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Abstract 
This paper deals with re-modelling of a fuzzy linear 
programming (FLP) for an optimal product-mix 
decision problem and its solution. Database of a 
chocolate exporting company has been used here to 
show the practicability of using the proposed model. 
The proposed model includes a non-linear membership 
function (MF), a logistic function, which resemblances 
the realistic behaviour of the solution. A software 
platform LINGO® has been utilized to find the optimal 
solution.  

Keywords: Product-mix, Optimization, Fuzzy sets, S-
curve MF, Fuzzy LP. 

1. Introduction 
The theory of fuzzy linear programming (FLP) was 
developed to tackle imprecise or vague problems using 
the fundamental concept of artificial intelligence. 
Solutions to such fuzzy decision-making problems 
include research works of Bellman and Zadeh [1], 
Tanaka et al. [14, 15], Negoita and Sularia [9], 
Negoita and Ralescu [10], Negoita [11], Freeling [6], 
Ross [12], Klir and Yuan [8], Yager et al. [20], 
Zimmermann [24], Chen and Chou [4] and Dubois and 
Prade [5]. 

Buckley et al. [3] solved multi-objective fully 
fuzzified LP problems. Triangular fuzzy numbers were 
used in their solution. 

An attempt was made by Vasant [17], Vasant and 
Barsoum [19] to deal with the product-mix problem of 
the firm Chocoman Inc [13]. The said work was 
simulated in MATLAB® platform using S-curve MF. 
The present work is different from the prior works in a 
sense that it incorporates the non-linear logistic MF in 
the constraints of the LP model. In this work the LP 

model has been re-modelled in a fashion so as to get a 
synergistic effect in the optimized solution. 

2. The case study 
In this section we set out a non-linear fuzzy 
optimization problem as a case study that describes a 
possible situation in a chocolate exporting company. 

The data for this problem have been adopted from 
the databank of Chocoman Inc, USA [13]. Chocoman 
produces varieties of chocolate bars, candy and wafer 
using a number of raw materials and processes. There 
are ‘n’ number of products to be manufactured by 
mixing ‘m’ number of raw materials having different 
proportion and by using ‘k’ number of different kind 
of processing techniques. Limitations in resources of 
raw materials exist. There are also some constraints 
imposed by marketing department such as product-
mix requirement, main product line requirement and 
lower and upper limit of demand for each product. All 
the above requirements and conditions are fuzzy. The 
objective is to formulate the linear programming 
model using a fuzzy S-curve MF in order to obtain 
optimal unit of products. 

The firm Chocoman, Inc. manufactures 8 different 
kinds of chocolate products. There are 8 raw materials 
to be mixed in different proportions and 9 processes 
(facilities) to be utilized. The product demand, 
discount, profit, revenue/sales and objective 
coefficients are illustrated in Table 1. Table 2 depicts 
required materials & facility usage, and availability of 
the raw materials for manufacturing each of the 
products. 

The following constraints were established by the 
sales department of Chocoman, Inc.: 
(i) Product-mix requirements: Large-sized products 
(250g) of each type should not exceed 60% (non fuzzy 
value) of the small-sized product (100 g), such that: 



x1  ≤  0.6 x2   … (1)   
x3  ≤  0.6 x4  … (2) 
x5  ≤  0.6 x6 … (3) 
 (ii) Main product line requirement: The total sales 
from candy and wafer products should not exceed 15% 
(non-fuzzy value) of the total revenues of the 
chocolate bar products, such that: 
400x7 + 150x8 ≤ 0.15 (375x1 + 150x2 + 400x3 + 160x4 
+ 420x5 + 175x6) … (4) 

2.1. Re-modelling the Problem  
The problem of Tabucanon [13] has been re-modelled 
in this paper. The linear programming formulation 
adopts fuzzification using a non-linear membership 
function (MF). This MF is the logistic function 
described by Goguen [7] and Zadeh [21,22,23]. 
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B and C are scalar constants and γ, 0 < γ < ∝ is a fuzzy 
parameter for measuring degree of imprecision. 

The logistic MF is modified and redesigned in the 
following fashion so as to fit into the LP model. This 
MF behaves like a S-curve. 
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For further details on this modified MF as well as 

the logistics MF readers are referred to Vasant et al. 
[16,18], Vasant and Barsoum [19] and Bhattacharya 
and Vasant [2]. 

The following FLP is constructed using the 
modified S-curve MF: 
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2.2. Results 
Table 3: Products at disparate µ values and impact of 
FLP computation on cost 

 
The values of γ, B, C are found after a rigorous 
algebraic computation. It was observed that γ = 
13.8135, B = 1 and C = 0.001001001. The values of 
MF, i.e., µ, is referred as the degree of possibility and 
0<µ<1. For step-wise calculation we adopt µ = 0.001, 
0.1 to 0.9 in a step of 0.1, and 0.999. Limitations of 
page restrict the authors to illustrate all the values of 
all variables at all µ. Variable values at µ = 0.001, 0.1, 

µ Variable Value Reduced Cost 
x1 239.7161 0.000000 
x2 399.5268 0.000000 
x3 198.9859 0.6470742E-07 
x4 331.6432 0.000000 
x5 141.1270 0.000000 
x6 235.2116 0.000000 
x7 139.2046 0.000000 

