
Fuzzy Logic Based Adaptive Hierarchical Scheduling for
Periodic Real-Time Tasks

Tom Springer
University of California, Irvine

Center for Embedded Computer
Systems

tspringe@uci.edu

Steffen Peter
University of California, Irvine

Center for Embedded Computer
Systems

st.peter@uci.edu

Tony Givargis
University of California, Irvine

Center for Embedded Computer
Systems

givagis@uci.edu

ABSTRACT

In this paper, we present a new scheduling approach for real-time

tasks in an embedded system. Our method utilizes hierarchical

scheduling to provide a resource based allocation scheme while

using a fuzzy logic based feedback scheduler to react to

environmental changes within the application. The primary goal is

to provide a scheduling mechanism that can adapt to overload

conditions but still present a level of service while enforcing the

temporal isolation between independent applications. The

scheduler then considers this level of service to make scheduling

decisions based upon a task’s service requirements, such as
criticality or timeliness. Implemented in VxWorks on a

uniprocessor-based platform results show that our adaptive

approach provides significant advantages, during overload

conditions, over traditional fixed-priority scheduling schemes.

Categories and Subject Descriptors

C.3 [Special-Purpose and Application-Based Systems]: Real-

Time and embedded systems.

General Terms

Algorithms, Performance, Reliability

Keywords
Real-time systems, hierarchical scheduling, fuzzy logic, real-time

operating systems.

1. INTRODUCTION
Current embedded systems are becoming considerably more

complicated and they are expected to handle increasingly diverse

applications. No longer are they considered special-purpose

computing environments but are evolving into more general-

purpose type platforms in terms of their processing and workload

requirements. These increasingly diverse applications present new

challenges for traditional real-time scheduling mechanisms in that

applications can have conflicting objectives. For example, one

application may be more concerned with screen update response as

opposed to whether a single update is missed. While a mission

critical application, such as a navigational task, cannot afford to

miss even a single update.

The problem is that traditional real-time scheduling mechanisms do

not map well to these diverse types of applications specifically

during a processing fault or during periods of computational

overload. Faults can occur from longer than unexpected task

execution time or from programming errors which can lead to the

starvation for all lower-priority tasks. An overload can occur as the

result of too many tasks being admitted into the system resulting

into what is known as the “domino effect” where all tasks except
the newly admitted one miss their deadlines.

The challenge is that many embedded systems are expected to

perform continuous operations in potentially harsh environments

and execute at least a subset of critical operations during a fault or

overload condition. In order to enforce these strict timing

constraints required by critical functions during a fault condition a

form of temporal isolation is needed so that corresponding timing

requirements are respected. During an overload event the system

needs to be able to dynamically adapt to the current load so that

system performance can degrade gracefully.

As a solution to these challenges our work utilizes hierarchical

scheduling to provide the temporal isolation for real-time tasks by

enforcing their timing constraints. The hierarchical scheduling

framework (HSF) originally proposed by researchers [1] is a

component based technique for scheduling complex real-time

systems. The initial idea in applying this approach is that relatively

simple components can be used to create larger and more complex

systems. In this way, the timing constraints of individual

components can be verified, a type of divide and conquer approach.

Therefore, by extending this framework we can then schedule each

application (i.e. component) such that their timing constraints are

satisfied. However, the current limitation with a traditional HSF-

based approach is that the scheduling parameters for each

component are assigned statically. Unfortunately, in a dynamic

system the resource demand for each component can vary

significantly especially during periods of overload. It is for this

reason that we present an adaptive mechanism where the

component parameters can adapt to environmental changes in the

system. In this way, the system can degrade gracefully in the

presence of computational overload while still maintaining a level

of serviceability for critical applications.

