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ABSTRACT 

In this paper, we present a new scheduling approach for real-time 

tasks in an embedded system. Our method utilizes hierarchical 

scheduling to provide a resource based allocation scheme while 

using a fuzzy logic based feedback scheduler to react to 

environmental changes within the application. The primary goal is 

to provide a scheduling mechanism that can adapt to overload 

conditions but still present a level of service while enforcing the 

temporal isolation between independent applications. The 

scheduler then considers this level of service to make scheduling 

decisions based upon a task’s service requirements, such as 
criticality or timeliness. Implemented in VxWorks on a 

uniprocessor-based platform results show that our adaptive 

approach provides significant advantages, during overload 

conditions, over traditional fixed-priority scheduling schemes. 

Categories and Subject Descriptors 

C.3 [Special-Purpose and Application-Based Systems]: Real-

Time and embedded systems.  

General Terms 

Algorithms, Performance, Reliability 

Keywords 
Real-time systems, hierarchical scheduling, fuzzy logic, real-time 

operating systems. 

1. INTRODUCTION 
Current embedded systems are becoming considerably more 

complicated and they are expected to handle increasingly diverse 

applications. No longer are they considered special-purpose 

computing environments but are evolving into more general-

purpose type platforms in terms of their processing and workload 

requirements. These increasingly diverse applications present new 

challenges for traditional real-time scheduling mechanisms in that 

applications can have conflicting objectives. For example, one 

application may be more concerned with screen update response as 

opposed to whether a single update is missed. While a mission 

critical application, such as a navigational task, cannot afford to 

miss even a single update. 

The problem is that traditional real-time scheduling mechanisms do 

not map well to these diverse types of applications specifically 

during a processing fault or during periods of computational 

overload. Faults can occur from longer than unexpected task 

execution time or from programming errors which can lead to the 

starvation for all lower-priority tasks. An overload can occur as the 

result of too many tasks being admitted into the system resulting 

into what is known as the “domino effect” where all tasks except 
the newly admitted one miss their deadlines.  

 

The challenge is that many embedded systems are expected to 

perform continuous operations in potentially harsh environments 

and execute at least a subset of critical operations during a fault or 

overload condition. In order to enforce these strict timing 

constraints required by critical functions during a fault condition a 

form of temporal isolation is needed so that corresponding timing 

requirements are respected. During an overload event the system 

needs to be able to dynamically adapt to the current load so that 

system performance can degrade gracefully. 

As a solution to these challenges our work utilizes hierarchical 

scheduling to provide the temporal isolation for real-time tasks by 

enforcing their timing constraints. The hierarchical scheduling 

framework (HSF) originally proposed by researchers [1] is a 

component based technique for scheduling complex real-time 

systems. The initial idea in applying this approach is that relatively 

simple components can be used to create larger and more complex 

systems. In this way, the timing constraints of individual 

components can be verified, a type of divide and conquer approach. 

Therefore, by extending this framework we can then schedule each 

application (i.e. component) such that their timing constraints are 

satisfied. However, the current limitation with a traditional HSF-

based approach is that the scheduling parameters for each 

component are assigned statically. Unfortunately, in a dynamic 

system the resource demand for each component can vary 

significantly especially during periods of overload. It is for this 

reason that we present an adaptive mechanism where the 

component parameters can adapt to environmental changes in the 

system. In this way, the system can degrade gracefully in the 

presence of computational overload while still maintaining a level 

of serviceability for critical applications. 

For this work we apply a novel approach where the component 

parameters adapt based upon a value-based heuristic instead of a 

deadline based policy. This value-based approach is applied 

because authors in [5] have presented the limitations of a deadline 

based model for real-time scheduling and have concluded that a 

value-based approach can more accurately represent the cost or 

benefit of meeting or missing a deadline. The challenge is in 

assigning this value metric because in the event of an overload we 

want to degrade the performance gracefully by ensuring that tasks 

are provided at least some minimum level of service. Therefore, 

during an overload when the current schedule is unfeasible we want 

the scheduler to schedule tasks according to some intelligent 

heuristic. Some possible heuristics would include scheduling the 

most important tasks first while still maintaining some level of 

timeliness for the less important tasks. Our approach is to utilize a 

heuristic function for guiding the scheduling decisions in a 

complicated situation where multiple factors may need to be 

considered such as deadlines, task criticality or task response times. 

