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Fuzzy logic is a modeling method well suited for the control of complex and non-linear
systems.This paper illustrates some of the power of fuzzy logic through a simple control
example. For the analytical chemist, fuzzy logic incorporates imprecision from measurement
noise as well as from linguistic process descriptions to produce operational control systems.

Introduction
The analytical chemist is often asked to
develop measurement methods to provide
information required for the control of
complex systems ranging from large scale
chemical processes to medical diagnoses.
Although the behavior of complex or non-
linear systems is difficult or impossible to
describe using numerical models, 
quantitative observations are often required
to make quantitative control decisions.

These decisions could be the determination
of a flow rate for a chemical process or a
drug dosage in medical practice. In the
development of appropriate methodology,
the analytical chemist must address the
issue of precision. This requires the
understanding of the form of the control
model as well as measurement noise.

In any system, measurement noise is a
significant source of imprecision. Since
noise has a mean of zero, increasing the
number of readings and averaging them
decreases the influence of the random
component. With sufficient replicates the
result approaches a ‘good’ measurement.
Statistical methods can be used to
determine the number of replicates
required to achieve an acceptable level of
precision.

The form of the control model also
determines the appropriate level of
precision in the result obtained. Numerical
models provide high precision, but the
complexity or non-linearity of a process
may make a numerical model unfeasible.
In these cases, linguistic models provide
an alternative. Here the process is
described in common language. In human
activities such as economics, this has
served well but the automation of a
process based on linguistic models is
difficult. This is, in part, due to the
vagueness associated with the words used.
Each user of a descriptive word has a
somewhat different definition of the value
carried by that word. To use a common
example, “hot”, when used to describe the
temperature of a room, conveys very

different thermometer readings to someone
from a nordic climate than to someone
from the tropics. This lack of precision is
not random so vagueness can not be
treated by statistical means.

Fuzzy logic was first presented by Lotfi
Zadeh in 1965,1 to formalize a
mathematical approach to deal with these
complex or ill defined systems2 and is,
therefore, a relatively new mathematical
paradigm. Its basis is a consideration of
overlapping sets and the definition of
operators to manipulate these sets. The
linguistic model is built from a set of
IF–THEN rules which describe the control
model. Although Zadeh was attempting
to model human activities, Mamdani3
showed that fuzzy logic could be used to
develop operational automatic control
systems.

The mechanics of fuzzy logic
The mechanics of fuzzy mathematics
involve the manipulation of fuzzy
variables through a set of linguistic
equations which can take the form of
IF–THEN rules. Much of the fuzzy
literature uses set theory notation which
obscures the ease of the formulation of a
fuzzy controller. Although the controllers
are simple to construct, the proof of
stability and other validations remain
important topics. The outline of fuzzy

operations will be shown here through the
design of a familiar room thermostat.4

A fuzzy variable is one of the
parameters of a fuzzy model which can
take one or more fuzzy values, each
represented by a fuzzy set and a word
descriptor. The room temperature is the
variable shown in Fig. 1. Three fuzzy sets:
‘hot’, ‘cold’ and ‘comfortable’ have been
defined by membership distributions over
a range of actual temperatures.

The power of a fuzzy model is the
overlap between the fuzzy values. A single
temperature value at an instant in time can
be a member of both of the overlapping
sets. In conventional set theory, an object
(in this case a temperature value) is either
a member of a set or it is not a member.
This implies a crisp boundary between the
sets. In fuzzy logic, the boundaries
between sets are blurred. In the overlap
region, an object can be a partial member
of each of the overlapping sets. The
blurred set boundaries give fuzzy logic its
name. By admitting multiple possibilities
in the model, the linguistic imprecision is
taken into account.

The membership functions defining the
three fuzzy sets shown in Fig. 1 are
triangular. There are no constraints on the
specification of the form of the
membership distribution. The Gaussian
form from statistics has been used,5 but

Fig. 1 Room temperature
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the triangular form is commonly chosen as
its computation is simple. The number of
values and the range of actual values
covered by each one is also arbitrary. Finer
resolution is possible with additional sets,
but the computation cost increases.
Guidance for these choices is provided by
Zadeh’s “Principle of Incompatibility”:6

“As the complexity of a system
increases, our ability to make precise and
yet significant statements about its
behavior diminishes until a threshold is
reached beyond which precision and
significance (or relevance) become almost
mutually exclusive characteristics.”

The operation of a fuzzy controller
proceeds in three steps. The first is
fuzzification, where measurements are
converted into memberships in the fuzzy
sets. The second step is the application of
the linguistic model, usually in the form of
IF–THEN rules. Finally the resulting fuzzy
output is converted back into physical
values through a defuzzfication process.