For this work we apply a novel approach where the component

parameters adapt based upon a value-based heuristic instead of a

deadline based policy. This value-based approach is applied

because authors in [5] have presented the limitations of a deadline

based model for real-time scheduling and have concluded that a

value-based approach can more accurately represent the cost or

benefit of meeting or missing a deadline. The challenge is in

assigning this value metric because in the event of an overload we

want to degrade the performance gracefully by ensuring that tasks

are provided at least some minimum level of service. Therefore,

during an overload when the current schedule is unfeasible we want

the scheduler to schedule tasks according to some intelligent

heuristic. Some possible heuristics would include scheduling the

most important tasks first while still maintaining some level of

timeliness for the less important tasks. Our approach is to utilize a

heuristic function for guiding the scheduling decisions in a

complicated situation where multiple factors may need to be

considered such as deadlines, task criticality or task response times.

EWiLi’15, October 8th, 2015, Amsterdam, The Netherlands.
Copyright retained by the authors.

In this paper we present a new adaptive hierarchical scheduler for

real-time systems (AHS-RT) that provides timing guarantees for

critical tasks and a minimum level of service for non-critical tasks

during overload conditions. Our approach is to utilize fuzzy logic

for the guidance mechanisms because they prove to be easier to

express, comprehend and modify than other heuristic functions.

The remainder of this paper is organized as follows. Section 2

provides an overview of the hierarchical scheduling framework

used by our scheduling mechanism. Section 3 discusses related

work and Section 4 provides an overview of the hierarchical

scheduler (AHS-RT). Section 5 presents the simulations we used to

provide comparisons between our scheduling approach and

traditional fixed priority scheduling. In Section 6 we conclude with

future work and the research summary.

2. BACKGROUND
This section provides a background of the terminology used in the

paper as well as an overview of hierarchical scheduling provided as

a reference for the overall architecture of adaptive hierarchical

scheduling.

2.1 Hierarchical Scheduling Framework
Hierarchical scheduling provides a framework for scheduling

multiple real-time applications on a single processor which is

modeled as a system S. Each system may consist of multiple

applications (subsystems 𝑆𝑖) such that 𝑆𝑖 ∈ 𝑆. Each subsystem

consists of a number of real-time tasks. Each subsystem is

associated with a periodic server which provides the temporal

isolation between subsystems. The execution of tasks is performed

using a two-level hierarchical scheduling policy: global and local.

The global scheduling policy determines which subsystem has

access to the processor while the local scheduling policy

determines which task should actually execute (Figure 1).

2.2 Task Model
We consider a task set Γ𝑠 = {𝜏1 , 𝜏2, … 𝜏𝑛}, such that each task 𝜏𝑖 is

defined as (𝑇𝑖 , 𝐶𝑖 , 𝐷𝑖 , 𝐿𝑖) where 𝑇𝑖 is defined as the task period, 𝐶𝑖
denotes the task worst case execution time (WCET), 𝐷𝑖 is the

relative deadline and 𝐿𝑖 represents the task criticality value. It is

assumed that each task 𝜏𝑖 is a constrained task such that 𝐶𝑖 ≤ 𝐷𝑖 ≤𝑇𝑖. The criticality value 𝐿𝑖 represents the importance or weight of

the task as it relates to other tasks in the set. The criticality value

along with the deadline and period are used by the fuzzy inference

engine to make scheduling decisions by the local scheduler.

2.3 Subsystem Model
Each subsystem consists of a task set Γ𝑠𝑖 such that 𝑆𝑖 ← Γ𝑠𝑖. The

subsystem is modeled as a periodic task so a subsystem can be

scheduled in a similar way as a simple real-time periodic task. The

subsystem is defined as 𝑆𝑖 = (𝑃𝑖 , 𝑄𝑖 , 𝐿𝑖) where 𝑃𝑖 represents the

subsystem period, 𝑄𝑖 represents the subsystem budget and 𝐿𝑖
represents the subsystem criticality level. Similar to the task model

the service value 𝐿𝑖 is used to make scheduling decisions at the

subsystem level. Note that during overload conditions the

subsystem with the highest criticality level is granted its full budget

at the possible expense of lower criticality subsystems.

