
Neuroinform (2016) 14:201–219

DOI 10.1007/s12021-015-9287-0

ORIGINAL ARTICLE

Fuzzy-Logic Based Detection and Characterization
of Junctions and Terminations in Fluorescence Microscopy
Images of Neurons

Miroslav Radojević1
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Abstract Digital reconstruction of neuronal cell morphol-

ogy is an important step toward understanding the function-

ality of neuronal networks. Neurons are tree-like structures

whose description depends critically on the junctions and

terminations, collectively called critical points, making the

correct localization and identification of these points a cru-

cial task in the reconstruction process. Here we present

a fully automatic method for the integrated detection and

characterization of both types of critical points in fluo-

rescence microscopy images of neurons. In view of the

majority of our current studies, which are based on cultured

neurons, we describe and evaluate the method for applica-

tion to two-dimensional (2D) images. The method relies on

directional filtering and angular profile analysis to extract

essential features about the main streamlines at any loca-

tion in an image, and employs fuzzy logic with carefully

designed rules to reason about the feature values in order to

make well-informed decisions about the presence of a crit-

ical point and its type. Experiments on simulated as well

as real images of neurons demonstrate the detection per-

formance of our method. A comparison with the output

of two existing neuron reconstruction methods reveals that

our method achieves substantially higher detection rates and
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could provide beneficial information to the reconstruction

process.
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Introduction

The complexity and functionality of the brain depend crit-

ically on the morphology and related interconnectivity

of its neuronal cells (Kandel et al. 2000; Ascoli 2002;

Donohue and Ascoli 2008). To understand how a healthy

brain processes information and how this capacity is neg-

atively affected by psychiatric and neurodegenerative dis-

eases (Anderton et al. 1998; Lin and Koleske 2010; Šišková

et al. 2014) it is therefore very important to study neu-

ronal cell morphology. Advanced microscopy imaging tech-

niques allow high-sensitivity visualization of individual

neurons and produce vast amounts of image data, which

are shifting the bottleneck in neuroscience from the imag-

ing to the data processing (Svoboda 2011; Peng et al.

2011; Senft 2011; Halavi et al. 2012) and call for a high

level of automation. The first processing step toward high-

throughput quantitative morphological analysis of neurons

is their digital reconstruction from the image data. Many

methods have been developed for this in the past decades

(Meijering 2010; Donohue and Ascoli 2011) but the con-

sensus of recent studies is that there is still much room for

improvement in both accuracy and computational efficiency

(Liu 2011; Svoboda 2011).

A key aspect of any neuron reconstruction method is

the detection and localization of terminations and junc-

tions of the dendritic (and axonal) tree, collectively called
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“critical points” in this paper (Fig. 1), which ultimately

determine the topology and faithfulness of the resulting dig-

ital representation. Roughly there are two ways to extract

these critical points in neuron reconstruction (Al-Kofahi

et al. 2008; Meijering 2010; Basu et al. 2013). The most

often used approach is to start with segmentation or trac-

ing of the elongated image structures and then to infer the

critical points, either afterwards or along the way, by search-

ing for attachments and endings in the resulting subsets

(Dima et al. 2002, Xiong et al. 2006, Narro et al. 2007,

Vasilkoski and Stepanyants 2009, Bas and Erdogmus 2011,

Chothani et al. 2011, Dehmelt et al. 2011, Ho et al. 2011,

Choromanska et al. 2012, Xiao and Peng 2013). This

approach depends critically on the accuracy of the ini-

tial segmentation or tracing procedure, which usually is

not designed to reliably capture critical points in the first

place and thus often produces very fragmented results,

requiring manual postprocessing to fix issues (Peng et al.

2011; Luisi et al. 2011; Dercksen et al. 2014). The reverse

approach is to first identify critical points in the images and

then to use these as seed points for tracing the elongated

image structures. Critical points can be obtained either by

manual pinpointing, as in semiautomatic tracing methods

(Meijering et al. 2004; Schmitt et al. 2004; Narro et al. 2007;

Fig. 1 Fluorescence microscopy image of a neuron with manually

indicated junctions (red circles) and terminations (yellow circles). The

radius of each annotated critical-point region reflects the size of the

underlying image structure

Lu et al. 2009; Peng et al. 2010; Longair et al. 2011), or

by fully automatic detection using sophisticated image fil-

tering and pattern recognition methods (discussed in the

next section). The latter approach has barely been explored

for neuron reconstruction, but if reliable detectors can be

designed, they provide highly valuable information to the

reconstruction process.

Here we present a novel method – which we coin Neuron

Pinpointer (NP) – for fully automatic detection and char-

acterisation of critical points in fluorescence microscopy

images of neurons. We describe and evaluate the method

for studies where single (cultured) neurons are imaged

in 2D although all aspects of the method can in princi-

ple be extended to 3D. The method may also be useful

for reconstruction approaches based on 2D projections

(Zhou et al. 2015). For computational efficiency the method

starts with an initial data reduction step, based on local

variation analysis, by which obvious background image

regions are excluded. In the remaining set of foreground

regions the method then explores the local neighborhood

of each image pixel and calculates the response to a set of

directional filters. Next, an iterative optimization scheme is

used for robust peak selection in the resulting angular pro-

file, and a set of corresponding features relevant for the

detection task is computed. The feature set is then further

processed to make a nonlinear decision on the presence

of a critical point and its type (termination or junction)

at each foreground image pixel. To conveniently deal with

ambiguity and uncertainty in the data, the decision-making

is carried out by a fuzzy-logic rule-based system using

predefined rules specifically designed for this task. The pre-

sented work aims to facilitate the task of automatic neuron

reconstruction by contributing a general scheme for extract-

ing critical points that can serve as useful input for any

tracing algorithm.

This paper is a considerably extended version of our

recent conference report (Radojević et al. 2014). We have

modified the filtering algorithms and fuzzy-logic rules so

as to be able to detect both junction and termination points.

In addition we here present the full details of our method

and an extensive evaluation based on both manually anno-

tated real neuron images and computer generated neuron

images. To obtain the latter we here propose a new compu-

tational approach based on publicly available expert manual

tracings. We start with a brief overview of related work on

critical-point detection (“Related Work”) and then present

the underlying concepts (“Proposed Method”), implemen-

tational details (“Implementational Details”), and experi-

mental evaluation (“Experimental Results”) of our method,

followed by a summary of the conclusions that can be

derived from the results (“Conclusions”).
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Related Work

Detecting topologically critical points in images has been

a long-standing problem in many areas of computer vision.

Although an in-depth review of the problem and proposed

solutions is outside the scope of this paper, we provide a

brief discussion in order to put our work into context.

