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Since 1965 when the fuzzy logic and fuzzy algebra were introduced by Lot� Zadeh, the fuzzy theory successfully found its
applications in the wide range of subject �elds.�is is mainly due to its ability to process various data, including vague or uncertain
data, and provide results that are suitable for the decision making.�is paper aims to provide comprehensive overview of literature
on fuzzy control systems used for the management of the road tra�c ow at road junctions. Several theoretical approaches
from basic fuzzy models from the late 1970s to most recent combinations of real-time data with fuzzy inference system and
genetic algorithms are mentioned and discussed throughout the paper. In most cases, fuzzy logic controllers provide considerable
improvements in the e�ciency of tra�c junctions’ management.

1. Introduction

�e condensed tra�c together with the increasing number of
cars requires constantly evolving and more complex solution
of tra�c situation including the tra�c signal control. �e
monitoring and controlling of tra�c within the city became
a crucial task because of the ability to take control of roads
and thus directly impact on the quality of life. Nowadays, the
tra�c signal controllers use almost real-time data and com-
bine them with sophisticated algorithms. �ese algorithms
used at �rst simple mathematic rules that were suitable for
the purpose of lower load of intersections but started to be
outdated with the development of dense road network and
increasing number of vehicles. Current algorithms have to
be more adaptive and intelligent in order to handle ever-
changing tra�c situations. It means that the decision support
systems should be able to implement and handle almost real-
life rules which are very similar to the human thinking.

�ese conditions are ful�lled by the implementation
of fuzzy logic processes and fuzzy logic algebra into the
controlling scheme. For example, humans would think in the
following way to control tra�c situation at a certain junction:
“if the tra�c is heavier on the north or south lanes and the
tra�c on the west or east lanes is less, then the tra�c lights
should stay green longer for the north and south lanes.” Such

rules can now be easily accommodated in the fuzzy logic
controller. �e main strength of the fuzzy logic is that it
allows fuzzy terms and conditions such as “heavy,” “less,” and
“longer” to be quantized and understood by the computer [1].

Fuzzy numbers are special cases of fuzzy sets that repre-
sent vague, imprecise, or ill-known values. Like the fuzzy set
a fuzzy number is de�ned by a membership function, which
speci�es membership degree for each element � from the

universe �. �e membership function of fuzzy number �̃ is
usually denoted as ��̃(�). Fuzzy number must be a normal
convex fuzzy set, with at least piecewise continuous member-
ship function that is de�ned on the universe of real numbers
[2, 3]. Fuzzy numbers are proven to be well suited for cal-
culation with imprecise values in situation when uncertainty
of the value is not result of variability [2, 3]. Fuzzy number
then forms bounds arounduncertain value and allows further
processing of such vague value by means of fuzzy arithmetic.

Since 1965 when the fuzzy logic and fuzzy algebra were
introduced by Lot� Zadeh, the fuzzy theory successfully
found its applications in the wide range of subject �elds.
�e tra�c signal control and the management of roads and
junctions within the city are no exceptions. �e �rst attempt
of applying fuzzy logic in the light signalling equipment using
fuzzy logic controller was realized in the late 1970s by Pappis
and Mamdani. However, since then, the evolution of fuzzy
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logic controlling systems came to the more complex, more
adaptive, andmore intelligent frameworks that allow not only
the use of fuzzy logic but also combinationwith real time data
and optimization using, for example, genetic algorithms and
neural networks.

�ere have been several standard studies [4, 5] focusing
on various approaches of modelling and predicting the
behaviour of tra�c. On one hand, deterministic models are
exploited to describe the real situation. �e advantage of this
methodology lies in its stability and easy tackling. On the
other hand, they su�er from inability to react promptly to
unexpected changes in driver’s behaviour. In this respect, the
fuzzy theory o�ers potential to work both with the signi�cant
changes that rapidly a�ect the continuity of the tra�c and also
with the small changes that can be hard to be handled statisti-
cally; however their impactmight be of crucial importance. In
the course of development, many stochastic approaches have
been introduced [6]; however the combination with the fuzzy
logic still exhibits the best reliability.

For the purpose of this paper, we selected and reviewed
a solid series of papers reported in the literature. In order to
provide a comprehensive overview of the topic, we employed
themost popular and recognized databases of scienti�c paper
(e.g. ScienceDirect, Web of Science, or Scopus). Nevertheless
the main scope of this paper is not only to present possible
ways of evolution and implementation of fuzzy logic in the
tra�c management but also to refer to the chronology of
the evolution and to common relations among presented
models. Individual models presented in this contribution are
signi�cantly described and usually depicted in the form of
simple scheme, so the reader can easily compare them. In
most cases, fuzzy logic controllers (and their adjustments
and variations) provide considerable improvements in the
e�ciency of tra�c junctions’ management compared to the
traditional adaptive and nonfuzzy systems.

�e organization of this paper is quite simple and
straightforward and is given as follows. A�er the introduction
of the topic in Section 1, we chronologically describe the
progress in application of fuzzy logic in tra�c control in
Section 2, where models are described (textually and graphi-
cally) and evaluated. Section 3 then concludes all �ndings.