2.3.1 Periodic Server
The virtual server is invoked with the corresponding subsystem

period 𝑃𝑖. If there are any ready tasks within the subsystem then

they execute until they complete or the server’s budget 𝑄𝑖 is

exhausted. If there are no ready tasks to execute or no higher

priority subsystem needs to utilize some of the server’s budget
during an overload condition then the capacity is idled away as if a

background task were running. After a server’s budget is exhausted
the server suspends the execution of the subsystem until the

capacity is replenished at the start of the next period. For this work

we choose a periodic server as the fixed priority server algorithm,

in part because the simpler design has less overhead but also

because authors in [2] have shown it to dominate other fixed-

priority server algorithms.

2.4 Fuzzy Systems
The scheduler and the controller of AHS-RT are based upon fuzzy-

logic heuristics. The fuzzy logic based approach was chosen

because of its strength in dealing with dynamic environments

involving a certain degree of uncertainty. The fuzzy system is

defined as having n inputs 𝑥𝑖 ∈ Χ𝑖, where 𝑖 = 1,2, … , 𝑛 and Χ𝑖, is

the collection of numbers for 𝑥𝑖 (universe of discourse for 𝑥𝑖) and

one output 𝑦 ∈ Υ, where Υ is the universe of discourse for 𝑦

(multiple input single output fuzzy system). The inputs 𝑥𝑖 and

output 𝑦 are crisp values (i.e. real numbers). The structure of the

fuzzy system consists of three stages; fuzzication stage, inference

stage and the defuzzication stage. The fuzzication stage converts

the crisp input values into fuzzy sets to be used by the inference

stage. The inference stage uses the rules defined in the rule base to

convert these fuzzy sets into other fuzzy sets that represent the

recommendations of the various rules in the rule base. The

defuzzication stage combines these fuzzy recommendations to

provide a crisp output.

3. RELATED WORK
Hierarchical scheduling framework (HSF) was initially proposed

by researchers [1][4][6] as a means to reduce the scheduling

complexity for open source embedded systems. Resource

partitioning [7] was introduced as a general technique for limiting

the effects of overruns in tasks with variable execution times. This

resource reservation technique can then be applied by hierarchical

schedulers to provide the temporal isolation between subsystems

Figure 1: AHS-RT Architecture

for more predictable behavior, improved reusability and

composability. However, the current limitation with HSF is that in

order to determine the resource reservations all tasks parameters

must be known a priori and fixed during run-time. The problem is

that accurate task information may not be known or hard to derive

at run-time. Additionally, in order to account for overload

conditions the system may need to be over-engineered which could

lead to significant underutilization during nominal load periods.

In [8] [9] [10] authors proposed a feedback mechanism to account

for the dynamic behavior when the task parameters may not be fully

known. The approach was for the scheduler to maximize the CPU

utilization, avoid system overload and distribute the computing

resource evenly among tasks. By incorporating feedback the

scheduler reacts to changes in the workload then tries to keep the

overall utilization as close as possible to a desired set point typically

using a type of control mechanism, such as a proportional integral

derivative (PID) controller. Related work [11] [12] adjusts the

resource allocation on-line based upon a quality-of-service (QoS)

scheme where a certain level of service is provided in cases

overload. However, the primary objective of this approach is

control performance and not necessarily minimizing the number of

missed deadlines.

Authors in [14] took a slightly different approach in that they based

their scheduler on a benefit based model. Their approach was to

schedule the tasks using a traditional deadline based scheduling

policy until a potential fault was detected and before an overload

condition could occur. After a fault is detected the scheduler

switches to a benefit based scheduler that considers task

importance, system state and timeliness to schedule tasks. Authors

in [13] also took a similar approach in adaptive scheduling except

they manipulated the task period of other tasks to achieve the

desired level of performance.

Other research [15] [16] [17] treated the uncertainty of varying

execution times as a multi-criteria optimization problem then

applied fuzzy logic to derive a feasible schedule. Their approach

was to treat various task parameters, such as deadline, start time or

execution time, as inputs to the fuzzy scheduler then perform fuzzy

analysis to assign a task priority value. Additional work [18]

utilized fuzzy logic as a means for tuning a feedback controller to

provide optimal resource utilization through task period re-

adjustment.