Examples of previous work include the design of filters

to find image locations where either three or more edges join

(“junctions of edges”) (Sinzinger 2008; Hansen and Neu-

mann 2004; Laganiere and Elias 2004) or three or more lines

join (“junctions of lines”) (Yu et al. 1998; Deschênes and

Ziou 2000). In biomedical applications, the predominant

type of junction is the bifurcation, with occasional trifurca-

tions, as seen in blood vessel trees, bronchial trees, gland

ductal trees, and also in dendritic trees (Koene et al. 2009;

Iber and Menshykau 2013). Hence, research in this area has

focused on finding image locations where three (or more)

elongated structures join (Tsai et al. 2004; Agam et al. 2005;

Bevilacqua et al. 2005; Bhuiyan et al. 2007; Zhou et al.

2007; Aibinu et al. 2010; Calvo et al. 2011; Obara et al.

2012b; Su et al. 2012; Azzopardi and Petkov 2013).

A common approach to find bifurcation points is to infer

them from an initial processing step that aims to segment

the elongated structures. However, the way these structures

are segmented may influence the subsequent critical-point

inference. Popular image segmentation methods use inten-

sity thresholding and/or morphological processing, in par-

ticular skeletonization (Hoover et al. 2000; Dima et al. 2002;

He et al. 2003; Weaver et al. 2004; Pool et al. 2008; Bevilac-

qua et al. 2009; Leandro et al. 2009; Aibinu et al. 2010),

but these typically produce very fragmented results. Popu-

lar methods to enhance elongated image structures prior to

segmentation include Hessian based analysis (Frangi et al.

1998; Xiong et al. 2006; Zhang et al. 2007; Al-Kofahi et al.

2008; Yuan et al. 2009; Türetken et al. 2011; Myatt et al.

2012; Basu et al. 2013; Santamarı́a-Pang et al. 2015), Lapla-

cean-of-Gaussian filters (Chothani et al. 2011), Gabor filters

(Bhuiyan et al. 2007; Azzopardi and Petkov 2013), phase

congruency analysis (Obara et al. 2012a), and curvelet

based image filtering approaches (Narayanaswamy et al.

2011). However, being tailored to elongated structures, such

filters often yield a less optimal response precisely at the

bifurcation points, where the local image structure is more

complex than a single ridge.

Several concepts have been proposed to explicitly detect

bifurcation points in the images without relying on an initial

segmentation of the axonal and dendritic trees. Examples

include the usage of circular statistics of phase informa-

tion (Obara et al. 2012b), steerable wavelet based local

symmetry detection (Püspöki et al. 2013), or combin-

ing eigen analysis of the Hessian and correlation matrix

(Su et al. 2012). The problem with existing methods is that

they often focus on only one particular type of critical point

(for example bifurcations but not terminations), or they

use rather rigid geometrical models (for example assum-

ing symmetry), while in practice there are many degrees

of freedom (Michaelis and Sommer 1994). Image filtering

methods for bifurcation detection have also been combined

with supervised machine-learning based approaches such

as support vector machines (Türetken et al. 2011), arti-

ficial neural networks (Bevilacqua et al. 2009), or with

multiple classifiers using AdaBoost (Zhou et al. 2007), but

these lack flexibility in that they require a training stage for

each application.

Robust neuron tracing requires knowledge of not only

the bifurcation points but also the termination points. Since

each type of critical point may vary considerably in terms

of geometry (orientation and diameter of the branches)

and image intensity (often related to the branch diameter),

designing or training a dedicated filter for each possible

case is impractical, and a more integrated approach is highly

desirable for both detection and characterization of the

different types of critical points. To the best of our knowl-

edge, no generic methods currently exist for critical-point

detection in neuron images. The method proposed in this

paper aims to fill this gap and to complement exploratory

neuron reconstruction algorithms that initialize on a set

of seed points.

Proposed Method

Our proposed method for detection and characterization

of critical points consists of three steps: feature extrac-

tion (“Feature Extraction”), fuzzy-logic based mapping

(“Fuzzy-Logic Based Mapping”), and, finally, critical-point

determination (“Critical-Point Determination”). Here we

describe each step in detail.

Feature Extraction

The aim of the feature extraction step is to compute a set

of quantitative features of the local image structure at each

pixel position that helps to discriminate between different

types of critical points. Since the tree-like neuronal image

structures typically cover only a small portion of the image,

we avoid unnecessary computations by first performing a

foreground selection step (“Foreground Selection”), which

discards image locations that are very unlikely to con-

tain neuronal structures and keeps only those regions that

are worthy of further examination. Next, the angular pro-
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Fig. 2 Example of foreground selection. The original image of 560 ×

780 pixels is divided into background (green transparent mask) and

foreground (gray-scale regions without mask) using rd = 8 pixels and

the 75th variation percentile as threshold. In this example, 25% of the

total number of pixels is selected for further processing

file (“Angular Profile Analysis”) of each foreground pixel

is constructed, from which the quantitative features are

computed.

Foreground Selection

To determine whether a pixel location (x, y) in a given

image I should be considered as foreground or background,

we analyze the local intensity variation ρ(x, y) within a cir-

cular neighborhood of radius rd centered at that location.

To avoid making strong assumptions about the local inten-

sity distribution we chose to use the difference between

the 95th and the 5th percentile of the intensities within the

neighborhood as the measure of variation:

ρ(x, y) = P95(Ixy) − P5(Ixy) (1)

Ixy =
{

I (m, n) | (m − x)2 + (n − y)2 ≤ r2
d

}

(2)

x, m ∈ [0, W − 1] and y, n ∈ [0, H − 1] (3)

where W and H denote, respectively, the width and the

height of I in pixels. The value of ρ is relatively low within

more or less homogeneous regions (background but also

the soma) but relatively high in regions containing neu-

ronal branches. Consequently, the histogram of ρ computed

over the entire image contains two clusters (representing

foreground and background pixels), which can be separated

using simple percentile thresholding (Doyle 1962). The per-

centile should be chosen such that background pixels (true

negatives) are removed as much as possible while at the

same time the foreground pixels (true positives) are retained

as much as possible (in practice this implies allowing for

false positives). We found that in our applications a per-

centile of around 75 is a safe threshold (Fig. 2). Small

gaps in the foreground region are closed by morphologi-

cal dilation. The resulting set of foreground pixel locations

is denoted by F . In our applications the parameter rd is

typically set to the diameter of the axonal and dendritic

structures observed in the image.