2. Progress of Fuzzy Logic in Traffic Control

Fuzzy logic in the LSE (light signalling equipment) was pre-
sented for the �rst time in 1977 by Pappis andMamdani [7]. In
their paper they described a theoretical model of application
of the fuzzy logic controller (FLC) on isolated intersections
of two one-way streets with LSE. �e system was supplied
with the number of approaching vehicles, the length of the
column at a time, while the authors used for fuzzi�cation the
multidimensional Mamdani implication [8]. In comparison
with the conventional dynamic control the FLC achieved a
decrease of time delay of the vehicles by 10–21%. In the 1980s
Nakatsuyama et al. [9] used fuzzy logic for the coordination
of two successive one-way direct intersections.

�e goal was to determine the o�set parameter, that is, to
determine the time di�erence between the start of the green
phase on the �rst and the second intersection.

�e publication by Bisset and Kelsey [10], which focused
on comparison of the conventional adaptive control and the
LSE fuzzy control for isolated intersection using graphical
simulation (X window system), represented a signi�cant
progress in using fuzzy logic for the intersection control. It
was one of the �rst graphical microscopic simulations as they
are being understood today. Along with driving through the
rectangular intersection it was possible to turn le� or right,
while it was possible to modify the geometry in the sense of
the number of lanes.However the description of the geometry
did not include the determination of the curves’ diameters.
�e simulation also allowed the modi�cation of the intensity
of vehicles and the detectors’ location (every lane contained
two detectors).�e control system received values of intensity
and cycle length, use of Λ, Π function. �e output was the
degree of necessary change of signal on LTE.�e tested fuzzy
control system showed, in comparison with adaptive control,
higher e�ciency (permeability) close to the saturation point.
In the next article Kelsey et al. [11] included in the variables
also the density of tra�c on the road, discrimination of open
and closed directions of the route, elapsed time from the last
phase change, and the necessary degree of control on the
isolated intersection.

�e 1993 publication [12] by Favilla et al. described the
use of the fuzzy tra�c control system “(FTC) fuzzy tra	c
controller,” which contained dedicated fuzzy control system
FLC (for the setting of the green-light duration according
to the tra�c conditions), “state machine” (for control of
FTC status sequence), and the so-called adaptive module
(by changing the FLC setting it is possible to improve “the
performance” of the control system); see Figure 1.

�e control system was applied on a real independent
multilane intersection in the city of São Paulo.�e inputs into
the control system did not change, and still there were the
number of passing vehicles and the column length, whereas
the output was again the extension of the green light (	) for
the appropriate phase using the Λ function. �e comparison
with the “Mamdani” [7] fuzzy control system proved the
contribution of the fuzzy control system containing the so-
called adaptive module in the form of the decrease of the
average vehicle delay.

Hoyer and Jumar [37] designed a control system which
processed tra�c information from each lane in the intersec-
tion.�ey used 12main ows (approaches) of the intersection
and the fuzzy rules decided to use on two-, three-, or four-
phase signal plan so that the individual tra�c lanes were not
in conict.

Kim’s thesis [38], dealing with the development of a
dynamic control system for LSE with the application of fuzzy
logic and Petri nets (discrete distributed system), meant a
signi�cant progress in the �eld of combination of mathemat-
ically di�erent control systems for one LSE. �e intersection
in question contained individual lanes for le� and right turns
and control algorithm extended the duration of the green
phase based on evaluation of data at the end of each phase.
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Figure 1: Block diagram of the fuzzy tra�c control system [12].

Sayers et al. [39] dealt with the description of insu�cien-
cies of tra�c-dependent control at an isolated intersection,
when the input is nonlinear characteristic, andwith removing
the insu�ciencies using the fuzzy control system.

�e 1995 paper by Kagolanu et al. [13] represented one
of the �rst articles, combining the fuzzy logic and Neural
networks. �e tra�c data (intensity, delay, and phase dia-
gram)was the input of the three-layerNeural network and the
optimal function of �tness (the Neural diagram, see Figure 2)
was the tra�c data (intensity, delay, and phase diagram) and
the output was the optimal function of �tness (the Neural
network diagram, see Figure 2).

Tan et al. [1] resumed the ideas of the article [10] when
they created a graphical interface in visual basic for testing of
LSE control systems and for support of the implementation
of fuzzy into the LSE control system (see Figure 3). It was
simple microsimulation so�ware for testing and comparison
of fuzzy control and �xed signals plan. �e so�ware allowed
exible testing of di�erent variants of vehicle routing and
loading of the intersection. According to the results, the LSE
fuzzy control system ismore e�cient than the current control
systems from the perspective of the density of the tra�c
ow, waiting time, time of the vehicle movement, and costs.
�e costs (the so-called “cost function”) have been calculated
based on the formula:

Price = ( Vehicles In

Vehicles Out
) ∗ (Waiting time

Driving time
). (1)

Figure 3 is the authors’ presentation of the proposal for
placement of detectors within the intersection together with
de�nition of the input variables, vehicle approach and col-
umn length (the Λ functions were used in the fuzzy system).