Recent work [19] extended hierarchical scheduling to provide an

adaptive hierarchical framework for managing overruns in tasks

with varying execution times. Their approach was to utilize a

feedback control mechanism for adapting the resource allocation

by adjusting the amount of budget assigned to a subsystem. By

adjusting the budgets at run-time the framework can better adapt to

changes in the workload.

Our approach in AHS-RT is similar to the work in [19] in that we

also utilize hierarchical scheduling for determinism and temporal

isolation. However, AHS-RT differs in how the local scheduling

and global scheduling is performed. Local scheduling is based upon

a fuzzy scheduler which is more adept at making scheduling

decisions when the task parameters are vague. Research by authors

in [17] demonstrated that fuzzy logic based approaches outperform

traditional deadline based policies such as earliest deadline first

(EDF). In AHS-RT global scheduling also uses a feedback

controller but the controller is based upon a fuzzy logic heuristic

instead of a PID controller. Because fuzzy logic can better tolerate

imprecision thereby providing improved run-time flexibility.

4. AHS-RT Architecture
This section describes the overall architecture (see Figure 1) of the

AHS-RT scheduling framework which consists of a two-level

hierarchical scheduling framework. The root-level contains the

global scheduler which manages how subsystems (i.e. applications)

are allocated on the processor. While the node-level contains the

local scheduler which manages how tasks are scheduled on the

processor.

4.1 Global Scheduling
At run-time the global scheduler chooses the highest priority

subsystem that has tasks ready to run. The priority is based upon

the subsystem period 𝑃𝑖 so the shorter the period the higher the

subsystem priority. Therefore if the priority of 𝑆𝑗 > 𝑆𝑖 then 𝑆𝑗

would be scheduled first with its full budget then 𝑆𝑖 would be

scheduled next with its full budget unless an overload condition is

detected. In the event of an overload a higher criticality subsystem

may request a budget change at the possible expense of a lower

criticality subsystem which may or may not be a lower priority

subsystem.

The logical approach may be to re-assign budgets based upon

subsystem priority. However, during an overload event studies

have shown [3] that a value-based approach offers considerable

advantages over traditional deadline-based approaches. For this

reason, during an overload event the global scheduler of AHS-RT

temporarily switches from a deadline-based scheduling policy to a

value-based scheduling policy. Instead of the highest priority

subsystem receiving their full budget the subsystem with the

highest criticality level 𝐿𝑖 will receive their entire budget.

Therefore, the global scheduler redistributes budgets based upon

the criticality level which means lower criticality subsystems yield

their budgets to higher criticality subsystems. This greedy approach

can lead to starvation, even for some high priority subsystems, but

this is acceptable in that during overload conditions the highest

criticality subsystems are considered superior to lower criticality

subsystems.

4.1.1 Detecting Overloads
An overload condition is based upon the overall subsystem

utilization which is defined as:

 𝑈𝑇 = ∑ 𝑄𝑠𝑃𝑠∀𝑆𝑠∈𝑠

and because we are using RM then an overload condition is

determined by 𝑈𝑇 ≤ 𝑚(21 𝑚⁄ − 1), where m is the number of

subsystems. An overload can occur because a subsystem requests a

budget change in order to adapt to a fault or missed deadline within

a task of an individual application. A budget change does not

necessarily mean that the system is overloaded just that there is the

potential for an overload condition to exist. Consider some

unallocated system utilization denoted as 𝑈𝑇′ such that 𝑈𝑇 + 𝑈𝑇′ ≤𝑚 (21 𝑚⁄ − 1), and then this extra utilization could be temporarily

reallocated to the subsystem requesting the additional budget.

However, if there are not sufficient resources to satisfy all the

budget requirements then the system is considered overloaded

which implies that a budget reallocation needs to be performed.

4.1.2 Budget Reallocation
After the full budget has been allocated to the highest criticality

subsystem the lower criticality budgets needs to be re-dimensioned.