Angular Profile Analysis

For each selected foreground location, a local angular pro-

file is computed and analyzed. The key task here is to assess

the presence and properties of any curvilinear image struc-

tures passing through the given location. To this end we

correlate the image with a set of oriented kernels distributed

evenly over a range of angles around that location (Rado-

jević et al. 2014). The basic kernel used for this purpose is of

size D×D pixels and has a constant profile in one direction

and a Gaussian profile in the orthogonal direction (Fig. 3):

G(x, y) = e−x2/2σ 2
D /S (4)

where S is a normalization factor such that the sum of

G(x, y) over all kernel pixels is unity. We chose the Gaus-

sian both because we observed that the cross-sectional

profile of axons and dendrites in our applications is approx-

imately Gaussian-like and because the Gaussian is a theo-

retically well-justified filter for regularization purposes. The

parameters D and σD determine the size and shape of the

Fig. 3 Geometry involved in the computation of the angular profile.

In effect, the value of p(x, y, α, k, D) is the correlation of the image

I (x, y) with the kernel G(m, n) of size D×D pixels, after rotating the

kernel patch over angle α and shifting it over kD with respect to (x, y)
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kernel profile and should correspond to the expected branch

diameter.

Using the kernel we compute the local angular profile at

any pixel location (x, y) in the given image I as:

p(x, y, α, k, D) =
∑

m

∑

n

I (xm,n, ym,n)G(m, n) (5)

where the transformed image coordinates are obtained as:

[

xm,n

ym,n

]

=

[

x

y

]

+kD

[

sin α

−cos α

]

+

[

cos α −sin α

sin α cos α

] [

m

n

]

(6)

and the summation is performed over all (m, n) for which

the kernel is defined. That is, p(x, y, α, k, D) is the cor-

relation of the image with the kernel patch rotated over

angle α and shifted over a distance kD with respect to

(x, y) in the direction corresponding to that angle (Fig. 3).

In practice, p is calculated for a discrete set of angles,

αi = i/(2πNα), i = 0, . . . , Nα − 1, where Nα is automati-

cally set such that the circle with radius kD is sampled with

pixel resolution. The parameter k is typically set slightly

larger than 0.5 so as to scan the neighborhood around

the considered pixel (x, y). To obtain the image inten-

sity at non-integer transformed locations (xm,n, ym,n), linear

interpolation is used.

In contrast with previous works, which used differen-

tial kernels for directional filtering and profiling (Yu et al.

1998; Can et al. 1999; Zhang et al. 2007), we employ

the matched kernel (4), which avoids noise amplification.

Although applying a set of rotated kernels is computation-

ally more demanding than Hessian or steerable filtering

based methods, it provides more geometrical flexibility in

matching the kernels with the structures of interest while

retaining excellent directional sensitivity. In our framework,

the computational burden is drastically reduced by the fore-

ground selection step, and further reduction is possible since

the filtering process is highly parallelizable.

After computing the angular profile we further process

it in order to extract several features (Fig. 4) relevant for

critical-point detection and characterization:

Peaks At each foreground pixel location we first determine

how many and in which direction line-like image structures

pass through it. This is done by finding the local max-

ima (“peaks”) in the angular profile at that location. Since

the oriented kernels act as low-pass filters, the profile is

sufficiently smooth to extract the peaks reliably using the

iterative line searching algorithm (Flannery et al. 1992). The

found peaks correspond to angles α̂i, i = 1, . . . , Nα̂ , in

which directions the image intensities are the highest. Here

Nα̂ ≤ 4 to accommodate terminations, normal body points,

and junctions (bifurcations and crossovers).

Fig. 4 Flowchart of the feature extraction scheme. The example show-

cases a bifurcation but the same scheme is used also for terminations.

The scheme, which starts with the angular profile p(x, y, α, k, D) and

is executed clockwise, is applied to each pixel in the selected fore-

ground regions and results in the set of features li , ui , and ci , where i

indexes the streamlines. See main text for details

Likelihood For each α̂i we calculate a likelihood li ∈ [0, 1]

from the angular profile according to:

li =
p(x, y, α̂i, k, D) − pmin

pmax − pmin
(7)

where pmin and pmax denote, respectively, the minimum and

maximum of p(x, y, α, k, D) over α.

Energy Next we consider the local grid πi(x, y, α̂i, k, D)

for each α̂i (Fig. 4), consisting of the transformed coordi-

nates (xm,n, ym,n) corresponding to α = α̂i (6), and we

extract a refined centerline point set λi (or “streamline”) on

this grid by finding for each n the local maximum over m:

λi =
{

(xm̂n,n, ym̂n,n)
}

n ∈ [−D/2,D/2]
(8)

m̂n = arg max
m∈ [−D/2,D/2]

I (xm,n, ym,n) (9)

We quantify how much the streamline deviates from a

straight line by estimating its bending energy ui ≥ 0 as:

ui =
1

∆m

∑

n

(

m̂n−1 − 2m̂n + m̂n+1

)2
(10)

where ∆m is the pixel spacing in the direction of m and

the summation extends over all n for which the summand

can be evaluated. This calculation is a discrete approxima-

tion of the integral squared second-order derivative of the

centerline function if it were continuously defined.
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Correlation Given a streamline λi we estimate the orthog-

onal direction at each point in the set by averaging the

orthogonal directions of the two neighboring streamline

segments corresponding to that point (that is, from the

point to the next point, and from the point to the previous

point). Using these direction estimates we sample a refined

local grid Πi(x, y, α̂i, k, D), consisting of image coordi-

nates (x̃m,n, ỹm,n) relative to the streamline (Fig. 4), and

compute a normalized cross-correlation (Lewis 1995) score

ci ∈ [−1, 1] as:

ci =

∑

m

∑

n

[

I (x̃m,n, ỹm,n) − Ī
] [

G(m, n) − Ḡ
]

√

∑

m

∑

n

[

I (x̃m,n, ỹm,n) − Ī
]2 ∑

m

∑

n

[

G(m, n) − Ḡ
]2

(11)

where, similar to the angular profile calculation (5), the

summations extend over all (m, n) for which the kernel is

defined, and Ī and Ḡ denote the mean of the image inten-

sities and of the kernel values, respectively. Effectively ci

quantifies the degree to which the template G matches a

straightened version of the streamline. To cover a range of

possible scales (radii of the underlying image structures),

we take the largest score of a set of templates with standard

deviations of the Gaussian profile model (Su et al. 2012)

covering
{

1, . . . ,
⌊

D
2

⌋}

set of values measured in pixels.

Fuzzy-Logic Based Mapping

The feature values extracted at each foreground image loca-

tion subsequently need to be processed in order to assess

the presence of a critical point and its type. Recognizing

that in practice everything is “a matter of degree” (Zadeh

1975), and allowing for nonlinear input-output mappings,

we chose to use fuzzy logic for this purpose. Fuzzy logic

has been successfully used in many areas of engineering

(Mendel 1995) but to the best of our knowlege has not

been explored for neuron critical-point analysis. We briefly

describe the basics of fuzzy logic (“Basics of Fuzzy Logic”)

and then present our specific fuzzy-logic system for calcu-

lating critical-point maps of neuron images (“Termination

and Junction Mapping”).