EWiLi’15, October 8th, 2015, Amsterdam, The Netherlands.
Copyright retained by the authors.



In this paper we present a new adaptive hierarchical scheduler for 

real-time systems (AHS-RT) that provides timing guarantees for 

critical tasks and a minimum level of service for non-critical tasks 

during overload conditions. Our approach is to utilize fuzzy logic 

for the guidance mechanisms because they prove to be easier to 

express, comprehend and modify than other heuristic functions. 

The remainder of this paper is organized as follows. Section 2 

provides an overview of the hierarchical scheduling framework 

used by our scheduling mechanism. Section 3 discusses related 

work and Section 4 provides an overview of the hierarchical 

scheduler (AHS-RT). Section 5 presents the simulations we used to 

provide comparisons between our scheduling approach and 

traditional fixed priority scheduling. In Section 6 we conclude with 

future work and the research summary. 

 

 

2. BACKGROUND 
This section provides a background of the terminology used in the 

paper as well as an overview of hierarchical scheduling provided as 

a reference for the overall architecture of adaptive hierarchical 

scheduling. 

 

2.1 Hierarchical Scheduling Framework 
Hierarchical scheduling provides a framework for scheduling 

multiple real-time applications on a single processor which is 

modeled as a system S. Each system may consist of multiple 

applications (subsystems 𝑆𝑖) such that 𝑆𝑖 ∈ 𝑆. Each subsystem 

consists of a number of real-time tasks. Each subsystem is 

associated with a periodic server which provides the temporal 

isolation between subsystems. The execution of tasks is performed 

using a two-level hierarchical scheduling policy: global and local. 

The global scheduling policy determines which subsystem has 

access to the processor while the local scheduling policy 

determines which task should actually execute (Figure 1). 

 

2.2 Task Model 
We consider a task set Γ𝑠 = {𝜏1 , 𝜏2, … 𝜏𝑛}, such that each task 𝜏𝑖 is 

defined as (𝑇𝑖 , 𝐶𝑖 , 𝐷𝑖 , 𝐿𝑖) where 𝑇𝑖 is defined as the task period, 𝐶𝑖 
denotes the task worst case execution time (WCET), 𝐷𝑖 is the 

relative deadline and 𝐿𝑖 represents the task criticality value. It is 

assumed that each task 𝜏𝑖 is a constrained task such that 𝐶𝑖 ≤ 𝐷𝑖 ≤𝑇𝑖. The criticality value 𝐿𝑖 represents the importance or weight of 

the task as it relates to other tasks in the set. The criticality value 

along with the deadline and period are used by the fuzzy inference 

engine to make scheduling decisions by the local scheduler. 

 

2.3 Subsystem Model 
Each subsystem consists of a task set Γ𝑠𝑖 such that 𝑆𝑖 ← Γ𝑠𝑖. The 

subsystem is modeled as a periodic task so a subsystem can be 

scheduled in a similar way as a simple real-time periodic task. The 

subsystem is defined as 𝑆𝑖 = (𝑃𝑖 , 𝑄𝑖 , 𝐿𝑖) where 𝑃𝑖 represents the 

subsystem period, 𝑄𝑖 represents the subsystem budget and 𝐿𝑖 
represents the subsystem criticality level. Similar to the task model 

the service value 𝐿𝑖 is used to make scheduling decisions at the 

subsystem level. Note that during overload conditions the 

subsystem with the highest criticality level is granted its full budget 

at the possible expense of lower criticality subsystems. 

2.3.1 Periodic Server  
The virtual server is invoked with the corresponding subsystem 

period 𝑃𝑖. If there are any ready tasks within the subsystem then 

they execute until they complete or the server’s budget 𝑄𝑖 is 

exhausted. If there are no ready tasks to execute or no higher 

priority subsystem needs to utilize some of the server’s budget 
during an overload condition then the capacity is idled away as if a 

background task were running. After a server’s budget is exhausted 
the server suspends the execution of the subsystem until the 

capacity is replenished at the start of the next period. For this work 

we choose a periodic server as the fixed priority server algorithm, 

in part because the simpler design has less overhead but also 

because authors in [2] have shown it to dominate other fixed-

priority server algorithms. 

