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Fuzzy Logic for Digital  
Phase-Locked Loop Filter Design  
Dan Simon, Member, IEEE, and Hossny EI-Sherief, Senior Member, IEEE 

Abstract- The problem of robust phase-locked loop design 
has attracted attention for many years, particularly since the 
advent of the global positioning system. This paper proposes and 
demonstrates the use of a fuzzy PLL to estimate the time-varying 
phase of a sinusoidal signal. It is shown via simulation results 
that fuzzy PLL's offer performance comparable to analytically 
derived PLL's (e.g. Kalman filters and H= estimators) when the 
phase exhibits high dynamics and high noise. The fuzzy PLL rules 
are optimized using a gradient descent method and a genetic 
algorithm. 

I. INTRODUCTION 

FUZZy systems have recently been used extensively and 
successfully in control problems, but relatively few ap-

plications have been made to estimation problems. This is 
somewhat surprising in view of the close relationship between 
the fields of control and estimation. This paper discusses and 
demonstrates the application of fuzzy estimation to phase-
locked loop (PLL) design. A PLL is used to track (estimate) 
the phase of a sinusoidal signal which may have a time-
varying frequency. Many analytic methods have been used 
for PLL design [12], [13], but nonanalytic (decision-making) 
approaches have not yet been applied to PLL's. 

Automatic control methods based on artificial intelligence 
approaches (e.g., fuzzy systems, neural networks, and genetic 
algorithms) have emerged as an alternate paradigm to analytic 
control theory [15]. Fuzzy systems especially have gained 
prominence due to the surprising ease with which fuzzy 
controllers can be designed. In fact, it is the greatest advantage 
of fuzzy controllers (their simplicity) which has perhaps been 
the primary cause of their initial slow acceptance among the 
control community. Good overviews of fuzzy logic can be 
found in [3], [10], and [26]. 

PLL design is of fundamental importance in the design of 
global positioning system (GPS) receivers, especially when the 
trajectory of those receivers exhibit high dynamics in a noisy 
environment. GPS is a satellite-based navigation system which 
provides position and velocity information to users [7]. GPS 
receivers determine user position by tracking a known binary 
pseudo-random (PR) code transmitted by the GPS satellites. 
After the PR code is removed from the signal, the receiver 
has access to the sinusoidal carrier. Since the sinusoid is 
transmitted at a known frequency, the frequency which the 

receiver tracks can be used to compute the doppler between 
the user and the satellite. The satellite orbit is known fairly 
accurately, so the doppler frequency can be used to obtain 
the user's velocity. A GPS receiver can therefore be used as a 
navigation instrument in place of more expensive and complex 
inertial instruments. Because of its continuous global coverage 
and the passive nature of the receiver, GPS is being used in a 
wide variety of aerospace applications [4], [20]. 

A GPS receiver's PLL typically updates its phase estimate at 
a 50 Hz rate. This rate is chosen because an a priori unknown 
binary navigation message is modulated onto the GPS signal at 
50 Hz [7]. So a PLL rate slower than 50 Hz would be subject 
to 180-degree phase jumps at the boundaries of the navigation 
message bits, while a rate faster than 50 Hz would result in 
a noisier frequency (hence velocity) estimate. The design of 
PLL's which can maintain lock on the GPS carrier phase has 
proven to be a challenging task, particularly if the receiver 
trajectory is highly dynamic or if the signal is very noisy. If 
the PLL loses lock on the signal, then the user will not be able 
to compute relative doppler frequencies and the error of the 
GPS-derived velocity information will grow without bound. It 
is therefore desirable to provide robust algorithms for the GPS 
receiver's PLL. The results presented in this paper establish 
fuzzy estimation as a viable alternative for PLL design. 