Basics of Fuzzy Logic

In a fuzzy-logic system (Fig. 5), numerical inputs are first

expressed in linguistic terms (the fuzzification step), and are

then processed based on predefined rules to produce lin-

guistic outputs (the inference step), which are finally turned

back into numerical values (the defuzzification step).

Fuzzification Given an input scalar value s ∈ R, the fuzzi-

fication step results in a vector s̃ whose elements express

the degree of membership of s to input fuzzy sets, each

corresponding to a linguistic term describing s. A fuzzy

Fig. 5 Scheme of a single input/output fuzzy-logic (FL) system. A

scalar input value s is converted to a vector s̃ containing the mem-

berships of s for each of the input fuzzy sets, resulting in a vector z̃

containing the memberships of z for each of the output fuzzy sets

set is defined by a membership function µ : R → [0, 1]

quantifying the degree to which s can be described by the

corresponding linguistic term. Commonly used membership

functions are trapezoidal, Gaussian, triangular, and piece-

wise linear (Mendel 1995). As an example, we may have

linguistic terms LOW and HIGH, representing the subjec-

tive notions “low” and “high”, respectively. The degrees

to which “s is low” (which in this paper we will write as

s = LOW) and “s is high” (s = HIGH) are given by

membership values µLOW(s) and µHIGH(s), respectively.

The output of the fuzzification step thus becomes s̃ =

[µLOW(s), µHIGH(s)]T .

Inference The input fuzzy set memberships are processed

by the inference engine to produce a fuzzy output based on

rules expressing expert knowledge. The rules can be either

explicitly defined or implicitly learned by some training

process, and may express nonlinear input-output relation-

ships and involve multiple inputs. In engineering applica-

tions, the rules are commonly given as IF-THEN statements

about the input and output linguistic terms. For example,

the output terms could be OFF, NONE, and ON, indicat-

ing whether a certain property of interest is “off”, “none”

(expressing ambiguity), or “on”. A rule could then be:

Ri : IF (s1 = HIGH) ∧ (s2 = LOW)

THEN (z = OFF)
(12)

where z ∈ R is the variable over the output range. This is not

a binary logical statement, where the input and output condi-

tions can be only true or false, but a fuzzy logical statement,

where the conditions are expressed in terms of member-

ships, in this case µHIGH(s1), µLOW(s2), and µOFF(z). Input

conditions are often combined using the operators ∧ (denot-

ing fuzzy intersection) or ∨ (denoting fuzzy union), which

are commonly defined as, respectively, the minimum and

maximum of the arguments (Mendel 1995). In our exam-

ple, the IF-part of Ri (12) would result in the following

intermediate value (degree of verity):

υi = min {µHIGH(s1), µLOW(s2)} (13)

This value is then used to constrain the fuzzy set corre-

sponding to the output linguistic term addressed by Ri , in

this case OFF, resulting in the output fuzzy set:

ϒi(z) = min {µOFF(z), υi} (14)
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In practice there may be many rules Ri, i = 1, . . . , NR ,

which are aggregated by the inference engine to produce

a single output fuzzy set ϒ . The common way to do this

(Mendel 1995) is by means of a weighted fuzzy union:

ϒ(z) = max
{

w1ϒ1(z), . . . , wNR
ϒNR

(z)
}

(15)

Although it is possible to assign a different weight to each

rule by setting wi ∈ [0, 1], in our applications this is not

critical, and therefore we simply use wi = 1 for all i.

Defuzzification In the final step of the fuzzy-logic system,

the fuzzy output ϒ is converted back to a scalar output

value. Although there are many ways to do this, a common

choice is to calculate the centroid (Mendel 1995):

ẑ =

∫

zϒ(z)dz
∫

ϒ(z)dz
(16)

With this value we can finally calculate the vector of output

fuzzy set memberships: z̃ = [µOFF(ẑ), µNONE(ẑ), µON(ẑ)]T .

Termination and Junction Mapping

To determine the presence and type of critical point at

any foreground image location, we use a cascade of

two fuzzy-logic systems, representing two decision lev-

els (Fig. 6). The first level takes as input vectors si =

[li, ui, ci], i = 1, . . . , 4, which contain the features for

each of the streamlines extracted in the angular profile

analysis step at the image location under consideration

(“Angular Profile Analysis”). For each streamline (Fig. 7),

the features are fuzzified (µ) and processed by the first

fuzzy-logic module (FL1), which determines the degree to

which the streamline indeed represents a line-like image

structure (ON), or not (OFF), or whether the image struc-

ture is ambiguous (NONE). In cases where less than four

streamlines were found by the angular profile analysis step,

õ4
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õ2

o1

s̃4

s̃3

s̃2

s1

s4

s3

s2

s1

FL2

µ FL1

d
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u
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r
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µ

Fig. 6 Architecture of the proposed fuzzy-logic system for critical-

point detection. A cascade of two fuzzy-logic modules (FL1 and FL2)

is used, where the first determines the degree to which streamlines

(up to four) are present at the image location under consideration, and

based on this information the second determines the degree to which

that location corresponds to the possible types of critical points
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µC

µ

cLOW
i

cHIGH
i

zEND

zNONE

zJUN

oOFF
i

oNONE
i

oON
i

Fig. 7 Architecture of the proposed fuzzy-logic system for processing

the information of one streamline. Input feature values are fuzzified

into linguistic terms LOW and HIGH, which are translated by the

first fuzzy-logic module (FL1) into intermediate linguistic terms OFF,

NONE, ON, which are finally translated by the second fuzzy-logic

module (FL2) into linguistic terms END, NONE, JUN

the feature vectors of the nonexisting streamlines are set

to 0. The fuzzy output for all four streamlines together

forms the input for the second decision level, where another

fuzzy-logic module (FL2) determines the degree to which

the image location corresponds to a junction (JUN), or a

termination (END), or neither of these (NONE).

The input streamline features, li , ui , ci , are expressed in

linguistic terms LOW and HIGH using membership func-

tions µLOW and µHIGH defined for each type of feature.

In our application we use trapezoidal membership func-

tions, each having two inflection points, such that µLOW and

µHIGH are each other’s complement (Fig. 8). For example,

the degrees to which li = LOW and li = HIGH, are given

by lLOW
i = µL

LOW(li) and lHIGH
i = µL

HIGH(li) = 1 − lLOW
i ,

respectively, and because of this complementarity we often

simply write µL to refer to both membership functions

(Fig. 7). Similarly, the membership degrees of ui and ci are

given by µU and µC , respectively. Summarizing, we use

the following notations and definitions for the fuzzification

step:

µL : li → l̃i =
[

lLOW
i , lHIGH

i

]T

µU : ui → ũi =
[

uLOW
i , uHIGH

i

]T

µC : ci → c̃i =
[

cLOW
i , cHIGH

i

]T

(17)

and the lower and higher inflection points of µL are denoted

by LLOW and LHIGH, and similarly ULOW and UHIGH for

µU , and CLOW and CHIGH for µC (Fig. 8).