In his article Kim [40] presented FLC fuzzy control
system for adaptive tra�c control and came to a conclusion
that the proposed solution reacted to the approach of vehicles
and length of columns with su�cient exibility. It also
resulted in the enunciation that the proposed fuzzy control
system excelled the conventional control system as well as the
Mamdani fuzzy regulator [8] not only in terms of intersection
permeability but also in terms of the average delay of vehicles
and the saturation degree.

An attempt to innovate the issue of LSE fuzzy control
came from Beauchamp-Baez et al. [14] in the form of
utilization of fuzzy for selection of the intersection phases and
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Figure 2: Neural network diagram [13].
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Figure 3: Diagram of detectors’ placement [1].

for determination of when to change the phase. Firstly, the
authors [14] proposed the “traditional” fuzzy control system
using theΛ,Π function for isolated intersection, (called FLC-
TS-Fuzzy Logic Controller for Tra�c Systems), see block
diagram Figure 4.

And subsequently they included a module for phase
“sequencer” (PS), which also used the fuzzy logic (block
diagram Figure 5).

�e quality of the two above mentioned control sys-
tems (“FLC-TS”, “� + ���-TS”) undisputedly exceeded the
current LSE control with �xed signal plan; however, more
pronounced di�erences in control quality between “FLC-TS”
and “� + ���-TS” were not proven.

�e Finn Niittymaki came with a new idea of using the
fuzzy logic for the SLE control, when he, in his article [41],
published for the �rst time the role of optimization of the
decision-making process for the control of the pedestrian
crossing using the LSE. Together with Kikuchi they strived
to design a fuzzy system to �nd a compromise between the
minimizing of time losses of the pedestrians and vehicles.
A team at the Helsinki University developed a microsimu-
lation so�ware HUTSIM (Helsinki University of Technology
Simulator) for modelling and evaluation, as an elaboration
of the publication [10] and the article [40]. As in all the
preceding articles the conclusion consisted of the statement
that the fuzzy control system provides a better solution than
the conventional tra�c-dependent control.

�e authors Heung and Ho [15] proposed for the �rst
time a hierarchic control system containing fuzzy logic and
a genetic algorithm (GA, genetic algorithm based on o�-line
learning algorithm) used for generation of fuzzy rules. In the
hierarchic control system using GA the number of used rules
decreased as well as the “complexity” of the entire system.
�e proposed system also showed better (lower) values of the
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Figure 4: Block diagram of the isolated intersection control system
“FLC-TS” [14].
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Figure 5: Block diagram of the isolated intersection control system
“� + ���-TS” [14].

average time delay of vehicles than the �xed signal plan (block
diagram see Figure 6).

Sayers et al. [42] described the design of the exible fuzzy
control system, which can be applied to a selected task (as
needed) based on the selection of several criteria. In the
publication [42] the authors also described the sensitivity of
the control upon a change of parameters. �e authors also
followed the idea presented in the article [15] and used the
multicriteria optimization genetic algorithm ((MOGA) mul-
tiobjective genetic algorithm) as the optimization technique
for the deduction of the optimal solution for a fuzzy control
system.

Trabia et al. [43] designed an adaptive control system
with application of a “two-stage” fuzzy logic. For an isolated
intersection with a dedicated lane for le�-turns they created
a “classical” adaptive system, which modi�ed the signal plan
based on information on the tra�c ow. On the �rst stage of
the two-stage fuzzy logic the system estimated the intensity of
the tra�c ow on each approach and on the second stage the
system determined the extension or termination of the cur-
rent phase. �is fuzzy control system, in which the functions
Λ, Π were used, shows improvement of the average vehicle
delay by 9.5% compared to the tra�c-dependent control.

�e issue of a multiphase control was also elaborated
by the Finn Niittymäki in the publication [44] in which
Niittymäki and his colleague Pursula continued in the
publication [16] where they described the development of
the FUSICO (fuzzy signal control) control algorithm. �e
FUSICO system (see Figure 7) was a practical application of
the described three-phase control in the publication [44].
During the �rst phase the evaluation of the intensity and
occupancy of the detector was used for decision of the degree
of the intersection loading (zero, normal, and high); in the
second phase the decision of the phase selection and its
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sequence was made and the last phase determined the ter-
mination or extension of the “go” signal of the selected phase.
�e authors also speci�ed three main reasons for the intro-
duction of the fuzzy logic into the LSE control systems; these
are the increase of the tra�c safety,minimizing the time delay
of vehicles and minimizing of the environmental impact.