II. Fuzzy EsTIMATION 

Consider a discrete, time-invariant system given by 

Xk+1 !(Xk) + Vk (1) 

Zk = h(Xk) + nk (2) 

where Xk is the state vector, Zk is the measurement, and Vk and 
nk are noise processes. The problem of finding an estimate h 
for x k based on measurements Zi (i ::; k) is known as the a 

posteriori filtering problem. One popular form of a recursive 
estimator is the predictor/corrector, which is given by 

(3) 

where f (.) is an estimate of the function which maps the 
state from one time step to the next, and g(.) is the correction 
function. Often the process model!(.) is already known or can 
be found using system identification methods. In that case, 
only the correction mapping g(.) needs to be determined. 
Various analytic methods have been used for obtaining the 
correction mapping [1], [17], [24], [25]. Alternatively, the 
correction mapping could be implemented as a fuzzy function. 



Fig. 1. Phase-locked loop architecture. 

Recent applications of fuzzy estimators to target tracking have 
been reported in [16J and [22]. 

Typically, fuzzy logic has been applied to systems which are 
too complex to easily lend themselves to more mathematically 
rigorous control methods. But some systems are difficult to 
control even though an analytical system model is known. At 
times fuzzy controllers are used instead of more conventional 
controllers because the fuzzy kind are easier to design, cheaper 
to produce, and more robust (i.e., less susceptible to system 
changes or noise) [15], [18]. 

Similarly, some systems behave in a way that makes it 
difficult to accurately estimate their states, even though the 
mathematical system model is known. One source of difficulty 
is the conflicting requirements of tracking high frequency 
changes in the state while at the same time rejecting noise. 
The remainder of this section shows how a fuzzy estimator 
can be used to estimate the phase of a time-varying signal. 

A. Phase Estimation 

Consider the problem of tracking a sinusoidal signal with 
an unknown, time-varying phase 

s(t) = AcosO(t). (4) 

This signal is corrupted by noise. The device used to track 
the phase is called a phase-locked loop. The PLL architecture 
considered in this paper is shown in Fig. 1. Note from Fig. 1 
that the output of the arctan phase discriminator is modulo 271'. 
That is, the phase discriminator does not know the difference 
between () radians and () + 271' radians. If the phase estimation 
error suddenly goes from zero to some multiple of 271', it is said 
that a cycle slip has occurred. So it is more important in a PLL 
to prevent cycle slips than it is to maintain a small phase error. 
If the PLL maintains lock on the phase, the PLL contribution 
to a GPS receiver's velocity error is small compared to other 
sources of velocity error [19], [20]. For instance, the velocity 
error due to typical PLL tracking errors may be on the order of 
0.01 ft./sec. But the velocity error due to all other sources may 
be on the order of 0.10 fUsec. If a cycle slip occurs, then the 
velocity error due to the PLL tracking error momentarily jumps 
to 0.90 fUsec. So undetected cycle slips can be catastrophic. In 
some cases, the noise is so high or the phase dynamics are so 
severe that the estimation error begins growing without bound. 
In this case it is said that loss of lock has occurred, and the user 
loses all velocity information from the GPS receiver. So for a 
GPS receiver, it is primarily loss of lock and secondarily cycle 
slips which are of greatest concern (rather than phase error). 

TABLE I 
Fuzzy RULE BASE FOR PLL ESTIMATION. NL NEGATIVE LARGE, NM 

NEGATIVE MEDIUM, NS = NEGATIVE SMALL, Z = ZERO, PS == 
POSITIVE SMALL, PM == POSITIVE MEDWM, PL POSITIVE LARGE 

input 1 
NL NM NS Z PS PM PL 

NL NL NL NM NS Z PS PM 
NM NL NL NM NS Z PS PM 
NS NL NM NS Z PS PM PL 

input 2 Z NL NM NS Z PS PM PL 
PS NL NM NS Z PS PM PL 
PM NM NS Z PS PM PL PL 
PL NM NS Z PS PM PL PL 

The fuzzy estimator structure used to obtain a phase estimate 
is given by 

(5) 

(6) 

where T is the update period of the phase estimate (typically 
0.02 seconds) and Zk is the noisy measurement of the phase 
(modulo 271'). (The determination of the frequency estimate w 
is discussed in Section II-B.) The fuzzy correction mapping 
g(.) has two inputs 

(input Ih =Zk - 9k (7) 

(input 2)k = (input l)k - (input 1)k-l. (8) 

The output of the correction mapping is a fuzzy variable which 
is determined by correlation-product inference. The fuzzy rule 
base for the mapping g(.) was chosen as shown in Table I. 
(Note that there is some redundancy in the rules, i.e., the same 
control surface could be generated with fewer rules since rows 
1-2 of the table are identical, rows 3-5 are identical, and rows 
fr7 are identicaL But the number of rules was kept at 49 
to provide greater flexibility for the optimization discussed in 
Section III.) Triangular input and output membership functions 
were chosen as shown in Fig. 2. 