Taken together, the input to FL1 is the matrix of mem-

berships s̃i = [l̃i, ũi, c̃i], and the output is the vector õi of

memberships to the linguistic terms OFF, NONE, ON:

FL1 : s̃i → õi =
[

oOFF
i , oNONE

i , oON
i

]T

(18)

To calculate these memberships we introduce scalar vari-

able o, where o = 0 corresponds to OFF, o = 1 to NONE,

and o = 2 to ON, and we define Gaussian membership
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Fig. 8 Input membership

functions used in the

fuzzification step for FL1.

Example LOW and HIGH

membership values are shown

(right column) for input values

(dashed vertical lines in the

plots on the left) li = 0.35 (top

row), ui = 10 (middle row), and

ci = 0.85 (bottom row). The

inflection points of the

membership functions are,

respectively, LLOW = 0.05 and

LHIGH = 0.4 for µL, UHIGH = 5

and ULOW = 20 for µU , and

CLOW = 0.5 and CHIGH = 0.95

for µC . Notice that features ui

(the centerline bending energies

of the streamlines) are

reinterpreted here to express the

degree of smoothness (hence the

inverted membership functions

as compared to the other two)
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functions µO
OFF, µO

NONE and µO
ON, centered around 0, 1, and

2, respectively (Fig. 9), and with fixed standard deviation

0.4 so that they sum to about 1 in the interval [0, 2]. The

rules used by FL1 to associate the input terms LOW and

HIGH to the output terms OFF, NONE, and ON, are given

in Table 1. They are based on the heuristic assumption that

a line-like image structure exists (ON) if the evidence repre-

sented by all three features support it (HIGH). By contrast,

if the likelihood is LOW and at least one other feature is also

LOW, this indicates that no such structure exists (OFF). In

all remaining cases, some structure may exist, but it is not

line-like (NONE). As an example, rule R8 (Table 1) is given

by:

R8 : IF (l = HIGH) ∧ (u = HIGH) ∧ (c = HIGH)

THEN (o = ON) (19)

Fig. 9 Output membership

functions used in module FL1.

Example output fuzzy sets ϒi

corresponding to rules Ri from

Table 1 are shown as the

textured areas. Value ô (left

panel) represents the centroid of

the aggregated output fuzzy sets.

The resulting output

membership values (right panel)

serve as input for module FL2
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Table 1 The set of rules

employed by FL1
Ri l u c o

1 LOW LOW LOW OFF

2 LOW LOW HIGH OFF

3 LOW HIGH LOW OFF

4 LOW HIGH HIGH NONE

5 HIGH LOW LOW NONE

6 HIGH LOW HIGH NONE

7 HIGH HIGH LOW NONE

8 HIGH HIGH HIGH ON

which results in the verity value:

υ8 = min
{

µL
HIGH(l), µU

HIGH(u), µC
HIGH(c)

}

(20)

and the output fuzzy set:

ϒ8(o) = min
{

µO
ON(o), υ8

}

(21)

All the rules are resolved and combined as:

ϒ(o) = max {ϒ1(o), . . . , ϒ8(o)} (22)

and centroid defuzzification then results in a scalar out-

put value ô. This procedure is repeated for each streamline,

yielding ôi, i = 1, . . . , 4, from which the output of each

FL1 (18) is calculated using the membership functions:

õi =
[

µO
OFF(ôi), µO

NONE(ôi), µO
ON(ôi)

]T

(23)

Moving on to the next level, the input to FL2 is the

matrix of memberships õ =
[

õ1, õ2, õ3, õ4

]

, and the

output is the vector z̃ of memberships to the linguistic

terms END (termination), NONE (no critical point), JUN

(junction):

FL2 : õ → z̃ =
[

zEND, zNONE, zJUN
]T

(24)

To calculate these memberships we introduce scalar vari-

able z, where z = 1 corresponds to END, z = 2 to

NONE, and z = 3 to JUN, and we define corresponding

Gaussian membership functions µZ
END, µZ

NONE, and µZ
JUN,

centered around 1, 2, and 3, respectively, and with fixed

standard deviation 0.4 as before (Fig. 10). The rules used

by FL2 to associate the input terms OFF, NONE, ON to

the output terms END, NONE, JUN are given in Table 2.

They are based on the heuristic assumption that there is

a termination (END) if a single streamline is confirmed

to correspond to a line-like image structure (ON) and the

other three are confirmed to not correspond to such a struc-

ture (OFF). Conversely, if at least three are ON, there must

be a junction at that location. Finally, if two are ON and

two are OFF, or if at least two streamlines are ambigu-

ous (NONE), we assume there is no critical point. Similar

to FL1, all the rules of FL2 are evaluated and their results

combined as:

ϒ(z) = max {ϒ1(z), . . . , ϒ22(z)} (25)

which, after centroid defuzzification, results in a scalar out-

put value ẑ, from which the output of FL2 (24) is calculated

using the membership functions:

z̃ =
[

µZ
END(ẑ), µZ

NONE(ẑ), µZ
JUN(ẑ)

]T

(26)

The proposed fuzzy-logic system is applied to each fore-

ground pixel location (x, y) ∈ F (“Foreground Selection”)

so that all memberships introduced above may be indexed
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Fig. 10 Output membership functions used in module FL2. Example

output fuzzy sets ϒi corresponding to rules Ri from Table 2 are shown

as the textured areas. Value ẑ (left panel) represents the centroid of the

aggregated output fuzzy sets. The resulting output membership values

(right panel) indicate the degree to which there may be a termination

(END), junction (JUN), or neither of these (NONE) at the image pixel

location under consideration
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Table 2 The set of rules

employed by FL2. Empty

entries indicate “don’t care”

(could be OFF, NONE, or ON)

Ri o1 o2 o3 o4 z

1 OFF OFF OFF OFF NONE

2 OFF OFF OFF ON END

3 OFF OFF ON OFF END

4 OFF OFF ON ON NONE

5 OFF ON OFF OFF END

6 OFF ON OFF ON NONE

7 OFF ON ON OFF NONE

8 OFF ON ON ON JUN

9 ON OFF OFF OFF END

10 ON OFF OFF ON NONE

11 ON OFF ON OFF NONE

12 ON OFF ON ON JUN

13 ON ON OFF OFF NONE

14 ON ON OFF ON JUN

15 ON ON ON OFF JUN

16 ON ON ON ON JUN

17 NONE NONE NONE

18 NONE NONE NONE

19 NONE NONE NONE

20 NONE NONE NONE

21 NONE NONE NONE

22 NONE NONE NONE

by (x, y). Based on this we calculate the following two

maps:

IEND(x, y) =

{

zEND(x, y) if (x, y) ∈ F

0 otherwise
(27)

IJUN(x, y) =

{

zJUN(x, y) if (x, y) ∈ F

0 otherwise
(28)

which indicate the degree to which any pixel (x, y) belongs

to a termination or a junction, respectively.