�e proposed control system showed, upon comparison
with conventional methods of LSE control and fuzzy control
system “PappisMamdani” [7], distinct improvement of tra�c
quality. Upon a more detailed inspection the authors came
to the conclusion that the system showed decrease in the
time delay of vehicles compared to the conventional methods
(“Vehicle Actuated”); however, the decrease in vehicle stops
occurred only in the area of low intensities (150 to 500 veh/h).
Niittymäki further worked on the de�nition of the fuzzy
rules for the FUSICO multistage algorithm (i.e., fuzzy rules
for phase selection, its sequence, and length) in the follow-
up publication [45]. However, Niittymäki used the FUSICO
algorithm also for control of the mutual coordination of two
subsequent intersections with LSE [46] and thus followed
upon the publication [9]. �e model’s results showed that it
was more appropriate to use the FUSICO algorithm for inter-
sections with a lower load, 1 km or less apart. �e article by
Niittymaki and Nevala [17] summarizes the observations and
results from the previous studies [16, 41, 45, 46] and develops
the use of the FUSICO algorithm for tra�c control in an area.
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�e authors referred to the fact that the control system in
the area is based on several parameters (duration of cycles
on the intersections, duration of the intersection “go” signals,
and the degree of the intersections’ saturation), which can be
suitably modelled using the fuzzy logic (block diagram of the
control system in the area; see Figure 8).Moreover, the system
in the area can also work in combination as centralized or
decentralized one. In the centralized mode the adjustment of
the cycle duration is based on the saturation degree of each
intersection node; in the decentralized mode the distribution
of the “go” signal and the preference of the public transport
can be based on the evaluation of the tra�c situation.

Niittymäki veri�ed the results of the FUSICO scienti�c
project in practice by implementation of the fuzzy control
system ((FSC) “fuzzy signal controller”) on LSE in the Finnish
city of Oulunkylä [18]. �e original solution of the inter-
section (“Vehicle Actuated”) was compared with the fuzzy
control system containing the HUTSIM microsimulation
model. �ough the tested intersection was simple direct
intersection, the public transport lines were passing through
it and it had a high intensity of vehicles and pedestrians
during the tra�cpeaks hours. Four detectors in total (pick-up
coils) were placed within 40 to 60 meters in front of the stop
line. �e FC-2000 controller, connected through a parallel
interface into a PC, containing an FUSICO algorithm and
a HUTSIM microsimulation so�ware (wiring block diagram
see Figure 9), was used for the fuzzy control system.

�e results showed that the fuzzy control systems exceed-
ed the conventional control systems in all parameters deter-
mining the quality of control, time of travel, number of stops,
and the length of column.

Niittymäki and Könönen [47] Niittymäki and Mäenpää
[48] focused together on the issue of the public transport pref-
erence on the LSE. �e previously proposed multistage fuzzy
control algorithm [16] was expanded by a basis of rules for
preference of the public transport on a selected intersection
(Figure 10).�e control algorithmwas veri�ed during a prac-
tical implementation in cities of Vantaa, Lahti, and Jyväskylä,
comparing the control prior and a�er the installation of the
fuzzy system for the public transport preference.

In the article [49] the authors Niittymäki, Könönen
further worked on the control systems containing fuzzy
logic they proposed. In the publication [49] they tested and
compared two di�erent methods of LSE fuzzy control. One
of the goals of the article was also the introduction of a new
method leading to a higher quality and stability of the LSE
fuzzy control system.

Niittymäki summarized all his discoveries in the thesis
“Fuzzy Tra	c Signal Control: Principles and Applications”
[50], which was the peak of his scienti�c e�ort at that time.
In his thesis, Niittymäki dealt in detail with the selection
and design of a fuzzy system, selection of the input values
into the system, and analysis and testing of various methods
and approaches. �e thesis contains detailed description of
the FUSICO algorithm and so�ware, which is designed for
intersection control in the real tra�c. �e control systems
were tested on selected intersections in Finland [18, 48].

Niittymäki and his colleagues summarized their further
research in an article [51], comparing the usability of the
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Figure 8: Block diagram of the application of fuzzy control in the
tra�c area [17].

HUTSIM

Vehicle
generation

Tra�c
model

Input Fuzzy signal
controller

Generation

Message Order

Detector
channels

Signal
channels

Detection Message

Detector Tra�c Signal group status

FC-2000 “slave” signal controller

Figure 9: Block diagram of the fuzzy control system [18].

fuzzy inference method “Maximal Fuzzy Similarity” with the
traditional Mamdani inference in the tra�c control system
(selection and extension of LSE phases). Both inference
methods were compared in the HUTSIM microsimulation
so�ware. �e analysis resulted in the conclusion that Mam-
dani type control is more suitable for low and medium
intensities, while the “Similarity” method is more suitable for
intersections with higher loads.

�e simulations in the HUTSIM application were also
used in the publication [52] inwhichNiittymäki andTurunen
tested a new algorithm containing Łukasiewicz’s multivalue
logic on three real tra�c control systems. �e new control
systemwas comparedwith the results from theMamdani type
control system with the inference method implemented in
the MATLAB application fuzzy toolbox. �e control systems
were applied on a controlled pedestrian crossing and on
a multistage control system containing a phase selection
at a fork intersection with an LSE. �e simulations in the
HUTSIM application showed that the results were almost
identical, and the new control system brought better results
only in case of higher density of the tra�c ow.