The initial rule base and membership function shapes were 
constructed on the imprecise basis of experience, and trial and 
error. An appropriate initial knowledge base is critical, because 
without an initial knowledge, we cannot proceed any further 
with any optimization schemes. In spite of its importance, 
the generation of initial knowledge remains as a difficult and 
ill-defined task in the construction of fuzzy logic systems. 

In general, we denote the centroid and half-width of the ith 
fuzzy membership function of the jth input by Cij and bij . 

So the degree of membership of a crisp input x in the ith 
category of the jth input is given by 

{ l-Ix'-c--I/b-- !x-c-'I<b-/2Ii -()x = tJ tJ 'J - 'J (9) 
J 0 otherwise. 

The fuzzy output is mapped into a crisp numerical value using 
centroid defuzzification [10]. 

n 

(10) 

:Lm(Yj)Jj 
j=l 

where Yj and Jj are the centroid and area of the jth output 
fuzzy membership function and n is the number of fuzzy 



output sets. The fuzzy output function m(y) is computed as 

m(y) ::::: fuzzy output function L: mik(y) (11) 
i,k 

mik(y) consequent fuzzy output function when 
(input 1 E class i) and (input 2 E class k) 

Wikmoik(y) (12) 

Wik activation level of consequent when 
(input 1 E class i) and 
(input 2 E class k) 

= min [IiI (inputl), !k2(input 2)] (13) 
moik (y) =fuzzy function of consequent which is activated 

when (input 1 E class i) and 
(input 2 E class k). (14) 

B. Frequency Estimation 

One of the inputs to the fuzzy estimator discussed above 
is the frequency estimate w. This estimate must be com-
puted from the phase estimates using numerical differentiation, 
which is in itself a challenging task. We will assume that we 
have the current and the past three phase estimates available. 
With this in mind, we use the method of undetermined 
coefficients [2] to obtain the following expression for the 
frequency. 

wet) = [-fJ(t - 3r) + ~fJ(t - 2r) - 3fJ(t - r) 

3 

+ .!!:fJ(t)]/r - 193r fJ(4)«() (IS)
6 72 

where r is a time step to be determined later, and ( is an 
unknown constant in [t - 3r, t]. It is our objective in the 
remainder of this section to determine an appropriate time step 
r. Denoting the error in the phase estimate as iJ, we obtain 

wet) = [-O(t - 3r) + ~O(t - 2r) - 30et - r) 

+ 6fJ(t)11 rA J/  
+ [-Bet - 3r) + ~O(t - 2r) 30(t - r) 

+ ~IB(t)]/r_ 19:;3 (J(4)«(). (16) 

So if we estimate w as 

wet) = [-O(t-3r)+~O(t 2r)-30(t-r)+ IlB(t)]/r (17) 

then we obtain the following expression for the frequency 
estimation error: 

-193r3 
[ - 3-wet) 72 fJ(4)(O + -(J(t 3r) + 2fJ(t - 2r)

J/- 3fJ(t- - r) + 6(J(t)11- r. (18) 

NL NS Z ps PM PL 
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Fig. 2. Nominal triangular membership functions. 

Now if we treat the time functions in the above equation 
as random processes and make the simplifying assumption 
that fJ(4)(t) and OCt) are independent, we obtain the following 
expression for the variance of the frequency estimation error 

Assume that we have a one-sigma phase estimation error on 
the order of a half-radian, and that the standard deviation of the 
fourth derivative of the satellite-to-receiver range is 100 glsec2 
(see Section IV for the relationship between range derivatives 
and phase derivatives). Assuming that 8is obtained at a 50 Hz 
rate (see Section I), r must be a multiple of 0.02 seconds. Then 
we obtain the following numbers for the standard deviation of 
the frequency estimation error 

49 rad/sec (r 0.02 sec) 
O'w = 30rad/sec (r =0.04 sec) (20)

{ 60 rad/sec (r = 0.06 sec). 