Critical-Point Determination

The ultimate aim of our method is to provide a list of critical

points in the neuron image, with each point fully charac-

terized in terms of type, location, size, and main branch

direction(s). Since each critical point of a neuronal tree typi-

cally covers multiple neighboring pixels in the image, giving

rise to a high value at the corresponding pixels in the maps

IEND and IJUN, the final task is to segment the maps and to

aggregate the information within each segmented region.

Due to noise, labeling imperfections, and structural ambi-

guities in the original image, the values of neighboring

pixels in the maps may vary considerably, and direct thresh-

olding usually does not give satisfactory results. To improve

the robustness we first regularize the real-valued scores in

the maps by means of local-average filtering with a radius

of 3-5 pixels. Next, max-entropy based automatic thresh-

olding (Kapur et al. 1985) is applied to segment the maps,

as in contrast with many other thresholding methods we

found it to perform well in separating the large but relatively

flat (low information) background regions from the much

smaller but more fluctuating (high information) regions of

interest. The resulting binary images are further processed

using a standard connected components algorithm (Sonka

et al. 2007) to identify the critical-point regions.

Each critical region consists of a set of connected pixels

xp = (xp, yp), p = 1, . . . , Np, where Np denotes the num-

ber of pixels in the region. From these, the representative

critical-point location xC = (xC, yC) is calculated as:

xC =
1

Np

Np
∑

p=1

xp (29)

while the critical-point size is represented by the radius of

the minimum circle surrounding the region:

rC = max
p

{

||wp||
}

(30)

where wp = xp − xC (Fig. 11). To obtain regularized

estimates of the main branch directions v̂i for the criti-

cal point, we aggregate the directions corresponding to the

angular profile peaks α̂i (“Angular Profile Analysis”) of

all the xp in the region as follows. For each xp we have

Nα̂ ≤ 4 angular profile peak direction vectors ap,i =
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rC

v̂3
v̂2

v̂1

(xC , yC)
rC

(xC , yC)

(xp, yp)

wp

t ap,i

ep,i

Fig. 11 Critical-point determination. A critical point is characterized

by its type, centroid location (xC , yC), radius rC , and its main branch

directions v̂i (left panel, in this case a bifurcation), aggregated from

the pixels (xp, yp) in the corresponding critical region (right panel)

[cos α̂i(xp), sin α̂i(xp)]T . Each of these vectors defines a

line a(t) = xp +t ap,i parameterized by t ∈ R. We establish

the projection of this line onto the circle ||x − xC ||2 = r2
C

by substituting x = a(t) and solving for t . From this we

calculate the contributing unit vector (Fig. 11):

ep,i =
1

rC
(wp + t ap,i) (31)

which points from xC to the intersection point. This is done

for all p = 1, . . . , Np in the region and i = 1, . . . , Nα̂

for each p, resulting in the set of vectors {ep,i}. Next, a

recursive mean-shift clustering algorithm (Cheng 1995) is

applied to {ep,i}, which converges to a set {v̂i}, where the

cluster vectors v̂i , i = 1, . . . , L, represent the branches. For

a critical region in IEND, we need only one main branch

direction, which we simply take to be the direction v̂1 to

which the largest number of ep,i were shifted. For a criti-

cal region in IJUN, we take as the main branch directions the

v̂i (at least three) to which the largest number of ep,i were

shifted. These calculations are performed for all critical

regions.

Implementational Details

The method was implemented in the Java programming

language as a plugin for the image processing and anal-

ysis tool ImageJ (Abràmoff et al. 2004; Schneider et al.

2012). Since the feature extraction step (“Feature Extrac

tion”), in particular the matched filtering for angular profile

analysis, is quite computationally demanding, we applied

parallelization in multiple ways to reduce the running time

to acceptable levels (on the order of minutes on a regular

PC). Specifically, the directional filtering was split between

CPU cores, each taking care of a subset of the directions

(depending on the number of available cores). After this,

the angular profile analysis and calculation of the features

was also split, with each core processing a subset of the

foreground image locations. This was sufficient for our

experiments. Further improvement in running time (down

to real-time if needed) could be achieved by mass paral-

lelization using GPUs (graphical processing units) instead

of CPUs.

Essential parameters that need to be set by the user are the

scale parameters k and D (“Angular Profile Analysis”) and

the inflection points LLOW, LHIGH, ULOW, UHIGH, CLOW,

and CHIGH of the input membership functions used by

fuzzy-logic module FL1 (“Termination and Junction Map-

ping”). In our applications we set D to the expected neuron

diameter in a given set of images while k = 0.7 was kept

fixed. The L inflection points are always in the range [0, 1]

since the corresponding feature (likelihood) is normalized.

Based on ample experience with many data sets we typi-

cally set LLOW close to 0 and LHIGH around 0.5 (Fig. 8).

By contrast, the inflection points U correspond to a feature

(centerline bending energy) that is not normalized and may

vary widely from 0 to any positive value. To obtain sensible

values for these we rely on the histogram of all calculated

energy values in the image. Parameter ULOW is set to the

threshold computed by the well-known triangle algorithm,

while typically UHIGH ≫ ULOW. We note that the mem-

bership functions defined by these parameters are inverted

(Fig. 8) such that the energy becomes a measure of smooth-

ness. Finally, the C inflection points correspond again to a

feature (correlation) with a fixed output range [−1, 1]. In

our applications we usually set them to CLOW ∈ [0.1, 0.5]

and CHIGH = 0.95 (Fig. 8).

All other aspects of our method that could be con-

sidered as user parameters either follow directly from

these essential parameters or are fixed to the standard

values mentioned in the text. For example, the radius

rd of the circular neighborhood in the foreground selec-

tion step (“Foreground Selection”) can be set equal to

D, and the standard deviation σD of the Gaussian profile

(“Angular Profile Analysis”) can be set to D/6 to get a rep-

resentative shape. Also, the output membership functions

of FL1 (input to FL2) as well as the output membership

functions of FL2 are Gaussians with fixed levels and stan-

dard deviation (“Termination and Junction Mapping”), as

they are not essentially influencing the performance of

the algorithm.

Experimental Results

To evaluate the performance of our method in correctly

detecting and classifying neuronal critical points we per-

formed experiments with simulated images (using the

ground truth available from the simulation) as well as

with real fluorescence microscopy images (using man-

ual annotation as the gold standard). After describ-

ing the performance measures (“Performance Measures”),
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Fig. 12 Examples of simulated triplet images and detection results.