The next lower criticality subsystems are then assigned budgets

based upon the remaining utilization. The algorithm and

description for budget dimensioning is provided below. The budget

dimensioning algorithm (Algorithm 1) works

by iterating through all the subsystems 𝑆𝑖 in the subset 𝑆𝑠,𝑗 of lower

criticality subsystems. In line 2 the new budget is calculated based

upon the remaining system utilization. A schedulability test (line 3)

is then performed on the modified budget. If the modified budget

renders the system unschedulable then a new budget value is

attempted based upon the previous failed value. The algorithm

continues to reduce the budgets of lower criticality subsystems until

a schedulable system is found.

4.2 Local Scheduling
The local scheduling of AHS-RT consists of two primary

components; a fuzzy logic based scheduler and a fuzzy logic based

feedback controller. The scheduler selects the task to execute on the

processor derived from the fuzzy rules based approach to real-time

scheduling. The feedback controller gathers system state

information for subsystem budget management to maximize

utilization and minimize missed deadlines.

4.2.1 Fuzzy Scheduler
At run-time the fuzzy scheduler selects the highest priority task that

is ready for execution on the processor. The priority of the task is

determined by several parameters: task deadline, task criticality and

task execution time. The task deadline is the time before the task

should be completed. The task criticality relates to the

consequences of missing a deadline. The task execution time is the

worst-case execution time for that task. These parameters are then

fuzzified and represented as linguistic variables (i.e. a word used to

describe a variable). Fuzzy rules are then applied to the linguistic

variables to compute the service value. The linguistic values for the

three parameters are defined as: task deadline (early, on-time, late),

task criticality (hard, firm, soft) and CPU time (very low, low,

normal, high, very high). Fuzzy rules are then applied to create a

fuzzy conclusion for computing the priority level. Figure 2

illustrates the linguistic variables used by the inference stage of the

fuzzy scheduler.

Some of the fuzzy rules for the scheduler inference mechanism are

listed as an example here:

 If (CPU Time is high) and (deadline is late) and

(criticality is hard) then (Priority is very high)

 If (CPU Time is normal) and (deadline is on-time)and

(critically is firm) then (Priority is normal)

 If (CPU time is low) and (deadline is early) and

(criticality is soft) then (Priority is low).

These fuzzy conclusions are then combined to produce a fuzzy

variable that represents the criticality level of the task. The variable

is then defuzzified to create a value that is compared to other tasks

to determine which task should be scheduled next. The decision

surface illustrates the crisp output value (priority) that is obtained

based upon the input parameters (See Figure 3).

The fuzzy scheduler algorithm (Algorithm 2) iterates through all

the tasks 𝜏𝑖 in the task set for a particular subsystem and for each

task passes the deadline (𝐷𝑖), criticality value (𝐿𝑖) and starting time

(𝑇𝑖) into the fuzzy inference engine. The output from the inference

function is a crisp value used to assign a priority to each task and

stored in a priority array (𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦𝑖). The task with the highest

priority is then executed until some scheduling event occurs (task

completion, new task instance arrives or server budget exhaustion).

The system status is then updated and if a task misses its deadline

such as server budget exhaustion then the deadline miss is reported

to the feedback controller which could trigger a budget reallocation

across the system.

Figure 3: AHS-RT Decision Surface

Figure 2: AHS-RT Inference block system rules

4.2.2 Fuzzy Feedback Controller
The feedback controller in AHS-RT is similar to the FC-UM

algorithm [20] in that both the miss-ratio and utilization are

monitored. The reference inputs for miss-ratio 𝑀𝑠 and unused

budget 𝑈𝑠 are both set to zero. At each sampling instant the miss-

ratio M(k) and the unused subsystem budget U(k) are fed back into

the controller. These values are then compared to their respective

set points to determine the difference where du(k) represents the

utilization error and dm(k) represents the miss-ratio error. The

output from the fuzzy controller is the budget dimensioning factor 𝐷𝐵. As part of a typical fuzzy controller (Figure 4) we need to

specify meaningful linguistic values and membership functions for

each input and output variable. The input to the controller are miss

ratio 𝑀𝑠 and task utilization ratio 𝑈𝑠 defined as a triangular

membership functions. The input linguistic values are utilization

(very low, low, normal, high, very high) and deadline misses (zero,

small, medium, high). The output linguistic values is bandwidth

adjustment (none, very small, small, medium, big and very big).