We see that r 0.04 seconds should be used in (17) to 
estimate w. This finding is critical to the success of the fuzzy 
PLL, because large errors in w result in cycle slips and loss 
of lock. 

III. OPTIMIZATION OF Fuzzy MEMBERSHIP FuNCTIONS 

The set of membership functions shown in Fig. 2 have been 
defined on the basis of heuristics. Perhaps other membership 
functions would result in better performance by the fuzzy 
PLL. In this section, two methods are used to optimize the 
fuzzy membership functions: gradient descent and a genetic 
algorithm. 

A. Gradient Descent 

If the fuzzy membership functions are triangular, gradient 
descent can be used to optimize the centroids and the widths 
of the input membership functions, and the centroids of the 



output membership functions [5]. Consider an error function 
given by 

E=_l ~ E2 
2N L..t q 

q=1 

Eq == Oq - Oq (21) 

where N is the number of training sarnples. We can optimize 
E by using the partial derivatives of E with respect to: a) 
the centroids of the input fuzzy membership functions; b) the 
half-width of the input fuzzy membership functions; and c) 
the centroids of the output fuzzy membership functions. 

Input Fuzzy Membership Function Centroids: Using the 
relationships of (9) and following, we obtain 

8E = J:-. tEq 80q (22) 
8Gi) N q=1 8c;) 

(23) 

(24) 

i=1 

8mp L 8Wkl -- = rlelp-- (25)
8c·· 8c··'J k,l 1J 

where rklp and 8wlet/8ci) are given as follows 

I if [(input 1) E class k and 
(input 2) E class l] =:}

rkl - (26) 
p - { (output E class p) 

o otherwise. 
8 { 8 fk1 /8c;j if fk1 (input 1) 

Wkl = ::; ft2 (input 2) (27) 
8Cij 8 fz2 /8c;) otherwise. 

The partials of the membership grades f (.) with respect to the 
input centroids are 

8fk1(inputl) =0 (28) 
8Ci2 

8f,2(input 2) =0 (29)
8Gil 

8hI (input 1) = { 2sign [(input 1) - Gill/bil (i = k) 
8cn 0 (i::j: k) 

(30) 
8 ft2(input 2) = { 2 sign [(input 2) - ci2]/bi2 (i = l) 

8C;2 0 (i ::j: l). 
(31) 

Input Fuzzy Membership Function Half-Widths: Again us-
ing (9) and following, it can be shown that 

8E _ 1 tE 8iJq (32)
8bi ) - N q=1 q 8bij 

n 

80q _ L 8iJq 8mp [ ()J
mp == m Yp (33)

8b· - 8m 8b·'J p=1 p 'J 

(34) 

;=1 

8mp L 8Wkl-- = Tklp-- (35)
8b· 8b··'J Ie,l 'J 

where rk/p is given in (26) and 8Wkt/8bij are given as follows 

8Wkl = {8fk1/8bij if hl ~input 1) ::; il2 (input 2) (36) 
8bi) 8ilzl8bij otherwIse. 

The partials of the membership grades with respect to the half-
widths of the input fuzzy membership functions are given 
as 

8hl(inputl) =0 
8bi2 

(37) 

8fdinput 2) 
8bi1 

=0 
(38) 

8fk1(input 1) 
8bil 

= { [1 
0 

(input 1)]/bi1 (i = k) 
(i::j: k) (39) 

8fdinput 2) = { [1 - (input 2)]/bi2 (i = l) 
(40)

8bi2 0 (i ::j: l). 

