalar multiplication: (k · r̃)α =

[
krL

α , krR
α

]
if k > 0 and (k · r̃)α =

[
krR

α , krL
α

]
if k < 0.

3. Multiplication:
(r̃ · s̃)α =

[
min

(
rL
αsL

α, rL
αsR

α , rR
α sL

α, rR
α sR

α

)
, max

(
rL
αsL

α, rL
αsR

α , rR
α sL

α, rR
α sR

α

)]
4. Division:

(r̃ : s̃)α =
[
rL
α , rR

α

]
:
[
sL

α, sR
α

]
=

[
min

(
rL
α

sL
α

,
rL
α

sR
α

,
rR
α

sL
α

,
rR
α

sR
α

)
, max

(
rL
α

sL
α

,
rL
α

sR
α

,
rR
α

sL
α

,
rR
α

sR
α

)]
,

except for sL
α ≤ 0 ≤ sR

α .

If r̃, s̃ ∈ F (R+), then (r̃ · s̃)α = [rL
αsL

α, rR
α sR

α ], ∀ α ∈ [0.5, 1].
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And if, r̃ ∈ F (R+) ands̃ ∈ F (R++), then

(r̃ : s̃)α =
[

rL
α

sR
α

,
rR
α

sL
α

]
, ∀ α ∈ [0.5, 1].

Vector case, let r̃ ∈ Fn(R) = F (R) × F (R) × · · · × F (R), i.e. r̃ = (r̃1, · · · , r̃n),
where r̃i ∈ F (R), ∀ i = 1, 2, · · · , n, we define rL

α = (rL
1α, · · · , rL

nα)T and rR
α =

(rR
1α, · · · , rR

nα)T . The order relation between two fuzzy vectors r̃, s̃ ∈ Fn(R) is
defined as follows: r̃ �α s̃ iff r̃i �α s̃i ∀ i = 1, 2, · · · , n.

On account of Proposition 3.1, it follows that r̃ �α s̃ iff r̃L
iα ≤ s̃L

iα and r̃R
iα ≤ s̃R

iα

∀ i = 1, 2, · · · , n ∀ α ∈ [0.5, 1].
Suppose r̃ ∈ Fn(R), x ∈ R

n, x ≥ 0. Then the product (r̃x) is a fuzzy number
whose α-cut is given by [(r̃x)]α = [(r̃x)L

α, (r̃x)R
α ] = [[(r̃L

α )T x, (r̃R
α )T x].

Now consider the problem (FLP):
Let S = {x : x ∈ Rn, x = 0 or 1,

∑
aijxj ≥ 1, i = 1, · · · , m, j = 1, · · · , n} be the

feasible set of (FLP).
Let α ∈ [0.5, 1] be the grade of satisfaction associated with the fuzzy objective

function of (FLP). For consistency with the ranking relation defined earlier we
assume that α lie in the interval [0.5, 1]. As for convention we assume that, (c̃x +
p̃) ∈ F (R+) and (d̃x + q̃) ∈ F (R++), ∀ x ∈ S, ∀ α ∈ [0.5, 1].

Definition 3.2 (α-Optimal Solution). A vector x∗
α ∈ S is said to be an α-optimal

solution of the problem (FLP) if there does not exist any x ∈ S such that z̃(x) ≺α

z̃(x∗
α). (Ref. [7])

Since x ≥ 0, the problem (FLP) can be written as

(FLP)α Min fα(x)=

⎛⎝ n∑
j=1

[
cL
jα, cR

jα

]
xj +

[
pL

α, pR
α

]⎞⎠:

⎛⎝ n∑
j=1

[
dL

jα, dR
jα

]
xj +

[
qL
α , qR

α

]⎞⎠
subject to x ∈ S.

Taking fα(x) = [fL
α (x), fR

α (x)], and using the division operation of fuzzy numbers,
(FLP)α reduces to an equivalent bi-objective programming problem (BOP)α

(Ref. [7])

(BOP)α min(fL
α (x), fR

α (x)) =

⎛⎜⎜⎝
n∑

j=1

cL
jαxj + pL

α

n∑
j=1

dR
jαxj + qR

α

,

n∑
j=1

cR
jαxj + pR

α

n∑
j=1

dL
jαxj + qL

α

⎞⎟⎟⎠
subject to x ∈ S.