 

2.4 Fuzzy Systems 
The scheduler and the controller of AHS-RT are based upon fuzzy-

logic heuristics. The fuzzy logic based approach was chosen 

because of its strength in dealing with dynamic environments 

involving a certain degree of uncertainty. The fuzzy system is 

defined as having n inputs 𝑥𝑖 ∈ Χ𝑖, where 𝑖 = 1,2, … , 𝑛  and Χ𝑖, is 

the collection of numbers for 𝑥𝑖 (universe of discourse for 𝑥𝑖) and 

one output 𝑦 ∈ Υ, where Υ is the universe of discourse for 𝑦 

(multiple input single output fuzzy system). The inputs 𝑥𝑖 and 

output 𝑦 are crisp values (i.e. real numbers). The structure of the 

fuzzy system consists of three stages; fuzzication stage, inference 

stage and the defuzzication stage. The fuzzication stage converts 

the crisp input values into fuzzy sets to be used by the inference 

stage. The inference stage uses the rules defined in the rule base to 

convert these fuzzy sets into other fuzzy sets that represent the 

recommendations of the various rules in the rule base. The 

defuzzication stage combines these fuzzy recommendations to 

provide a crisp output. 

 

3. RELATED WORK 
Hierarchical scheduling framework (HSF) was initially proposed 

by researchers [1][4][6] as a means to reduce the scheduling 

complexity for open source embedded systems. Resource 

partitioning [7] was introduced as a general technique for limiting 

the effects of overruns in tasks with variable execution times. This 

resource reservation technique can then be applied by hierarchical 

schedulers to provide the temporal isolation between subsystems 

Figure 1: AHS-RT Architecture 

 



for more predictable behavior, improved reusability and 

composability. However, the current limitation with HSF is that in 

order to determine the resource reservations all tasks parameters 

must be known a priori and fixed during run-time. The problem is 

that accurate task information may not be known or hard to derive 

at run-time. Additionally, in order to account for overload 

conditions the system may need to be over-engineered which could 

lead to significant underutilization during nominal load periods. 

In [8] [9] [10] authors proposed a feedback mechanism to account 

for the dynamic behavior when the task parameters may not be fully 

known. The approach was for the scheduler to maximize the CPU 

utilization, avoid system overload and distribute the computing 

resource evenly among tasks. By incorporating feedback the 

scheduler reacts to changes in the workload then tries to keep the 

overall utilization as close as possible to a desired set point typically 

using a type of control mechanism, such as a proportional integral 

derivative (PID) controller. Related work [11] [12] adjusts the 

resource allocation on-line based upon a quality-of-service (QoS) 

scheme where a certain level of service is provided in cases 

overload. However, the primary objective of this approach is 

control performance and not necessarily minimizing the number of 

missed deadlines. 

Authors in [14] took a slightly different approach in that they based 

their scheduler on a benefit based model. Their approach was to 

schedule the tasks using a traditional deadline based scheduling 

policy until a potential fault was detected and before an overload 

condition could occur. After a fault is detected the scheduler 

switches to a benefit based scheduler that considers task 

importance, system state and timeliness to schedule tasks. Authors 

in [13] also took a similar approach in adaptive scheduling except 

they manipulated the task period of other tasks to achieve the 

desired level of performance. 

Other research [15] [16] [17] treated the uncertainty of varying 

execution times as a multi-criteria optimization problem then 

applied fuzzy logic to derive a feasible schedule. Their approach 

was to treat various task parameters, such as deadline, start time or 

execution time, as inputs to the fuzzy scheduler then perform fuzzy 

analysis to assign a task priority value. Additional work [18] 

utilized fuzzy logic as a means for tuning a feedback controller to 

provide optimal resource utilization through task period re-

adjustment. 

Recent work [19] extended hierarchical scheduling to provide an 

adaptive hierarchical framework for managing overruns in tasks 

with varying execution times. Their approach was to utilize a 

feedback control mechanism for adapting the resource allocation 

by adjusting the amount of budget assigned to a subsystem. By 

adjusting the budgets at run-time the framework can better adapt to 

changes in the workload. 