Output Fuzzy Membership Function Centroids: The par-
tials of the objective function E with respect to the centroids 
of the output fuzzy membership functions are given as 

(41) 

(42) 

The gradient descent rule is then used to update the indepen-
dent variables from one iteration to the next as follows 

8E(k)
cij(k + 1) =cij(k) - TJc 8Cij (43) 

8E(k)
bij(k + 1) =bij(k) - TJh 8b (44)

ij 

8E(k) 
(45)Yj(k+l)=Yj(k)-TJy 8Yj 

where 1]o1]b and 1]y are gradient descent step sizes. 
The gradient descent learning method is attractive in that 

it is conceptually straightforward and typically converges 
quickly. But it also has some notable drawbacks: optimization 
is limited to a differentiable function like the quadratic given 
in (21), gradient descent tends to converge to local minima, 
and practical learning is limited to certain types of fuzzy 
membership functions [5]. These considerations motivate the 
use of genetic algorithms (GA's) for the optimization of the 
fuzzy PLL. 



B. Genetic Algorithms 

GA's are optimization methods which are motivated by the 
concept of "survival of the fittest" in biological evolution. 
More details and references about GA's can be found in [9], 
[11], and [14]. GA's can be used to optimize a fuzzy PLL as 
follows. First, a population of fuzzy membership functions 
is created. Each member of the population is represented 
as a binary string. For instance, if symmetric trapezoidal 
membership functions are used as in Fig. 3, then each member 
of the population should have enough "genetic" infonnation 
to represent three parameters for each membership function. 
There are seven membership functions each for the two inputs 
and the output (see Table I). This makes a total 3x (7+7+7) = 
63 parameters. Each parameter is coded using (say) m bits, 
so each population member is a binary string of 63m bits. 
The binary representation of a parameter is mapped into the 
analog number P in the parameter range [pmin, PmaxJ. If a 
linear mapping is appropriate, the mapping can be perfonned 
according to 

b 
P = Pmin + (2m _ 1) (Pmax - Pmin ) (46) 

where b is the integer value represented by the m-bit string. 
The fitness of each member of the population is evaluated 

according to some predetermined method. In PLL design, 
the most important perfonnance criteria are (in order of 
descending importance): (a) probability of loss of lock; (b) 
probability of cycle slip; and (c) phase estimation error. So 
the fitness of a population member can be measured on the 
basis of a set of Monte-Carlo simulations of the fuzzy PLL. 

fitness = kl P(loss oflock) + k2P(cycle slip) + k3erms (47) 

where erms is the average RMS phase estimation error of the 
fuzzy PLL over a set of Monte-Carlo simulations, and the k i 

are user-specified constants. Unlike gradient descent, GA's can 
minimize probability of cycle slips and probability of loss of 
lock in addition to minimizing phase estimation error. 

Once the fitness of each member of the population is 
evaluated, the weakest members are killed off. The fittest 
members reproduce according to two mechanisms: partheno-
genesis (cloning) and crossover. In cloning, a member of 
the population is identically reproduced. This ensures that 
extremely fit genetic structures remain in the population. In 
crossover, two members of the population mate, and the 
genetic structure of the offspring is a combination of the 
two parents. For instance, if each member has k bits of 
genetic infonnation, then bits (1 -> r) of parent A and bits 
[(r + 1) -t kJ of parent B can be copied into the offspring, 
where the number r is randomly generated. 

Finally, there is a small but nonzero probability of mutation 
in the offspring. Each bit of the offspring has a small proba-
bility of being "flipped." Mutation helps reinject infonnation 
which may have been lost in the current generation. A cycle 
of fitness evaluation, reproduction, and mutation is referred to 
as a "generation." 

Note that the GA optimizes trapezoidal membership func-
tions rather than triangular membership functions (as with the 

\ 
] 

<I) 

... I
bIi 
Q,. 

~ 
OJ .... 
<I)  

.Q  

S 
<I) 

a"~1 ~~  
c-a-b c-a c c+a c+a+b 

phase (radians) 

Fig. 3. Trapezoidal membership functions. 

gradient descent algorithm). This allows the exploitation of the 
higher degree of generality inherent in the GA. 