Some of the fuzzy rules for the controller inference mechanism are

listed as an example here:

 If (misses are zero) and (utilization is normal) then

(bandwidth adjustment is none)

 If (misses are small) and (utilization is high) then

(bandwidth adjustment is small)

 If (misses are high) and (utilization is high) then

(bandwidth adjustment is high)

4.3 Task Scheduling Example
To demonstrate AHS-RT we have provided an example scheduling

scenario. Note for illustration purposes we are only considering one

subsystem. So, the primary purpose of this example is present how

the fuzzy scheduler manages tasks within the context of one

subsystem.

Consider the task set and subsystem listed in Tables 1 and 2. Table

3 describes the scheduling of tasks at the first scheduling event

where tasks 𝜏1, 𝜏2 and 𝜏3 all have the same initial starting time but

since 𝜏1 has the nearest deadline it is assigned the highest priority

by the fuzzy scheduler. Therefore, 𝜏1 is allowed to execute until

completion then at time unit t3 task 𝜏2 executes until time unit t5

when the subsystem’s budget expires. At time unit t10 (see Table

4) the subsystem’s budget is replenished where the tasks can
continue execution. At this time the fuzzy scheduler performs a re-

ordering of task priorities to reflect the system state. Task 𝜏2 is

assigned the highest priority because the start time is the earliest

and the deadline is the closest.

Table 1: Subsystem Parameters

Subsystem 𝑷𝒔 𝑸𝒔 𝑳𝒊 𝑆1 10 5 10

Table 2: Task Parameters

Task 𝑻𝒊 𝑪𝒊 𝑫𝒊 𝑳𝒊 𝜏1 10 2 10 5 𝜏2 15 5 15 10 𝜏3 20 3 20 10

Table 3: Scheduling snapshot at time 0

Task 𝑺𝒕𝒂𝒓𝒕𝒊 𝑫𝒊 𝑪𝒊 𝑳𝒊 𝑷𝒓𝒊𝒐𝒊 𝜏1 0,10,20,30 10,20,30,40 2 5 ~9 𝜏2 0,15,30 15,30 5 10 ~5 𝜏3 0,20,40 20, 40 3 10 ~3

Table 4: Scheduling snapshot at time 10

Task 𝑺𝒕𝒂𝒓𝒕𝒊 𝑫𝒊 𝑪𝒊 𝑳𝒊 𝑷𝒓𝒊𝒐𝒊 𝜏1 20,30 20,30,40 2 5 ~5 𝜏2 15,30 15,30 2 10 ~9 𝜏3 20 20, 40 3 10 ~7

Table 5: Scheduling snapshot at time 20

Task 𝑺𝒕𝒂𝒓𝒕𝒊 𝑫𝒊 𝑪𝒊 𝑳𝒊 𝑷𝒓𝒊𝒐𝒊 𝜏1 20,30 30,40 2 5 ~10 𝜏2 30 30 5 10 ~5 𝜏3 40 40 3 10 ~3

Note that at time unit t12 task 𝜏2 will complete execution but task 𝜏3 will be scheduled over 𝜏1 even though both tasks have the same

relative deadline and start time. This is because 𝜏3 was assigned a

higher priority by the fuzzy controller because 𝜏3 was defined to be

a higher criticality task than 𝜏1. Also note, due to subsystem budget

exhaustion at time unit t15 task 𝜏1 will miss its deadline which

would trigger a budget reallocation request to the fuzzy controller

for an increase in the subsystem budget. Finally, at time unit t20

(see Table 5) the scheduler re-orders the task priorities where once

again 𝜏1 will be assigned the highest priority.

4.4 Subsystem Reallocation Example
Consider the following subsystems with parameters presented in

Table 6 which is used to illustrate how a subsystem is scheduled by

AHS-RT.