�e method of fuzzy decision making for intelligent
tra�c control and warning system was patented in the
North America in 2001. �is should warn the drivers of the
congestions [53]. �e method was based on the use of at
least one control unit, one intelligent switch, and intelligent
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central regulator. It is also assumed that every vehicle of the
warning unit is able to receive data from the central control
unit according to its position and is able to choose selectively
the warning messages for the drivers.

�e author Ella Bingham [54] from Finland was in her
master thesis inspired by the publication by Kagolanu et
al. [13] from 1995. She was among the �rst authors who
dealt with the merger of fuzzy logic and Neural networks
in the LSE control system. As early as in the late 1990s she
described a tra�c control neurofuzzy system in her thesis
[54] upon which she presented on the publication [19] in
2002 where the Neural network set the type and location
of the relevance function of the fuzzy regulator Figure 11.
�e proposed control system simulated in the HUTSIM
application decreased the time delay of the vehicles in case
of a constant loading of the intersection in question.

In relation to the articles [15, 42], the article [55] by
Teodorovic et al. of 2001 deals with the merger of the fuzzy
logic and genetic algorithms. �e authors proposed a two-
phase process of the control system of an isolated intersection
with LSE. In the �rst step the optimal sequence of phases was
established based on the evaluation of the vehicle approach
and determined using the genetic algorithm. In the second
step the de�nition of the fuzzy rules was established based on
the future tra�c situation.

�e authors Wei et al. proposed in their work [20] a mul-
tistage tra�c control system for an isolated intersection with
LSE (block diagram, see Figure 12).�e proposed control sys-
tem adjusted the duration of individual phases, extended or
terminated phases, and selected the sequence of phases based
on on-line data collection. �e so-called “emergency step”
caused by an increased demand for green light from a certain
input was inserted into the system. �e authors proposed
in their article a exible fuzzy control system with optional
adjustment (tuning) of the input variable using a selected set
of parameters (e.g., setting of the �tness function). �e set
of parameters was determined by a multicriteria optimizing
genetic algorithm (MOGA) used also in the article [42]; the
purpose of this algorithmwas to �nd the optimal solution for
frequently conicting requests. According to the authors the
system set this way showed decrease of time delays of vehicles
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Figure 11: Block diagram of the neurofuzzy tra�c control system
[19].

and the number of stops, compared to the LSE dynamic
control.

�e basic idea of the article [20] was further expanded
upon by Wei and Zhang in their publication [21] where
the prediction of parameters used as inputs for the fuzzy
logic itself provides the already described fuzzy-Neural net-
work (the diagram of four-level fuzzy Neural network, see
Figure 13).

�e �rst level of the Neural network processed sharp val-
ues of the input variable whose output was also a sharp value.
�e second layer of theNeural network calculated parameters
of the �tness functions (positions in the universum). �e
authors of the article called the third level “the rules’ level.”
Each of the nodes of the third level represented one of the
fuzzy rules.�e last (fourth) level was the defuzzi�cation level
with a sharp value of a selected output variable.

�e authors Wei and Wang further presented on the idea
of a three-level LSE control system in the publication [22]
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of 2003. For the block diagram of a modi�ed and expanded
three-level LSE control system, see Figure 14.

�emain change consisted of the expansion of the lowest
level by a module, which predicted a value of the input
variable using the fuzzy Neural network. �e authors moved
the fuzzy inference system from the highest level to the
second (middle) level. According to the authors a system
assembled in this way solves the issues of stochastic tra�c
systems, such as an intersection with LSE, much better.

Kuo and Lin proposed in their publication [23] a new
approach for determination of an LSE signal plan based on
fuzzy logic (block diagram of the process, see Figure 15).

Based on the vehicle detection in the intersection area
�rst the secondary input variables were assessed (“width” of
the intersection and longitudinal slope of the intersection
lanes), which served to trigger the selected cases 1 to 4.
�e combination of main input variables detected during
the cycle (average speed, congestion factor, and vehicle
position) further triggered the de�ned rules. �e defuzzi�-
cation process resulted in the appropriate setting of the LSE
signal plan. From the system design it is obvious that the
authors expanded the number of input variables by input
variables reecting the geometry of the intersection and the
vehicle position determined based on the distance from the
intersection stop line.
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Figure 15: Block diagram of the control process (graphic represen-
tation of system process) [23].

Murat and Gedizlioglu [24] developed a fuzzy control
system for an isolated intersection, which di�ered from the
above mentioned systems by the use of two fuzzy control
systems. �e �rst fuzzy system “fuzzy logic signal time
controller” decided on the signal plan duration modi�cation
(extension of phases). �e second fuzzy system “fuzzy logic
phase sequencer” determined the sequence and number of
phases. Each of the fuzzy systems contained a di�erent
database (block diagram of the LSE control system see
Figure 16). �e authors elaborated on the above mentioned
control system in the article [56] where they proposed a fuzzy
control system for a multiphase LSE, “logic multi-phased
signal control (FLMuSiC).”

Jacques et al. [57] analyzed the theoretical aspects of the
decision-making logic applied in the LSE control system. In
practice they tested three di�erent fuzzy control systems (the
di�erence was in the application of three di�erent methods
of defuzzi�cation (MOM, COG, and SOM)) on an isolated
intersection for three di�erent loading levels (low, medium,
and high).