Remark 3.3. For α ∈ [0.5, 1], a vector x∗
α ∈ S is an α-optimal solution of the

problem (FLP) if there does not exist any x ∈ S such that (fL
α (x∗

α), fR
α (x∗

α)) >
(fL

α (x), fR
α (x)), i.e. x∗

α is a weakly efficient solution (Ref. [8]) of the bi-objective
set covering problem (BOP)α.
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We now associate two linear fractional set covering problems (LFP)α and
(RFP)α with (BOP)α, for every α ∈ [0.5, 1]. (Ref. [7])

(LFP)α Min fL
α (x) =

⎛⎜⎜⎝
n∑

j=1

cL
jαxj + pL

α

n∑
j=1

dR
jαxj + qR

α

⎞⎟⎟⎠
subject to x ∈ S

(RFP)α Min fR
α (x) =

⎛⎜⎜⎝
n∑

j=1

cR
jαxj + pR

α

n∑
j=1

dL
jαxj + qL

α

⎞⎟⎟⎠
subject to x ∈ S

Let xL
α and xR

α be, respectively, the optimal solutions of (LFP)α and (RFP)α.
Then, for any x ∈ S, we have(

fL
α (x), fR

α (x)
) ≥ (

fL
α

(
xL

α

)
, fR

α

(
xR

α

))
and (

fL
α

(
xR

α

)
, fR

α

(
xR

α

)) �> (
fL

α (x), fR
α (x)

)(
fL

α

(
xL

α

)
, fR

α

(
xL

α

)) �> (
fL

α (x), fR
α (x)

)
.

Thus xL
α and xR

α are weakly efficient solutions of the bi-objective set covering
problem (BOP)α. Moreover, since xL

α, xR
α ∈ S so we also have

fL
α

(
xL

α

) ≤ fL
α

(
xR

α

) ≤ fR
α

(
xR

α

) ≤ fR
α

(
xL

α

)
.

Remark 3.4. It may be noted that the α-interval of confidence [(fL
α (xL

α), fR
α (xL

α)]
of (LFP)α evaluated at xL

α is the superset of the α-interval of confidence
[(fL

α (xR
α ), fR

α (xR
α )] of (RFP)α evaluated at xR

α . From the decision maker view
point, the larger α-interval of confidence offers more flexibility leading to more
acceptability.

The above remark along with Definition 3.1 motivated us to define the following
new concept.

Definition 3.5. For α ∈ [0.5, 1], the xL
α vector is called an α-acceptable opti-

mal solution of (FLP). The corresponding objective function value, f̃(xL
α) =

[(fL
α (xL

α), fR
α (xL

α)], is called an α-acceptable optimal value of the problem (FLP).

It is important to point out here that the Definition 3.2 takes in to consideration
the crisp scenario when α = 1.
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Now to find the optimal solution for

(LFP)α Min fL
α (x) =

⎛⎜⎜⎝
n∑

j=1

cL
jαxj + pL

α

n∑
j=1

dR
jαxj + qR

α

⎞⎟⎟⎠
subject to x ∈ S

we need to show that the objective function of (LFP)α to be pseudo-convex. This
is proved in the following theorem.

Theorem 3.6. The objective function of (LFP)α is pseudo-convex.

Proof. Since
n∑

j=1

dR
jαxj + qR

α and
∑n

j=1 cL
jαxj +pL

α are linear and, therefore, convex

functions, we conclude that
∑ n

j=1 cL
jαxj+pL

α∑
n
j=1 dR

jαxj+qR
α

is a pseudo-convex function. �

The following algorithm is constructed to enumerate the given problem:

Algorithm.

Step 1. Given (FLP) form the corresponding parametric programming problem
(RFP)α and (LFP)α with parameter α.

Step 2.Choose any value of the parameter α lying in the interval [0.5, 1] so that
(LFP)α converts to (LFP).

Step 3. Associated with (LFP) form the corresponding continuous program
(LFP’) by embedding the feasible region of (LFP) into Rn(a cube with n ver-
tices). Let S be the feasible set for (LFP’).

Step 4. Choose a feasible solution x0 ∈ S such that ∇f(x0) �= 0. Form the
corresponding linear program (LP). On solving (LP) let x1 be its optimal solution.
If x1 = x0 and of the 0-1 form then this is the required solution of the given
problem, otherwise let S1 = {x1}.
Step 5. Starting with the point x1, form corresponding (LP), let its optimal
solution be x2 �= x1. Update S1 i.e. S1 = {x1, x2}. Step 6. Repeat Step 5 for the
point x2 and suppose at the ith stage S1 = {x1, x2, . . . , xi}.
Stop if at the (i+1)th stage xi+1 ∈ Si, then xi+1 is the optimal solution of (LFP’).

Step 7. If xi+1 is an optimal solution of the form 0-1 then it is a solution of
(LFP) otherwise, go to Step 8.

Step 8. Apply Gomory cuts to find a solution of the 0-1 form and the correspond-
ing prime cover.

Step 9. Suppose optimal solution of (LFP) be x∗ and x∗
l , x∗

r be the corresponding
optimal value of (LFP)α and (RFP)α corresponding to x∗ respectively, then the
optimal solution for the given (FLP) be x∗ with optimal value [x∗

l , x
∗
r ].
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Note. The algorithm must terminate after finite number of steps as it moves only
on the vertices of the feasible region, which are finite in numbers, i.e. convergence
is must.