IV. SIMULATION STUDY 

The fuzzy PLL estimation filter discussed in this paper 
was simulated for a GPS receiver used for missile navigation. 
The simulated missile trajectory originated at Vandenberg Air 
Force Base in California, and ended in the South Pacific. The 
behavior of the PLL was investigated by examining its ability 
to track the phase between the missile and one GPS satellite 
during the first 60 seconds of boost (i.e, during Stage I). The 
filter rate was fixed at 50 Hz. The satellite-to-missile range, 
range rate, and range acceleration are depicted in Fig. 4. The 
relationship between the phase () and the range p is given by 

p(t) = cB(t) (48)
211} 

where c is the speed of light and f is the transmitted frequency 
of the sinusoid. We concentrate in this paper on tracking the 
GPS Ll carrier at a transmitted frequency of 1.575 GHz. 
We assume without loss of generality (see Fig. 1) that the 
magnitude of the carrier is unity. 

Typical carrier-to-noise ratios (CNR's) for GPS are around 
30 to 40 dB-Hz [6]. But if atmospheric conditions are severe 
or jamming is present, the CNR could drop into the twenties 
or even lower. The CNR is related to the variance of the 
measurement noise (R) by [8, p. 282] 

1 
CNR = 2TR (49) 

where T = 0.02 seconds is the filter rate. The measure-
ment noise in the simulations was generated with a laplacian 
(exponential) probability density function. 

A. Training Set-Up 

The gradient descent method and genetic algorithm de-
scribed earlier were used to optimize the fuzzy membership 
functions. Training took place from 45-55 seconds following 
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launch, the most dynamic 10-second interval of stage 1 (see 
Fig, 4). CNR was set to 18 dB-Hz during training, 

The gradient descent learning parameters l1c ,T/b and T/y were 
all set to 0.3. The membership functions were constrained 
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to be symmetric triangles, and the error function E in (21) 
was optimized with respect to 35 parameters, the centroids of 
each of the membership functions (21 total), and the width of 
each of the input membership functions (14 total). As training 
progressed and PLL performance improved, more and more 
samples were used in the training procedure. For the first 200 
iterations, a single 10-second simulation was used for each 
update of the parameters, so N in (21) was 10 seconds x 50 
Hz =500. For the next 100 iterations, 10 Monte-Carlo samples 
of 10 seconds each were used for each update. For the next 200 
iterations, 30 Monte-Carlo samples were used, Finally, for the 
last 100 iterations, 100 Monte-Carlo samples were used. So 
N in (21) gradually increased from 500-5000-15000-50000. 
Fig. 5 shows the decrease of the objective function as training 
progressed. The sudden jumps in the objective function value 
are due to the increases in the size of the training set. 

The popUlation size used for the GA was fixed at 40 
members. One hundred Monte-Carlo samples of 10 seconds 
each were used to evaluate the fitness of each member of the 
population. The fitness function parameters in (47) were set 
at kl 20, kz 10, and k3 = 1. The fittest 10% of the 
population was cloned at the end of each generation. The least 
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fit 50% of the population was exterminated at the end of each 
generation. Then the fittest 50% of the population (including 
the clones) mated to restore the population size to 40. The 
probability of an offspring undergoing a I-bit mutation was 
set at I%. Five bits were used for each parameter, giving 
a 1132 radian (approximately 1.8 degree) resolution for each 
parameter. The membership functions were constrained to be 
symmetric trapezoids, and the fitness function in (47) was 
optimized with respect to 63 parameters, three parameters for 
each of the seven membership functions of the two inputs 
and the output (see Fig. 3). Fig. 6 shows the improvement in 
fitness as the popUlation evolved. 

The resulting optimized membership functions were quite 
different from the original membership functions. Apparently 
the new membership functions reflected information about the 
trajectory which was used in the simulation, although it was 
difficult to interpret the changes intuitively. 