Expert publications dedicated to the application of fuzzy
algorithms in the LSE control system a�er the year 2002 do
not bring entirely new ideas; they mostly focus either on
improvement of algorithms of other authors or on certain
expansion of the control systems.
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Figure 17: Illustration of the fuzzy rule and �tness function selection using the genetic algorithm [25].

One of the other articles dealing with the applica-
tion of the fuzzy algorithm in the LSE control system
in combination with the genetic algorithm is the the-
sis by Chiou and Lan [25]. �e research resulted in the
proposal of an iteration evolution algorithm containing
a genetic fuzzy control system (“genetic fuzzy logic con-
troller (GFLC)”). �e genetic algorithm should select a
suitable fuzzy rule and set the �tness function (Figure 17).
�ey tested the proposed intersection control system in
Taipei (�aiwan) and the test results showed that the “GFLC”
control algorithm is su�ciently e�ective and robust for the
use in LSE adaptive control systems.

In the 2009 article [58] Zeng et al. proposed a fuzzy
control system for an isolated intersection where the value
of the input variable for each phase would be determined in
relation to the previous intensity values.

�e authors Zhang et al. [59] introduced an interesting
idea into the fuzzy control system. �eir expert publication
described the proposal of a two-level fuzzy control system
for an overloaded transportation network.�e transportation
area in question had compact central areas in which the
intensities reached high values with a threat of a possi-
ble occurrence of tra�c congestions. �e proposed fuzzy

algorithm monitored two goals (aspects), which strove to
prevent the tra�c congestions (“anticongestion fuzzy algo-
rithm (ACFA)”). �e �rst goal was to minimize the delay
of vehicles and the second goal was to prevent occurrence
of tra�c congestions. �e �rst level of the fuzzy algorithm
assessed the tra�c situation in the network in question and
the second level of the algorithm was to control the LSE on
each intersection. �e peripheral intersections were used to
regulate the number of vehicles approaching the inner area
by altering the vehicle direction (di�erent selection of phase
sequence). �e result was the decrease in the probability of
overloading the transportation network.

�e authors Hu et al. also presented an interesting LSE
control system in their 2007 article [26].�eproposed control
system contains an evolution algorithm, which generates the
optimal fuzzy rule base. �e evolution algorithm working
with real measured data was applied to an isolated four-arm
intersection containing lanes for straight direction and right
turns. Le� turns were solved only in one intersection arm as
a separate bypass. �e proposed control system reected the
safety and quality of tra�c when the e�ciency of the control
algorithm itself was de�ned using the “�tness” function. �e
authors de�ned the �tness function (performance function)
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as an average time loss of all vehicles in Δ�. For the block
diagram of the LSE control system containing a block for
evaluation of the performance function, see Figure 18.

Hu et al. further elaborated on the idea of application of
an advanced LSE control system in the following article [27].
Together with the other authors they proposed a hierarchic
fuzzy control system, which was applied to a real four-
arm intersection containing fourteen lanes, two pedestrian
crossings, and 7 phases. �e hierarchic control system con-
tained seven input variables (column length) of seven phases
and one input represented by a “go” signal duration for a
selected phase. It is obvious from Figure 19 that the hierarchic
control system contained six levels of control subprocesses
(subcontrollers). Each of these individual control elements
contained two inputs and one output. Levels 1 to 5 used two
identical input parameters representing column lengths. �e
consolidated column length from the previous layer was the
output. �e last (sixth) level used the consolidated column
length of previous levels and the column length of the selected
phase as an input parameter.�e output of the sixth level was
the duration of the green light of the selected phase. �e use
of the evolution algorithm showed the 38% decrease of the
vehicle waiting time.

Yang et al. [28] proposed in their article HFLC (hierar-
chical fuzzy logic controller); for the hierarchic fuzzy control
system, see Figure 20. �e proposed control system was a
two-level one and contained three modules with fuzzy logic.
�e �rst level was represented by two modules with fuzzy
logic, which estimated the actual duration of the green light
and the subsequent red light phase based on the intensity of
the tra�c ow of the given phase.�e second level contained
one fuzzy module, which decided on the extension of the
actual green phase. �is proposed control system shows,
according to the study conclusions, better control results
than the previously used one-level LSE fuzzy control systems
(single stage fuzzy logic controller (SSFLC)).

Authors Cheng and Yang proposed in their thesis [60]
another LSE control system containing a fuzzy-genetic algo-
rithm. �ey used fuzzy clustering analysis to create the
knowledge base, which was created based on identi�ed inten-
sities.�ey separated the rules of the knowledge base into two
sets, �xed and variable rules. �e genetic algorithm was used
for setting the set of variable rules during the LSE control and
was also part of the process of determination of optimal cycle
duration.�e proposed control system provided again better
results than the �xed signal plan or dynamic LSE control.