Our approach in AHS-RT is similar to the work in [19] in that we 

also utilize hierarchical scheduling for determinism and temporal 

isolation. However, AHS-RT differs in how the local scheduling 

and global scheduling is performed. Local scheduling is based upon 

a fuzzy scheduler which is more adept at making scheduling 

decisions when the task parameters are vague. Research by authors 

in [17] demonstrated that fuzzy logic based approaches outperform 

traditional deadline based policies such as earliest deadline first 

(EDF).  In AHS-RT global scheduling also uses a feedback 

controller but the controller is based upon a fuzzy logic heuristic 

instead of a PID controller. Because fuzzy logic can better tolerate 

imprecision thereby providing improved run-time flexibility. 

4. AHS-RT Architecture 
This section describes the overall architecture (see Figure 1) of the 

AHS-RT scheduling framework which consists of a two-level 

hierarchical scheduling framework. The root-level contains the 

global scheduler which manages how subsystems (i.e. applications) 

are allocated on the processor. While the node-level contains the 

local scheduler which manages how tasks are scheduled on the 

processor. 

4.1 Global Scheduling 
At run-time the global scheduler chooses the highest priority 

subsystem that has tasks ready to run. The priority is based upon 

the subsystem period 𝑃𝑖 so the shorter the period the higher the 

subsystem priority.  Therefore if the priority of 𝑆𝑗 >  𝑆𝑖 then 𝑆𝑗 

would be scheduled first with its full budget then 𝑆𝑖 would be 

scheduled next with its full budget unless an overload condition is 

detected. In the event of an overload a higher criticality subsystem 

may request a budget change at the possible expense of a lower 

criticality subsystem which may or may not be a lower priority 

subsystem. 

The logical approach may be to re-assign budgets based upon 

subsystem priority. However, during an overload event studies 

have shown [3] that a value-based approach offers considerable 

advantages over traditional deadline-based approaches. For this 

reason, during an overload event the global scheduler of AHS-RT 

temporarily switches from a deadline-based scheduling policy to a 

value-based scheduling policy. Instead of the highest priority 

subsystem receiving their full budget the subsystem with the 

highest criticality level 𝐿𝑖 will receive their entire budget. 

Therefore, the global scheduler redistributes budgets based upon 

the criticality level which means lower criticality subsystems yield 

their budgets to higher criticality subsystems. This greedy approach 

can lead to starvation, even for some high priority subsystems, but 

this is acceptable in that during overload conditions the highest 

criticality subsystems are considered superior to lower criticality 

subsystems. 

4.1.1 Detecting Overloads 
An overload condition is based upon the overall subsystem 

utilization which is defined as: 

 𝑈𝑇 =  ∑ 𝑄𝑠𝑃𝑠∀𝑆𝑠∈𝑠    

and because we are using RM then an overload condition is 

determined by 𝑈𝑇 ≤ 𝑚(21 𝑚⁄ − 1), where m is the number of 

subsystems. An overload can occur because a subsystem requests a 

budget change in order to adapt to a fault or missed deadline within 

a task of an individual application. A budget change does not 

necessarily mean that the system is overloaded just that there is the 

potential for an overload condition to exist.  Consider some 

unallocated system utilization denoted as 𝑈𝑇′  such that 𝑈𝑇 + 𝑈𝑇′ ≤𝑚 (21 𝑚⁄ − 1), and then this extra utilization could be temporarily 

reallocated to the subsystem requesting the additional budget. 

However, if there are not sufficient resources to satisfy all the 

budget requirements then the system is considered overloaded 

which implies that a budget reallocation needs to be performed. 

4.1.2 Budget Reallocation 
After the full budget has been allocated to the highest criticality 

subsystem the lower criticality budgets needs to be re-dimensioned. 

The next lower criticality subsystems are then assigned budgets 

based upon the remaining utilization. The algorithm and 

description for budget dimensioning is provided below. The budget 

dimensioning algorithm (Algorithm 1) works  



 

by iterating through all the subsystems 𝑆𝑖 in the subset 𝑆𝑠,𝑗 of lower 

criticality subsystems. In line 2 the new budget is calculated based 

upon the remaining system utilization. A schedulability test (line 3) 

is then performed on the modified budget. If the modified budget 

renders the system unschedulable then a new budget value is 

attempted based upon the previous failed value. The algorithm 

continues to reduce the budgets of lower criticality subsystems until 

a schedulable system is found. 