Fuzzfication. For a single measured value,
the fuzzification process is simple, as
shown in Fig. 1. The membership
functions are used to calculate the
memberships in all of the fuzzy sets. Thus,
a temperature of 15 °C becomes three
fuzzy values, 0.66 ‘cold’, 0.33
‘comfortable’ and 0.00 ‘hot’.

Foulloy and Galichet7 present the use of
fuzzy inputs rather than single measured
values. Here the input was a distribution
which incorporates the measured value and
its confidence interval. A different
approach would be to collect a series of
measurements as a histogram and use this
as the fuzzy input as shown in Fig. 2. In
either case, the fuzzy inference is extended
to include the uncertainty due to
measurement error as well as the
vagueness in the linguistic descriptions.

In Fig. 2 the measurement data
histogram as been normalized so that its
peak is a membership value of 1.0 and it
can be used as a fuzzy set. The
membership of the histogram in ‘cold’ is

given by:1
Max{Min[mCOLD(T),mHISTOGRAM(T)]}
where the maximum and minimum
operations are taken using the membership
values at each point T over the
temperature range of the two distributions.
The minimum operation yields the overlap
region of the two sets and the maximum
operation gives the highest membership in
the overlap. The membership of the
histogram in ‘cold’, indicated by the arrow
in Fig. 2, is 0.73. By similar operations,
the membership of the histogram in
‘comfortable’ and ‘hot’ are 0.40 and 0.00.
It is interesting to note that there is no
requirement that the sum of all
memberships be 1.00.

Rule application. The linguistic model of
a process is commonly made of a series of
IF–THEN rules. These use the measured
state of the process, the rule antecedents,
to estimate the extent of control action, the
rule consequents. Although each rule is
simple, there must be a rule to cover every
possible combination of fuzzy input
values. Thus, the simplicity of the rules
trades off against the number of rules. For
complex systems the number of rules
required may be very large.

The rules needed to describe a process
are often obtained through consultation
with workers who have expert knowledge
of the process operation. These experts
include the process designers, but more
importantly, the process operators. The
rules can include both the normal
operation of the process as well as the
experience obtained through upsets and
other abnormal conditions. Exception
handling is a particular strength of fuzzy
control systems.

For very complex systems, the experts
may not be able to identify their thought
processes in sufficient detail for rule
creation. Rules may also be generated
from operating data by searching for
clusters in the input data space. Chen and
Liu8 used a principal component analysis
to develop IF–THEN rules for the fault

analysis of a chemical reactor system. The
result identified faults from simulated data
with very few errors.

A simple temperature control model can
be constructed from the example of Fig.
1;4

Rule 1: IF (Temperature is Cold) THEN
(Heater is On)

Rule 2: IF (Temperature is Comfortable)
THEN (Heater is Off)

Rule 3: IF (Temperature is Hot) THEN
(Heater is Off)

In Rule 1, (Temperature is Cold) is the
membership value of the actual
temperature in the ‘cold’ set. Rule 1
transfers the 0.66 membership in ‘cold’ to
become 0.66 membership in the heater
setting ‘on’. Similar values from rules 2
and 3 are 0.33 and 0.00 in the ‘off’ setting
for the heater. When several rules give
membership values for the same output
set, Mamdani3 used the maximum of the
membership values. The result for the
three rules is then 0.66 membership in ‘on’
and 0.33 membership in ‘off’.

The rules presented in the above
example are simple yet effective. To
extend these to more complex control
models, compound rules may be
formulated. For example, if humidity was
to be included in the room temperature
control example, rules of the form:
IF (Temperature is Cold) AND (Humidity
is High) THEN (Heater is ON)
might be used. Zadeh1 defined the logical
operators as AND = Min(mA, mB) and OR
= Max(mA, mB), where mA and mB are
membership values in sets A and B
respectively. In the above rule, the
membership in ‘on’ will be the minimum
of the two antecedent membership values.
Zadeh also defined the NOT operator by
assuming that complete membership in the
set A is given by mA = 1. The membership
in NOT(A) is then given by mNOT(A) = 1 2
mA. This gives the interesting result that A
AND NOT(A) does not vanish, but gives a
distribution corresponding to the overlap
between A and its adjacent sets.

Defuzzification. The results of rule
application are membership values in each
of the consequent or output sets. These can
be used directly where the membership
values are viewed as the strength of the
recommendations provided by the rules. It
is possible that several outputs are
recommended and some may be
contradictory (e.g. heater on and heater
off). In automatic control, one physical
value of a controller output must be
chosen from multiple recommendations. In
decision support systems, there must be a
consistent method to resolve conflict and
define an appropriate compromise.
Defuzzification is the process forFig. 2 Fuzzification with measurement noise.
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converting fuzzy output values to a single
value or final decision. Two methods are
commonly used.

The first is the maximum membership
method. All of the output membership
functions are combined using the OR
operator and the position of the highest
membership value in the range of the
output variable is used as the controller
output. This method fails when there are
two or more equal maximum membership
values for different recommendations.
Here the method becomes indecisive and
does not produce a satisfactory result.