In their article [29] the authors Schmöcker et al. presented
a multicriteria optimization control system using the fuzzy
logic. �e �tness function was optimized using the Bellman-
Zdeh principle. According to the authors it was a very e�ec-
tive method due to the fact that the result led to the so-called
Paret optimal solution (ideal balanced state).�e�tness func-
tionswere further optimized through a genetic algorithm. For
the block diagram of the transportation system, see Figure 21.
�e authors veri�ed the proposed system on a case study of
the Marylebone Road, Baker Street intersection in London.

Li and Zhang proposed in their article [30] a multiphase
fuzzy control system, which is comprised of two parts: the
�rst part composed of the so-called fuzzy green extension
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50
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Tra�c simulation �tness evaluation

Figure 18: �e block diagram of the genetic fuzzy generator
database [26].
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[28].

controller (FGEC), and the second part provided the change
of phases (fuzzy phase change controller (FPCC)) again using
the fuzzy logic (block diagram, see Figure 22).

Zarandi and Rezapour [31] chose a di�erent approach to
multilevel fuzzy LSE control. �e fuzzy control system con-
tained a fuzzy system of phase selection and a fuzzy system
for green extension; see Figure 23.�e system either extended
the current running phase or selected a new phase diagram.

�e publication of Rhung et al. [32] is interesting because
it uses Sugeno type fuzzy inference system instead of the usual
Mamdani type fuzzy inference system. �e M/M/1 queuing
theory was also used in the model structure (see Figure 24).
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Wen et al. in their publication [6] dealt with a proposal
of a stochastic control system based on a fuzzy reinforce-
ment learning system (“fuzzy reinforcement learning” (FRL)).
�e authors claim that this system (Figure 25) can adapt
to uctuating tra�c load (intensity, vehicle direction) and
prevent oversaturation of the intersection. �e proposed
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Figure 24: Block diagram of the control system [32].
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[6].

control system was tested at a four-arm intersection and was
compared with control system using the �xed signal plan
and with fully dynamic LSE control system. �e analysis
of the results of the performed simulations showed better
performance of “FRL” system (decrease of average time delay
of 25.7%) as compared with the traditional control systems,
especially in case of oversaturation of the intersection caused
by the increase of the tra�c demand.

Chen et al. [61] followed the idea of FLR in 2009. �ey
involved the Level of Service (LOS) methodology to the
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system. �e tra�c in China can be characterized by big
amount of pedestrians and cyclists, who slow down the
tra�c ow. Fuzzy control system with methodology LOS is
inuenced by the forecast of user’s behaviour, which helps
to improve the process of fuzzi�cation. It takes into account
the driver’s preferences, for example, longer green phase or
shorter intervals.

Niittymaki and Kikuchi [41] deal in their paper with
speci�cations of pedestrian crossings at intersections, where
the pedestrians prevail. Using the fuzzy logic the tra�c
control system became the so-called pedestrian friendly.

In the article [33] the authors proposed a hybrid LSE
control system combining fuzzy logic, learning automata, and
CPN (coloured Petri nets). �e system was based on a learn-
ing automata (block diagram, see Figure 26), where input
data changed its internal settings and chose selected output
action. Fuzzy coloured Petri net should predict optimized
future system conditions.

In the recent study [62] concern was devoted to exploita-
tion of neural networks for better prediction of tra�c
behaviour. It turned out that neural networks describe, in a
natural way, driver’s behaviour and allow better decision on
tra�c control and optimization of light signalling. However,
the use of fuzzy logic for control of LSE is not limited to
four-arm or T intersections; it can be used to control rotary
intersection, as suggested in the article [63] byGong et al.�is
article compared three di�erent fuzzy control systems:

(i) FUZZY-TIM: fuzzy logic setting the duration of the
green of individual phases;

(ii) FUZZY-SEQ: fuzzy logic modifying the phase
sequence;

(iii) FUZZY-MIX: combination of the two previous con-
trol systems (two-level fuzzy control system).

Lu et al. improved in their paper [64] from 2010 the fuzzy
logic of a roundabout. �e roundabouts are very popular in
theUSA, but it is almost impossible for pedestrians, especially
the handicapped ones, to judge the safe space between the
vehicles. �ey rely on hearing, but the surrounding noise
makes it more complicated. �e result is that the tra�c lights
are also installed at the roundabouts, and it showed that the
so-called “distant” layout makes the delay of the pedestrians
much smaller and the same time keeps the vehicles in
movement.�is dynamic systemwas tested in di�erent tra�c
ows and results were excellent.

Another score of articles combining fuzzy logic and
genetic algorithm is the 2011 publication by [65]. �e article
proposes an o�-line GA, which should optimize the fuzzy
rules and �tness functions of GPS variables (green phase
selector) and GTA (green-time adjustor) where the �tness
function was the AD (average delay) variable.

�e article [34] is an interesting work where the authors
compared LSE fuzzy control system they proposed with
several di�erent LSE control systems (Mamdani type FIS,
Sugeno type FIS, HCM, and Webster). It was a relatively
complex review of the LSE fuzzy control issue. �e system
innovation represented the use of feedback for setting the
�tness function (see Figure 27).