 

4.2 Local Scheduling 
The local scheduling of AHS-RT consists of two primary 

components; a fuzzy logic based scheduler and a fuzzy logic based 

feedback controller. The scheduler selects the task to execute on the 

processor derived from the fuzzy rules based approach to real-time 

scheduling. The feedback controller gathers system state 

information for subsystem budget management to maximize 

utilization and minimize missed deadlines. 

4.2.1 Fuzzy Scheduler 
At run-time the fuzzy scheduler selects the highest priority task that 

is ready for execution on the processor. The priority of the task is 

determined by several parameters: task deadline, task criticality and 

task execution time. The task deadline is the time before the task 

should be completed. The task criticality relates to the 

consequences of missing a deadline. The task execution time is the 

worst-case execution time for that task. These parameters are then 

fuzzified and represented as linguistic variables (i.e. a word used to 

describe a variable). Fuzzy rules are then applied to the linguistic 

variables to compute the service value. The linguistic values for the 

three parameters are defined as: task deadline (early, on-time, late), 

task criticality (hard, firm, soft) and CPU time (very low, low, 

normal, high, very high). Fuzzy rules are then applied to create a 

fuzzy conclusion for computing the priority level. Figure 2 

illustrates the linguistic variables used by the inference stage of the 

fuzzy scheduler. 

 

 

 

 

Some of the fuzzy rules for the scheduler inference mechanism are 

listed as an example here: 

 If (CPU Time is high) and (deadline is late) and 

(criticality is hard) then (Priority is very high) 

 If (CPU Time is normal) and (deadline is on-time)and 

(critically is firm) then (Priority is normal) 

 If (CPU time is low) and (deadline is early) and 

(criticality is soft) then (Priority is low). 

These fuzzy conclusions are then combined to produce a fuzzy 

variable that represents the criticality level of the task. The variable 

is then defuzzified to create a value that is compared to other tasks 

to determine which task should be scheduled next. The decision 

surface illustrates the crisp output value (priority) that is obtained 

based upon the input parameters (See Figure 3). 

 

The fuzzy scheduler algorithm (Algorithm 2) iterates through all 

the tasks 𝜏𝑖 in the task set for a particular subsystem and for each 

task passes the deadline (𝐷𝑖), criticality value (𝐿𝑖) and starting time 

(𝑇𝑖) into the fuzzy inference engine. The output from the inference 

function is a crisp value used to assign a priority to each task and 

stored in a priority array (𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦𝑖). The task with the highest 

priority is then executed until some scheduling event occurs (task 

completion, new task instance arrives or server budget exhaustion). 

The system status is then updated and if a task misses its deadline 

such as server budget exhaustion then the deadline miss is reported 

to the feedback controller which could trigger a budget reallocation 

across the system. 

 

 

Figure 3: AHS-RT Decision Surface 

Figure 2: AHS-RT Inference block system rules 



4.2.2 Fuzzy Feedback Controller 
The feedback controller in AHS-RT is similar to the FC-UM 

algorithm [20] in that both the miss-ratio and utilization are 

monitored. The reference inputs for miss-ratio 𝑀𝑠 and unused 

budget 𝑈𝑠 are both set to zero. At each sampling instant the miss-

ratio M(k) and the unused subsystem budget U(k) are fed back into 

the controller. These values are then compared to their respective 

set points to determine the difference where du(k) represents the 

utilization error and dm(k) represents the miss-ratio error. The 

output from the fuzzy controller is the budget dimensioning factor 𝐷𝐵. As part of a typical fuzzy controller (Figure 4) we need to 

specify meaningful linguistic values and membership functions for 

each input and output variable. The input to the controller are miss 

ratio 𝑀𝑠 and task utilization ratio 𝑈𝑠 defined as a triangular 

membership functions. The input linguistic values are utilization 

(very low, low, normal, high, very high) and deadline misses (zero, 

small, medium, high). The output linguistic values is bandwidth 

adjustment (none, very small, small, medium, big and very big). 