Figure 4: Internal structure of the feedback controller

Table 6: Subsystem Parameters

Subsystem 𝑷𝒔 𝑸𝒔 𝑳𝒊 𝑆1 12 4 10 𝑆2 15 3 8 𝑆3 20 4 5

Table 7: Budget Reallocation Snapshot

Subsystem 𝑷𝒔 𝑸𝒔 𝑳𝒊 𝑫𝑼(𝒌) 𝑫𝑴(𝒌) 𝑫𝑩 𝑆1 12 3 10 -0.2 0.1 ~4.0 𝑆2 15 3 8 0.0 0.0 ~3.0 𝑆3 20 5 5 0.0 0.0 ~5.0

Suppose that at some scheduling instant subsystem 𝑆1 has a current

budget 𝑄1 = 3 but due to a deadline miss the fuzzy controller

recommends a budget increase to 4. Also suppose that 𝑆2 and 𝑆3

report no deadline misses or under utilization so the fuzzy

controller recommends no budget changes. However, the increased

budget of 𝑆1 causes the schedulability test to fail because 𝑈𝑇 >𝑚 (21 𝑚⁄ − 1) so now the criticality level 𝐿𝑖 is considered and since 𝑆1 has the highest criticality level it is granted the full budget. After 𝑄1 = 4 the budget dimensioning algorithm is performed to

redistribute the remaining utilization. Initially, the budgets for 𝑆2

and 𝑆3 will be 𝑄2 = 3 and 𝑄3 = 0 then a successful schedulability

test will be performed. Next the budget for 𝑆3 will be 𝑄3 = 5 but

the schedulability test will fail. Since the system is no longer

schedulable the budget for 𝑆3 will now be 𝑄3 = 4. This time the

system is schedulable so the adjusted budgets are reallocated to

their respective subsystems.

5. SIMULATION
AHS-RT was implemented as part of the VxWorks 6.9 real-time

operating system (RTOS). The simulations were executed using the

SIMNT vxsim simulator. For evaluation purposes we ported the

SNU Real-Time Benchmark Suite [22] to compare deadline misses.

The SNU real-time benchmark suite contains small C programs

used for worst-case execution time analysis. The programs are

mostly numeric and DSP algorithms. In order to represent the

periodic task model of an embedded system a subset of the

programs in the benchmark suite were chosen and assigned

arbitrary task rates and criticality levels. Illustrated in Figure 5 both

AHS-RT and the VxWorks native fixed-priority preemptive

scheduler (FPPS) are comparable as long as the load factor is below

~0.70 which corresponds with the lower bound for priority based

algorithms. Notice that AHS-RT experiences significantly fewer

deadline misses than FPPS when the system starts to become

overloaded (> ~0.70). Also note that AHS-RT manages overload

more effectively in that it does not start to report deadline misses

until closer to a ~0.80 load factor. Another important observation

depicted in Figure 6 is that AHS-RT manages deadline misses

much more effectively than FPPS for higher criticality tasks. Notice

that AHS-RT does not even start to report deadline misses until

close to a ~1.25 load factor while FPPS starts to report deadlines as

early as ~0.85. Clearly, AHS-RT is the superior scheduling

mechanism as compared to FPPS specifically during periods of

overload.

Figure 5: Number of Deadline Misses (All Tasks)

Figure 6: Number of Deadline Misses (Highest Criticality

Tasks)

6. CONCLUSIONS/FUTURE WORK
In this paper we considered the problem of how to schedule tasks

with varying levels of criticality on a uniprocessor to more

effectively adapt to computational changes. Those changes were

managed by hierarchical scheduling to provide the temporal

isolation between tasks. The efficient scheduling of tasks was

accomplished using a fuzzy based heuristic which has been proven

to be more effective than traditional deadline based approaches

especially during periods of overload. The results are a

demonstrated reduction in deadline misses for all tasks during

periods of overload as compared to traditional fixed priority based

scheduling mechanisms. As further confirmation for the

practicality for this approach we implemented AHS-RT as part of

the VxWorks RTOS.

Future work includes evaluating the additional overhead AHS-RT

incurs in VxWorks as compared to the traditional scheduler.