Each triplet consists of three branches with different diameters which

join at one end to form a bifurcation point and with the other ends

being termination points. Images were generated at SNR = 2, 3, 4, 5

(left to right panel). The detection results with our method are indi-

cated as red circles (bifurcation points) and yellow circles (termination

points), where the radius of each circle reflects the size of the critical

region found by our method

we present and discuss the results of the evalua-

tion on simulated images, including synthetic triplets

(“Evaluation on Simulated Triplet Images”) and neurons

(“Evaluation on Simulated Neuron Images”), and on real

neuron images (“Evaluation on Real Neuron Images”), as

well as the results of a comparison of our method with two

other methods (“Comparison With Other Methods”).

Performance Measures

Performance was quantified by counting the correct and

incorrect hits and the misses of the detection with respect to

the reference data. More specifically, we counted the true-

positive (TP), false-positive (FP), and the false-negative

(FN) critical-point detections, and we used these to cal-

culate the recall R = TP/(TP + FN) and precision

P = TP/(TP + FP). Both R and P take on values in

the range from 0 (meaning total failure) to 1 (meaning

flawless detection). They are commonly combined in the

F-measure (Powers 2011), defined as the harmonic mean

of the two: F = 2 R P/(R + P). The F-measure was com-

puted separately for each type of critical points considered

in this paper, yielding FEND for terminations and FJUN

for junctions. As a measure of overall performance we

also computed the harmonic mean of the two F-measures:

FBOTH = 2 FEND FJUN/(FEND + FJUN).

Evaluation on Simulated Triplet Images

Before considering full neuron images we first evaluated

the performance of our method in detecting terminations

and junctions in a very basic configuration as a function

of image quality. To this end we used a triplet model, con-

sisting of a single junction modeling a bifurcation, having

three branches with arbitrary orientations (angular inter-

vals) and diameters (Fig. 12). Orientations were randomly

sampled from a uniform distribution in the range [0, 2π ]

while prohibiting branch overlap. Since in principle the

directional filtering step (“Angular Profile Analysis”) uses

a fixed kernel size D, we wanted to investigate the robust-

ness of the detection for varying ratios dmax/dmin between

the maximum and the minimum branch diameter in a triplet.

For this experiment we considered ratios 1,0.33,2,2.5,3 by

taking normalized diameter configurations (d1, d2, d3) =

(0.33,0.33,0.33), (0.3,0.3, 0.4), (0.2, 0.4,0.4), (0.2,0.3,0.5),

(0.2,0.2,0.6), where in each case the actual smallest diam-

eter was set to 3 pixels (the resolution limit) and the other

diameters were scaled accordingly. For each configuration

we simulated images with 1,000 well-separated triplets for

signal-to-noise ratio levels SNR = 2, 3, 4, 5 (see cropped

examples in Fig. 12). We chose these levels knowing that

SNR = 4 is a critical level in other detection problems

(Smal et al. 2010; Chenouard et al. 2014). Poisson noise

Fig. 13 Performance of our

method in detecting

terminations and junctions in

simulated images of triplets. The

values of FEND and FJUN are

shown (left panel) for the

various branch diameter ratios

dmax/dmin at SNR = 4. The

distribution of FBOTH values is

shown as a box plot (right panel)

for the various SNR levels
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Fig. 14 Examples of simulated

neuron images based on expert

reconstructions from the

NeuroMorpho.Org database.

The images show a wide range

of morphologies (one type per

row) and image qualities of

SNR = 2, 3, 4, 5 (from left to

right per row)

was used in simulating fluorescence microscopy imaging of

the triplets. From the results of this experiment (Fig. 13) we

conclude that our method is very robust for diameter ratios

dmax/dmin ≤ 2 1
2

and an image quality of SNR ≥ 4. We also

conclude that our method is somewhat better in detecting

terminations than detecting junctions. Example detection

Fig. 15 Performance of our

method in detecting

terminations and junctions in 30

simulated images of neurons.

The distributions of the FEND,

FJUN, and FBOTH values are

shown as box plots for SNR = 4

(left panel) and in addition the

distribution of FBOTH is shown

for SNR = 2, 3, 4, 5 (right

panel)
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results for dmax/dmin ≤ 2 for the considered SNR levels are

shown in Fig. 12.

Evaluation on Simulated Neuron Images

To evaluate our method on more complex images, but for

which we would still know the truth exactly, we simu-

lated the imaging of complete neurons. Although there

are various ways this could be done (Koene et al. 2009;

Vasilkoski and Stepanyants 2009), we chose to use existing

expert reconstructions from the NeuroMorpho.Org database

(Ascoli et al. 2007). A total of 30 reconstructions from

different neuron types were downloaded as SWC files

(Cannon et al. 1998), in which the reconstructions are repre-

sented as a sequence of connected center-point locations in

3D with corresponding radii in micrometers. Fluorescence

microscopy images were generated from these reconstruc-

tions in 2D by using a Gaussian point-spread function model

and Poisson noise to emulate diffraction-limited optics and

photon statistics. For each reconstruction we generated

images of SNR = 2, 3, 4, 5 (Fig. 14). This way we obtained

simulated images of neurons for which the termination and

junction point locations were known exactly from the SWC

files.

From the evaluation results (Fig. 15) we confirm the con-

clusion from the experiments on triplets that our method

performs well for SNR ≥ 4 and is somewhat better in

detecting terminations than detecting junctions. For SNR =

4 we find that the performance for junction detection is

FJUN ≈ 0.85 while for termination detection FEND ≈

0.95. The higher performance for termination detection may

be explained by the fact that the underlying image struc-

ture is usually less ambiguous (a single line-like structure

surrounded by darker background) than in the case of junc-

tions (multiple line-like structures that are possibly very

close to each other). Example detection results are shown

in Fig. 16.