Some of the fuzzy rules for the controller inference mechanism are 

listed as an example here: 

 If  (misses are zero) and (utilization is normal) then 

(bandwidth adjustment is none) 

 If (misses are small) and (utilization is high) then 

(bandwidth adjustment is small) 

 If  (misses are high) and (utilization is high) then 

(bandwidth adjustment is high) 

 

4.3 Task Scheduling Example 
To demonstrate AHS-RT we have provided an example scheduling 

scenario. Note for illustration purposes we are only considering one 

subsystem. So, the primary purpose of this example is present how 

the fuzzy scheduler manages tasks within the context of one 

subsystem. 

Consider the task set and subsystem listed in Tables 1 and 2. Table 

3 describes the scheduling of tasks at the first scheduling event 

where tasks 𝜏1, 𝜏2 and 𝜏3 all have the same initial starting time but 

since 𝜏1 has the nearest deadline it is assigned the highest priority 

by the fuzzy scheduler. Therefore, 𝜏1 is allowed to execute until 

completion then at time unit t3 task 𝜏2 executes until time unit t5 

when the subsystem’s budget expires. At time unit t10 (see Table 

4) the subsystem’s budget is replenished where the tasks can 
continue execution. At this time the fuzzy scheduler performs a re-

ordering of task priorities to reflect the system state. Task 𝜏2 is 

assigned the highest priority because the start time is the earliest 

and the deadline is the closest. 

 

Table 1: Subsystem Parameters 

Subsystem 𝑷𝒔 𝑸𝒔 𝑳𝒊 𝑆1 10 5 10 

 

Table 2: Task Parameters 

Task 𝑻𝒊 𝑪𝒊 𝑫𝒊 𝑳𝒊 𝜏1 10 2 10 5 𝜏2 15 5 15 10 𝜏3 20 3 20 10 

 

Table 3: Scheduling snapshot at time 0 

Task 𝑺𝒕𝒂𝒓𝒕𝒊 𝑫𝒊 𝑪𝒊 𝑳𝒊 𝑷𝒓𝒊𝒐𝒊 𝜏1 0,10,20,30 10,20,30,40 2 5 ~9 𝜏2 0,15,30 15,30 5 10 ~5 𝜏3 0,20,40 20, 40 3 10 ~3 

 

Table 4: Scheduling snapshot at time 10 

Task 𝑺𝒕𝒂𝒓𝒕𝒊 𝑫𝒊 𝑪𝒊 𝑳𝒊 𝑷𝒓𝒊𝒐𝒊 𝜏1 20,30 20,30,40 2 5 ~5 𝜏2 15,30 15,30 2 10 ~9 𝜏3  20 20, 40 3 10 ~7 

 

Table 5: Scheduling snapshot at time 20 

Task 𝑺𝒕𝒂𝒓𝒕𝒊 𝑫𝒊 𝑪𝒊 𝑳𝒊 𝑷𝒓𝒊𝒐𝒊 𝜏1 20,30 30,40 2 5 ~10 𝜏2 30 30 5 10 ~5 𝜏3 40 40 3 10 ~3 

 

 

Note that at time unit t12 task 𝜏2 will complete execution but task 𝜏3 will be scheduled over 𝜏1 even though both tasks have the same 

relative deadline and start time.  This is because 𝜏3 was assigned a 

higher priority by the fuzzy controller because 𝜏3 was defined to be 

a higher criticality task than 𝜏1. Also note, due to subsystem budget 

exhaustion at time unit t15 task 𝜏1 will miss its deadline which 

would trigger a budget reallocation request to the fuzzy controller 

for an increase in the subsystem budget.  Finally, at time unit t20 

(see Table 5) the scheduler re-orders the task priorities where once 

again 𝜏1 will be assigned the highest priority. 

 

4.4 Subsystem Reallocation Example 
Consider the following subsystems with parameters presented in 

Table 6 which is used to illustrate how a subsystem is scheduled by 

AHS-RT. 