4. Numerical example

To illustrate the efficiency of the proposed method consider the following
examples:

Example 1. Consider the problem (FLP)

min f(x) =
c̃1x1 + c̃2x2 + c̃3x3 + p̃

d̃1x1 + d̃2x2 + d̃3x3 + q̃

subject to x1 + x2 ≥ 1

x2 + x3 ≥ 1
x1 + x3 ≥ 1 (4.1)
xi = 0 or 1, i = 1, 2, 3

where the membership functions of c̃1, c̃2, c̃3, p̃, d̃1, d̃2, d̃3 and q̃ are

c̃1(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 x < 1
x − 5 5 ≤ x ≤ 6
1 6 ≤ x ≤ 7
(20 − x)/13 7 < x ≤ 20
0 20 < x

, c̃2(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 x < 16
x − 16 16 ≤ x ≤ 17
1 17 ≤ x ≤ 18
(40 − x)/22 18 < x ≤ 40
0 40 < x

c̃3(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 x < 24
x − 24 24 ≤ x ≤ 25
1 25 ≤ x ≤ 26
(50 − x)/24 26 < x ≤ 50
0 50 < x

, p̃(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 x < 2
(x − 2)/3 2 ≤ x < 5
(9 − x)/4 5 ≤ x ≤ 9
0 x ≥ 9

d̃1(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 x < 4
(x − 4)/2 4 ≤ x < 6
(8 − x)/2 6 ≤ x ≤ 8
0 x ≥ 8

, d̃2(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 x < 5
(x − 5)/2 5 ≤ x < 7
(12 − x)/5 7 ≤ x ≤ 12
0 x ≥ 12

d̃3(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 x < 6
(x − 6)/5 6 ≤ x < 11
(13 − x)/2 11 ≤ x ≤ 13
0 x ≥ 13

, q̃(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 x < 15
x − 15 15 ≤ x < 16
17 − x 16 ≤ x ≤ 17
0 x ≥ 17
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Step 1. To solve the above problem, the following (LFP)α and (RFP)α problems
are considered

(LFP)α min z(x) =
(α + 5)x1 + (α + 16)x2 + (α + 24)x3 + 3α + 2

(8 − 2α)x1 + (12 − 5α)x2 + (13 − 2α)x3 + 17 − α

subject to x1 + x2 ≥ 1
x2 + x3 ≥ 1 (4.2)
x1 + x3 ≥ 1

xi = 0 or 1; i = 1, 2, 3.

(RFP)α min z(x) =
(20−13α)x1+(40 − 22α)x2+(50−24α)x3−4α+9
(2α + 4)x1 + (2α + 5)x2 + (5α + 6)x3 + α + 15

subject to x1 + x2 ≥ 1

x2 + x3 ≥ 1 (4.3)
x1 + x3 ≥ 1
xi = 0 or 1; i = 1, 2, 3.

Step 2. Put α = 1/2, above problem reduces to

(LFP) min z(x) =
11x1 + 33x2 + 49x3 + 7
14x1 + 19x2 + 24x3 + 33

subject to x1 + x2 ≥ 1
x2 + x3 ≥ 1
x1 + x3 ≥ 1
xi = 0 or 1; i = 1, 2, 3.

where J = {1, 2, 3}, I = {1, 2, 3}.

Step 3. The corresponding (LFP’) is

Min f(x) =
11x1 + 33x2 + 49x3 + 7
14x1 + 19x2 + 24x3 + 33

X = (x1, x2, x3) ∈ S = {(x1, x2, x3)|x1 + x2

≥ 1, x1 + x3 ≥ 1, x1, x2, x3 ≥ 0}.

Step 4. Choose X0 = (1, 1, 0) as one of the feasible solution of (LFP’) with
∇f(X0) �= 0.
The corresponding (LP) is

Minimize∇f(X0)T X = 0.003x1 + 0.278x2 + 0.416x3 : X ∈ S.
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After applying the simplex algorithm the final optimal table is as follows:

Cj −0.003 −0.278 −0.461 0 0 0

CB B XB Y1 Y2 Y3 S1 S2 S3

−0.003 X1 1 1 0 1 0 0 −1

−0.278 X2 1 0 1 1 0 −1 0

0 S1 1 0 0 2 1 −1 −1

−0.281 0 0 0.18 0 0.278 0.003

Hence the optimal solution of (LP) is x1 = (1, 1, 0), which is equal to x0 = (1, 1, 0)
also of the 0–1 form, therefore this is the optimal solution for the (LFP) with
optimal value 0.77.

Step 5. The optimal values of (LFP)α and (RFP)α corresponding to x1 =
(1, 1, 0) are 0.77 and 1.87 respectively. Hence the optimal value for the given (FLP)
is f(x) = [0.77, 1.87].

5. Conclusion

In this paper a solution technique to solve a linear fractional set covering prob-
lem with fuzzy parameters in the objective function is being given. Given a fuzzy
linear fractional set covering problem, the corresponding bi-objective set covering
problem is formed. Then to solve this problem a linearization technique is being
given. Obviously this is not the only way to solve the problem considered and
therefore one can assure that according to both the interests of the decision maker
and the nature of the problem. Different methods of solution may be used to ob-
tain optimal solutions. More importantly, this approach gives the fuzzy solution
to the fuzzy problem, which is very useful for the decision maker since it provides
the range in the solution.
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