Evaluation on Real Neuron Images

As the ultimate test case we also evaluated our method

on real fluorescence microscopy images of neurons from a

published study (Steiner et al. 2002). A total of 30 repre-

sentative images were taken and expert manual annotations

of the critical points were obtained to serve as the gold

standard in this experiment. Needless to say, real images

are generally more challenging than simulated images, as

they contain more ambiguities due to labeling and imaging

imperfections, and thus we expected our method to show

lower performance. Since in this case we have no control

over the SNR in the images we report the detection results of

all images together. From the evaluation results (Fig. 17) we

find that the median performance in detecting critical points

Fig. 16 Example detection results in simulated neuron images at

SNR = 4. The images are contrast enhanced and show the detected ter-

minations (yellow circles) and junctions (red circles) as overlays with

fixed radius for better visibility. The value of FBOTH in these examples

is a 0.69, b 0.85, c 0.85, d 0.77, e 0.75, f 0.68, g 0.86

is FJUN = 0.81 for junctions and FEND = 0.73 for termina-

tions while FBOTH = 0.76. As expected, these numbers are

lower than those of the simulated neuron images. Surpris-

ingly, we observe that in the real images our method is better

in detecting junctions than detecting terminations. A possi-

ble explanation for this could be that in the simulated images

we used a constant intensity for the neuron branches, as a

result of which terminations are as bright as junctions but
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Fig. 17 Performance of our method in detecting terminations and

junctions in 30 real fluorescence microscopy images of neurons. The

distributions of the FEND, FJUN, and FBOTH values for all images

together are shown as box plots

much less ambiguous due to a clear background, while in

the real images the terminations are usually much less clear

due to labeling imperfections and the fact that the branch

tips tend to be thinner and thus less bright than the junctions.

This illustrates the limitations of the simulations. Example

detection results are shown in Fig. 18.

Comparison With Other Methods

Finally we sought to compare the performance of our Neu-

ron Pinpointer (NP) method with other methods. Since

we were not aware of other methods explicitly designed

to detect and classify critical points in neuron images

before reconstruction, we considered two existing soft-

ware tools relevant in this context and we compared their

implicit detection capabilities with our explicit method. If

our method performs better, this would indicate that the

existing methods may be improved by exploiting the output

of our method.

The first tool, AnalyzeSkeleton (AS) (Arganda-Carreras

et al. 2010), available from http://fiji.sc/AnalyzeSkeleton,

is an ImageJ plugin for finding and counting all end-

points and junctions in a skeleton image. To obtain skele-

ton images of our neuron images, we used the related

skeletonization plugin available from the same develop-

ers, http://fiji.sc/Skeletonize3D, which is inspired by an

advanced thinning algorithm (Lee et al. 1994). The input

for the latter is a binary image obtained by segmentation

based on smoothing (to reduce noise) and thresholding.

For our experiments we considered a range of smoothing

scales and manually selected thresholds as well as automat-

ically determined thresholds using the following algorithms

from ImageJ: Intermodes, Li, MaxEntropy, RenyiEntropy,

Moments, Otsu, Triangle, and Yen. All of these were tried in

combination with the AS method and the highest F-scores

were used.

Fig. 18 Example detection results for four real neuron images. The

images show the detected terminations (yellow circles) and junctions

(red circles) as overlays with fixed radius for better visibility. The

value of FBOTH in these examples is a 0.82, b 0.78, c 0.68, d 0.65

The second tool, All-Path-Prunning (APP2) (Xiao and

Peng 2013), is a plugin for Vaa3D (Peng et al. 2010; Peng

et al. 2014), available from http://www.vaa3d.org/. It was

not designed specifically for a priori critical-point detection

but for fully automatic neuron reconstruction. Neverthe-

less, in producing a tree representation of a neuron, the

reconstruction algorithm must somehow identify the branch

end-points and junctions, and for our experiments we can

easily retrieve them from the SWC output files. In princi-

ple, any neuron reconstruction method is also implicitly a

critical-point detection method, and we can quantify its per-

formance by comparing the output tree nodes with the ref-

erence data. The interesting question is whether an explicit

http://fiji.sc/AnalyzeSkeleton
http://fiji.sc/Skeletonize3D
http://www.vaa3d.org/
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Fig. 19 Critical-point detection performance of our method (NP)

compared to two other methods (AS and APP2). The median values

of FJUN (left plot) are 0.81 (NP), 0.65 (AS), and 0.47 (APP2). The

median values of FEND (middle plot) are 0.73 (NP), 0.28 (AS), and

0.21 (APP2). Finally, the median values of FBOTH (right plot) are 0.76

(NP), 0.35 (AS), and 0.29 (APP2)

detector such as NP outperforms the implicit detection car-

ried out in a tool such as APP2. We manually adjusted the

user parameters of the tool to get optimal performance in

our experiments.

A comparison of the F-scores of NP, AS, and APP2 for

the 30 real neuron images used in our experiments is pre-

sented in Fig. 19. From the plots we see that the detection

rates of our NP method are substantially higher than those

of AS and APP2. The difference is especially noticeable

for the termination points. More specifically, the differ-

ence between FEND and FJUN is relatively small for NP, but

much larger for both AS and APP2. This indicates a clear

advantage of using our explicit and integrated approach for

detecting critical points, as accurate neuron reconstruction

requires accurate detection of both junctions and termi-

nations. However, with the current implementation, this

advantage does come at a cost: timing of the three meth-

ods on a standard PC (with Intel Core i7-2630QM 2GHz

CPU and 6 GB total RAM) revealed that with our images

of 105 to 106 pixels in size, NP took about 40 seconds per

image on average, while both AS and APP2 took only about

1.5 seconds per image. Fortunately, since virtually all the

computation time of our method is spent in the directional

filtering step, which is highly parallelizable, this cost can

be reduced to any desired level by employing many-core

hardware (such as GPUs).

Conclusions

We have presented a novel method for solving the important

problem of detecting and characterizing critical points in

the tree-like structures in neuron microscopy images. Based

on a directional filtering and feature extraction algorithm in

combination with a two-stage fuzzy-logic based reasoning

system, it provides an integrated framework for the simul-

taneous identification of both terminations and junctions.

From the results of experiments on simulated as well as real

fluorescence microscopy images of neurons, we conclude

that our method achieves substantially higher detection

rates than the rates that can be inferred from existing neu-

ron reconstruction methods. This is true for both junction

points and termination points, but especially for the latter,

which are of key importance in obtaining faithful recon-

structions. Altogether, the results suggest that our method

may provide important clues to improve the performance of

reconstruction methods.

Actual integration of our detection method with exist-

ing tracing methods was outside the scope of the present

study, but we are currently in the process of developing a

new neuron tracing method and, in that context, we aim

to perform an extensive evaluation of the beneficial effects

of the presented method also on existing tracing meth-

ods. For this purpose we also aim to extend our method

to 3D, where the exact same workflow could be used,

except that the angular profile analysis and the final critical-

point determination step would involve two angles (azimuth

and elevation) instead of one. Also, it would require mass

parallelization of the image filtering step to keep the run-

ning times of the method acceptable, but this should be

straightforward in view of the highly parallel nature of

this step.

Although we focused on neuron analysis in this work, our

method may also be potentially useful for other applications

involving tree-like image structures, such as blood vessel or

bronchial tree analysis, but this requires further exploration.

For this purpose it may be helpful to increase the robust-

ness of the detection method to larger branch diameter ratios

than tested in this paper. This could be done, for exam-

ple, by using multiscale filtering approaches, or by selective

morphological thinning (or thickening).
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