Additionally, we would like to extend AHS-RT into a multi-core

environment and consider semi-independent tasks where

subsystems would have to share a mutual resource such as a

semaphore.

ACKNOWLEDGMENT
This work was supported in part by the National Science

Foundation under NSF grant number 1136146

REFERENCES
[1] Z. Deng and J. W.-S. Liu, “Scheduling real-time applications

in an open environment,” (RTSS’97), pp. 308–319.

[2] Davis, R.I.; Burns, A., "Hierarchical fixed priority pre-
emptive scheduling," (RTSS’05)

[3] Saini, G., "Application of fuzzy logic to real-time
scheduling," Real Time Conference, 2005.

[4] I. Shin and I. Lee, “Periodic resource model for
compositional real-time guarantees,” (RTSS ’03).

[5] C.D. Locke and H. Tokuda, “A Time-Value Driven

Scheduling Model for Real-Time Operating Systems”, Proc.
Symp. on Real-Time Systems, Nov. 1985.

[6] F. Zhang and A. Burns, “Analysis of hierarchical EDF pre-

emptive scheduling,” in Proc. of the 28th IEEE International
Real-Time Systems Symposium (RTSS’07)

[7] A. Mok, X. Feng and D. Chen, “Resource partition for real-
time systems,” in Proc of the 7th Real-Time Technology and

Applications Symposium (RTAS’01), 2001

[8] J. Stankovic, C. Lu, S. Son and G. Tao, “The case for
feedback control in real-time scheduling,” in Proc. of the 11th
Euromicro Conference on Real-Time Systems (ECRTS ’99).

[9] C. Lu, J. Stankovic, G. Tao and S. Son, “Design and
evaluation of a feedback control EDF scheduling algorithm,”
in Proc. of the 20th IEEE (RTSS’99).

[10] C. Lu, J. Stankovic, S. Son and G. Tao, “Feedback control
real-time scheduling: Framework, modeling and algorithms,”
Real-Time Systems, vol. 23, pp 85-126, 2002.

[11] T. Abdelzaher, E. Atkins and K. Shin, “QoS negotiation in
real-time systems and its application to flight control,” in
Proc. of the IEEE (RTSS’97).

[12] R. Rajkumar, C. Lee, J. Lehoczky and D. Siewiorek, “A
resource allocation model for QoS management, “ in Proc. of
the IEEE Real-Time Technology and Applications 1997.

[13] S.P. Dwivedi, "Adaptive Scheduling in Real-Time Systems

Through Period Adjustment", CoRR, 2012.

[14] Richardson, P.; Sarkar, S., "Adaptive scheduling: overload
scheduling for mission critical systems," (RTSA) 1999

[15] J. Yen, J. Lee, N. Pfluger, and S. Natarajan. "Designing a
fuzzy scheduler for hard real-time systems." (1992).

[16] L. Jonathan, A. Tiao, and J. Yen. "A fuzzy rule-based

approach to real-time scheduling." In Fuzzy Systems, In Proc.
of the 3rd IEEE Conference. IEEE, 1994.

[17] S. Mojtaba, and M. Naghibzadeh. "A Fuzzy algorithm for

real-time scheduling of soft periodic tasks." IJCSNS

International Journal of Computer Science and Network
Security 6.2A (2006):

[18] X. Feng, X. Shen, L. Liu, Z. Wang, and Y. Sun. "Fuzzy

logic based feedback scheduler for embedded control

systems." In Advances in Intelligent Computing, 2005.

[19] Khalilzad, N.M.; Behnam, M.; Nolte, T., "Adaptive

hierarchical scheduling framework: Configuration and
evaluation," (ETFA), 2013.

[20] L., Chenyang, J. Stankovic, H. Son, and G. Tao. "Feedback

control real-time scheduling: Framework, modeling, and
algorithms*." Real-Time Systems (2002).

[21] M. Behnam, T. Nolte, I. Shin, M. Asberg. Towards
Hierarchical Schedling in VxWorks. (OSPERT) 2008

[22] SNU Real-Time Benchmark, http://www.cprover.org

http://www.cprover.org/