 

 

Figure 4: Internal structure of the feedback controller 

 



 

Table 6: Subsystem Parameters 

Subsystem 𝑷𝒔 𝑸𝒔 𝑳𝒊 𝑆1 12 4 10 𝑆2 15 3 8 𝑆3 20 4 5 

 

Table 7: Budget Reallocation Snapshot 

Subsystem 𝑷𝒔 𝑸𝒔 𝑳𝒊 𝑫𝑼(𝒌) 𝑫𝑴(𝒌) 𝑫𝑩 𝑆1 12 3 10 -0.2 0.1 ~4.0 𝑆2 15 3 8 0.0 0.0 ~3.0 𝑆3 20 5 5 0.0 0.0 ~5.0 

 

Suppose that at some scheduling instant subsystem 𝑆1 has a current 

budget 𝑄1 = 3 but due to a deadline miss the fuzzy controller 

recommends a budget increase to 4. Also suppose that 𝑆2 and 𝑆3 

report no deadline misses or under utilization so the fuzzy 

controller recommends no budget changes. However, the increased 

budget of 𝑆1 causes the schedulability test to fail because 𝑈𝑇 >𝑚 (21 𝑚⁄ − 1) so now the criticality level 𝐿𝑖 is considered and since 𝑆1 has the highest criticality level it is granted the full budget. After 𝑄1 = 4 the budget dimensioning algorithm is performed to 

redistribute the remaining utilization. Initially, the budgets for 𝑆2  

and 𝑆3 will be 𝑄2 = 3 and  𝑄3 = 0 then a successful schedulability 

test will be performed.  Next the budget for 𝑆3 will be 𝑄3 = 5 but 

the schedulability test will fail. Since the system is no longer 

schedulable the budget for 𝑆3 will now be 𝑄3 = 4. This time the 

system is schedulable so the adjusted budgets are reallocated to 

their respective subsystems. 

 

 

5. SIMULATION 
AHS-RT was implemented as part of the VxWorks 6.9 real-time 

operating system (RTOS). The simulations were executed using the 

SIMNT vxsim simulator. For evaluation purposes we ported the 

SNU Real-Time Benchmark Suite [22] to compare deadline misses. 

The SNU real-time benchmark suite contains small C programs 

used for worst-case execution time analysis. The programs are 

mostly numeric and DSP algorithms. In order to represent the 

periodic task model of an embedded system a subset of the 

programs in the benchmark suite were chosen and assigned 

arbitrary task rates and criticality levels. Illustrated in Figure 5 both 

AHS-RT and the VxWorks native fixed-priority preemptive 

scheduler (FPPS) are comparable as long as the load factor is below 

~0.70 which corresponds with the lower bound for priority based 

algorithms. Notice that AHS-RT experiences significantly fewer 

deadline misses than FPPS when the system starts to become 

overloaded (> ~0.70). Also note that AHS-RT manages overload 

more effectively in that it does not start to report deadline misses 

until closer to a ~0.80 load factor. Another important observation 

depicted in Figure 6 is that AHS-RT manages deadline misses 

much more effectively than FPPS for higher criticality tasks. Notice 

that AHS-RT does not even start to report deadline misses until 

close to a ~1.25 load factor while FPPS starts to report deadlines as 

early as ~0.85. Clearly, AHS-RT is the superior scheduling 

mechanism as compared to FPPS specifically during periods of 

overload. 

 

 

 

Figure 5: Number of Deadline Misses (All Tasks) 

 

 

Figure 6: Number of Deadline Misses (Highest Criticality 

Tasks) 

 

6. CONCLUSIONS/FUTURE WORK 
In this paper we considered the problem of how to schedule tasks 

with varying levels of criticality on a uniprocessor to more 

effectively adapt to computational changes. Those changes were 

managed by hierarchical scheduling to provide the temporal 

isolation between tasks. The efficient scheduling of tasks was 

accomplished using a fuzzy based heuristic which has been proven 

to be more effective than traditional deadline based approaches 

especially during periods of overload. The results are a 

demonstrated reduction in deadline misses for all tasks during 

periods of overload as compared to traditional fixed priority based 

scheduling mechanisms. As further confirmation for the 

practicality for this approach we implemented AHS-RT as part of 

the VxWorks RTOS. 

Future work includes evaluating the additional overhead AHS-RT 

incurs in VxWorks as compared to the traditional scheduler. 

Additionally, we would like to extend AHS-RT into a multi-core 

environment and consider semi-independent tasks where 

subsystems would have to share a mutual resource such as a 

semaphore. 
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