The second method uses the center of
gravity of the combined output distribution
to resolve this potential conflict and to
consider all recommendations based on the
strengths of their membership values. The
center of gravity is given by: XF =
∫xm(x)dx/∫m(x)dx where x is a point in the
output range and XF is the final control
value. These integrals are taken over the
entire range of the output. By taking the
center of gravity, conflicting rules
essentially cancel and a fair weighting is
obtained.

The output values used in the thermostat
example are singletons.4 Singletons are
fuzzy values with a membership of 1.00 at
a single value rather than a membership
function between 0 and 1 defined over an
interval of values. In the example there
were two, ‘off’ at 0% power and ‘on’ at
100% power. With singletons, the center of
gravity equation integrals become a simple
weighted average. Applying the rules gave
mON = 0.67 and mOFF = 0.33. Defuzzifying
these gives a control output of 67% power.
Although only two singleton output
functions were used, with center of gravity
defuzzification, the heater power decreases
smoothly between fully on and fully off as
the temperature increases between 10 °C
and 25 °C.

In the histogram input case, applying
the same rules gave mON = 0.73 and mOFF
= 0.40. Center of gravity defuzzification
gave, in this case, a heater power of 65%.
The sum of the membership functions was
normalized by the denominator of the
center of gravity calculation.

Applications of fuzzy logic
In the following section, three examples of
fuzzy control are considered. The first is
the control of a complex system. The
second is a non-linear control system and
the third is a medical diagnosis and
treatment support system.

Almardy9 used a fuzzy control system
to apply current to a series of anodes to
protect a long buried pipeline. The goal
was to maintain protection, but at the same
time to minimize the power used to protect
the pipeline. The disturbances were

localized rain events which increased the
soil conductivity in small regions along the
pipeline. Fuzzy control was used as
modeling the widely variable soil
conditions along a pipeline would be too
complex for a practical control system.

The fuzzy model to control an
experimental pipeline with three anodes
consisted of 126 rules. The results from
simulation trials and experimental data
agreed well and the controller gave
adequate performance in maintaining
protection. The controller gain, which
determines the control system stability,
was tuned by adjusting the output
membership functions.

The pH control of flowing waste water
is a non-linear system. In addition to the
non-linearity of the titration curve, other
components of the waste change the
buffering capacity of the waste water. The
controller described by Adroer et al.10

used the fuzzy error, the difference
between the desired and actual pH, and the
fuzzy change in the error to calculate the
change in neutralization flow required to
control the pH. As the pH approaches the
neutralization point the controller gain
must be changed. They used a separate
tuning element which calculated a
multiplier applied to the fuzzy output. An
alternate scheme would be to use variable
width membership functions to increase
the control action as the error increases.
The tuning element scheme implemented
by Adroer et al.10 was found to provide
acceptable pH control with a small mixer
with a short residence time.

Warren et al.11 present a decision
support system for automating the
application of clinical practice guidelines
based on fuzzy methods. These guidelines
are not algorithms but rather composite
scenarios as the case might present to a
physician. This presents several difficulties
in addition to the inherent imprecision of
linguistic description. The results of many
medical tests lack both selectivity and
sensitivity. The tests, therefore, yield
likelihood estimates rather than a
confirmation of the presence or absence of
disease. The recommendations for action
suggested in the guidelines are particularly
vague and sometimes conflicting.

These difficulties are handled well by
fuzzy methods which implicitly
incorporate the vagueness of the
guidelines. Likelihood estimates can be
handled as membership values and used as
such in the fuzzy inference model. The
conflicting recommendations are also
handled well as the output represents a
weighted average which lies between the
extremes. If the result is not continuous
but a binary yes or no type decision, each
will have a membership value which may

be reported to indicate the strength of the
decision. The automated decision will then
carry with it information on the strength of
the decisions to further guide the
physician.

Conclusions
Fuzzy logic is a formal mathematical
approach for modeling complex systems
that has been used successfully in many
control systems. Linguistic descriptions in
the form of membership functions and
rules make up the model. The rules are
generated a priori from expert knowledge
or from data through system identification
methods. Input membership functions are
based on estimates of the vagueness of the
descriptors used. Output membership
functions can be initially set, but can be
revised for controller tuning.

Once these are defined, the operating
procedures for the calculations are well set
out. Measurement data are converted to
memberships through fuzzification
procedures. The rules are applied using
formalized operations to yield
memberships in output sets. Finally, these
are combined through defuzzification to
give a final control output.

Fuzzy values account for the
imprecision from the use of linguistic
terms. In analytical chemistry applications,
the use of fuzzy logic includes the
imprecision of a measurement method in
the calculation of a final output. This
ability can make the use of a noisy
measurement system feasible.
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