B. Simulation Results 

Perhaps the most successful PLL design approach reported 
to date for highly dynamic trajectories in a noisy environment 
is the use of Hz (Kalman) or hybrid Hz/Hoc filtering [21], 
[23]. Therefore, in this section we compare the performance of 
the fuzzy PLL's with the Hz and H2/ Hoc PLL's. The H2 PLL 
is a fourth order Kalman filter with a state vector composed 
of the phase and its first three derivatives. The HdHoc PLL 
is a fourth order hybrid Kalman/minimax filter, with a filter 
gain given by 

K = dK2 + (1 - d)Koo (50) 

Where K2 is the steady-state Kalman gain, Koc is the Hoo gain, 
and d E [0,1] is the relative weight given to H2 performance. 
In [21] it is shown that d :::::: 0.4 is near-optimal for GPS PLL 
design (with respect to loss of lock). So the H2/Hoc results 
presented in this section were obtained with d 0.4. K2 in 
(50) was obtained for CNR = 18 dB-Hz. (Koc is independent 
of CNR.) The optimal forgetting factor used to compute K2 
was found to be 1.055. 

TABLE II  
PROBABILITIES OF CYCLE SLIPS AND Loss OF LOCK FOR  

VARIOUS PLL METIIODS FOR THE NOMINAL TRAJECTORY  

PLL method CNR= 18 CNR = 19 CNR= 20 
Kalman 0.39 0.29 0.17 0.13 0.06 0.04 
H2/ H"" 0.60 0.05 0.34 0.02 0.13 0.00 
nominal fuzzy 0.96 0.73 0.80 0.45 0.53 0.24 
gradient fuzzy 0,54 0.38 0.31 0.18 0.14 0.09 
genetic fuzzy 0.34 0.06 0.24 0.09 0.07 0.00 

TABLE III  
PROBABILITIES OF CYCLE SUPS .".ND Loss OF LoCK FOR VARIOUS  

PLL METIIODS FOR THE ±3u TRAlECTORtES (CNR = 18)  
PLLmethod -3cr+30' 

0,41 0.31 0.37 0.27Kalman 
0.63 0.06 0.59 0.02H2/ H"" 
0.98 0.75 0.93 0.70n"minal fuzzy 

0,46 0.24gradient fuzzy 0.61 0.44 
0,44 0.15genetic fuzzy 0.41 0.13 

Table II shows a comparison of various PLL methods using 
the trajectory shown in Fig. 4 for CNR = 18, 19 and 20. It is 
seen that the H 2/HeX) and GA fuzzy PLL' s are best as far as 
P(loss of lock), but the Kalman and GA fuzzy PLL's are best 
as far as P(slip). As expected, the GA fuzzy PLL performs 
better than the gradient fuzzy PLL due to the fact that the GA 
has more degrees of freedom in its search for the optimum 
rules. 

Since the optimal fuzzy PLL's were trained for a specific 
trajectory, it is of interest to examine how robust these fuzzy 
PLL's are to departures from the nominal trajectory. Fig. 
7 shows the satellite-te-missile velocity for three cases: the 
nominal missile trajectory, and plus and minus three sigma 
missile trajectories. The off-nominal trajectories were obtained 
by simulating plus and minus three sigma thrust magnitude, 
bum rate, and drag. Table III shows a comparison of the 
different PLL's for the ±3a trajectories. The results are seen 
to be similar to those observed in Table II. Comparison of 
Tables II and III show the robustness of the optimal fuzzy 
PLL's to departures from the nominal trajectory. 

One potential drawback of a fuzzy estimator relative to 
the steady-state H2 and H2/ Hoc filters is the increased real-
time computational effort. Most of the computational time of 
the steady-state filters consists of a simple multiplication of 
a 4 x 4 matrix with a four-element vector. Fuzzy filtering, 
however, includes fuzzification, correlation-product inference, 
and defuzzification, and is significantly more time-consuming. 
But the effort is still small enough to not be of concern in the 
real-time application considered in this paper. 

V. CONCLUSION 

A fuzzy estimator has been proposed and applied to phase-
locked loop design. This approach offers the benefits of 
fuzzy logic (intuitiveness, simplicity, robustness, and main-
tainability) while providing performance on par with analytical 
estimation methods (Kalman and H 00 filtering). In addition, 
the fuzzy estimator offers the possibility of training if a 
nominal receiver trajectory is known a priori. It is thus 
recommended that fuzzy logic be given serious consideration 



for PLL design in particular, and for state estimation in 
general. 
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