Random environment

Learning automata

(n)

�(n)

Figure 26: Relationship between learning automata and their
environment [33].
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Figure 27: Illustration of the feedback within the control system
[34].

Another series of articles combining the genetic algo-
rithm and fuzzy logic for four-arm intersection control with
LSE is the publication [35] byMa et al.�e authors proposed a
multiphase fuzzy control system, this time containing online
genetic algorithm for optimizing of the �tness function.
�e control system used a database of historically measured
(in previous steps) tra�c engineering data. �e article also
contained a block diagram illustrating the optimizing process
using the genetic algorithm (Figure 28).

Yang et al. proposed in their article [36] a two-level fuzzy
control system containing a hybrid genetic algorithm (block
diagram of the control system, see Figure 29). �e online
hybrid GAwas supposed to optimize the �tness function and
control rules. As in the previous case the authors used for
control the historically measured data (the state they used
quasi data, without closer speci�cation of the term). �e use
of an emulator of the tra�cow in the LSE control systemwas
a new element (without including the proposal of proprietary
GA).

3. Summary and Future Challenges

In this paper, we have conducted a comprehensive review
of the literature dealing with the use of fuzzy sets and fuzzy
logic theory in the �eld of tra�c control systems. �e review
focused on various approaches which describe and predict
the driver’s behaviour and optimize the ow of the tra�c.
�e �rst works published in the late 1970s of the 20th century
showed the possibility of using the vague description of the
tra�c state and using it for precise decision and control of
light signalling. In the course of development there was a rise
in works taking into account more complex systems and also
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more theories. �e review covers all the above-mentioned
approaches and discusses, to some extent, the advantages and
drawbacks of the proposed models. Many studies involved
comparison with the real datasets and proved the advantages
of the exploitation of fuzzy sets and fuzzy logic.

Based on the literature survey, there are still open ques-
tions and issues that can be addressed in the near future
studies.�e challenges involve (i) the control of large number
of crossroads simultaneously to ensure the continuous ow
of the tra�c especially in cases of tra�c jams, (ii) the use
of modern UAV based data collection and rapid mapping
methods to avoid the tra�c jams, (iii) the introduction of
parameters describing situations of emergency when traf-
�c accident occurs, (iv) the introduction of large sensors
networks involving also the nonstandard parameters (driver
mood, drastically changing weather, etc.), (v) the optimiza-
tion of neural networks for description of tra�c and their
combination with fuzzy logic, and (vi) the use of robotic
vehicles without drivers.
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“�e impact of di�erent approximate reasoning methods on
fuzzy signal controllers,” in Proceedings of the 13th Mini-EURO
Conference (Handling Uncertainty in the Analysis of Tra	c and
Transportation Systems) and the 9th Mtg. EUROWorking Group
on Transportation (Intermodality, Sustainability and Intelligent
Transportation Systems), pp. 184–192, Bari, June 2002.

[58] R. Zeng, G. Li, and G. Lin, “Adaptive tra�c signals control
by using fuzzy logic,” in Proceedings of the 2nd International
Conference on Innovative Computing, Information and Control
(ICICIC ’07), September 2007.

[59] W. B. Zhang, B. Z. Wu, and W.-J. Liu, “Anti-congestion fuzzy
algorithm for tra�c control of a class of tra�c networks,” in
Proceedings of the IEEE International Conference on Granular
Computing, pp. 124–128, 2007.

[60] X. Cheng and Z. Yang, “Intelligent tra�c signal control
approach based on fuzzy-genetic algorithm,” in Proceedings
of the 5th International Conference on Fuzzy Systems and
Knowledge Discovery (FSKD ’08), vol. 3, pp. 221–225, Shandong,
China, October 2008.

[61] X. Chen, D. Li, N. Ma, and C. Shao, “Prediction of user
perceptions of signalized intersection level of service based on
fuzzy neural networks,” Transportation Research Record, vol.
2130, no. 1, pp. 7–15, 2009.

[62] F. G. Labanca, P. S. F. De Sousa Jr., M. V. Asari, and M. A. P.
Jacques, “Use of genetic algorithm for fuzzy signal controller
design—an exploratory study,” 2010.

[63] Y.-J. Gong, J. Zhang, O. Liu, and Y. Li, “A novel fuzzy model for
the tra�c signal control of modern roundabouts,” in Proceed-
ings of the IEEE International Conference on Systems, Man, and

Cybernetics (SMC ’11), pp. 1777–1782, Anchorage, Alaska, USA,
October 2011.

[64] G. Lu, F. Guan, and D. A. Noyce, “Multimodal accessibility of
modern roundabouts: intelligent management system versus
common signalization scheme,” Journal of the Transportation
Research Board, vol. 2183, no. 1, pp. 103–119, 2010.

[65] J. Qiao, N. Yang, and J. Gao, “Two-stage fuzzy logic controller
for signalized intersection,” IEEE Transactions on Systems,Man,
and Cybernetics Part A:Systems and Humans, vol. 41, no. 1, pp.
178–184, 2011.



Submit your manuscripts at

http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