0.001 

x8 11.70292 0.000000 
x1 279.4339 0.000000 
x2 465.7232 0.000000 
x3 234.7411 0.000000 
x4 391.2352 0.000000 
x5 155.3713 0.1630958E-05 
x6 258.9522 0.000000 
x7 159.3681 0.000000 

0.1 

x8 16.73137 0.000000 
x1 302.5503 0.000000 
x2 504.2506 0.000000 
x3 255.6712 0.000000 
x4 426.1187 0.000000 
x5 163.7803 0.000000 
x6 272.9672 0.000000 
x7 171.2133 0.000000 

0.5 

x8 19.52965 0.2514186E-04 
x1 329.6295 0.000000 
x2 549.3824 0.000000 
x3 280.2814 0.000000 
x4 467.1356 0.000000 
x5 173.7323 0.000000 
x6 289.5538 0.000000 
x7 185.1788 0.000000 

0.9 

x8 22.70207 0.000000 
x1 414.3502 0.000000 
x2 690.5837 0.000000 
x3 354.0144 0.000000 
x4 590.0239 0.000000 
x5 200.0325 0.000000 
x6 333.3874 0.000000 
x7 200.0000 0.000000 

0.999 

x8 54.48504 0.000000 



0.5, 0.9 and 0.999 are only shown in Table 3. The 
results illustrated on Tables 3 and 4 are found by 
LINGO® software platform. Table 4 depicts product-
mix and f-values at disparate µ values.  

3. Discussion and Conclusion 
It is understood from Tables 3 and 4 that a decision-
maker has many choices open in his/her hand. Both 
the Tables 3 and 4 illustrate sensitivity of the 
judgement of a decision-maker while making a 
product-mix decision of the chocolate manufacturing 
firm. Therefore, trading off the fuzziness values (γ) as 
well as the degree of possibility (µ) of the choices will 
make the DM to apply an ample judgement under this 
unstructured environment. 
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Table 1: Profit (ck), Discount (dk), Demand (uk) and Revenues/Sales (rk) in US $ per 103 units 
Product (xk) Synonym Profit (ck) Discount (dk) Demand (uk) Revenues/Sales (rk) 

x1 = Milk chocolate, 250g MC 250 c1 = 180 d1 = 0.18 u1 = 500 r1 = 375 
x2 = Milk chocolate, 100g MC 100 c2 = 83 d2 = 0.05 u2 = 800 r2 = 150 
x3 = Crunchy chocolate, 250g CC 250 c3 = 153 d3 = 0.15 u3 = 400 r3 = 400 
x4 = Crunchy chocolate, 100g CC 100 c4 = 72 d4 = 0.06 u4 = 600 r4 = 160 
x5 = Chocolate with nuts, 250g CN 250 c5 = 130 d5 = 0.13 u5 = 300 r5 = 420 
x6 = Chocolate with nuts, 100g CN 100 c6 = 70 d6 = 0.14 u6 = 500 r6 = 175 
x7 = Chocolate candy CANDY c7 = 208 d7 = 0.21 u7 = 200 r7 = 400 
x8 = Chocolate wafer WAFER c8 = 83 d8 = 0.1 u8 = 400 r8 = 150 

 
 
 

Table 2: Raw material and Facility usage required (per 103 units) (ãij = [al
ij, ah

ij]) and Availability (bj) 

Material or Facility MC 250 MC 100 CC 250 CC 100 CN 250 CN 100 Candy Wafer Availability 

Cocoa (kg) [66, 109] [26, 44] [56, 94] [22, 37] [37, 62] [15, 25] [45, 75] [9, 21] 100000 
 Milk (kg) [47, 78] [19, 31] [37, 62] [15, 25] [37, 62] [15, 25] [22, 37] [9, 21] 120000 
 Nuts (kg) [0, 0] [0, 0] [28, 47] [11, 19] [56, 94] [22, 37] [0, 0] [0, 0] 60000 
Cons. sugar (kg) [75, 125] [30, 50] [66, 109] [26, 44] [56, 94] [22, 37] [157,262] [18, 30] 200000 
Flour (kg) [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [54, 90] 20000 
Alum. foil (ft2) [375, 625] [0, 0] [375, 625] [0, 0] [0, 0] [0, 0] [0, 0] [187, 

312] 
500000 

Paper (ft2) [337, 562] [0, 0] [337, 563] [0, 0] [337, 562] [0, 0] [0, 0] [0, 0] 500000 
Plastic (ft2) [45, 75] [95, 150] [45, 75] [90, 150] [45, 75] [90, 150] [1200, 2000] [187, 312] 500000 
Cooking (ton-hours) [0.4, 0.6] [0.1, 0.2] [0.3, 0.5] [0.1, 0.2] [0.3, 0.4] [0.1, 0.2] [0.4, 0.7] [0.1,0.12] 1000 
Mixing (ton-hours) [0, 0] [0, 0] [0.1, 0.2] [0.04, 0.07] [0.2, 0.3] [0.07, 0.12] [0, 0] [0, 0] 200 
Forming (ton-hours) [0.6, 0.9] [0.2, 0.4] [0.6, 0.9] [0.2, 0.4] [0.6, 0.9] [0.2, 0.4] [0.7, 1.1] [0.3, 0.4] 1500 
Grinding (ton-hours) [0, 0] [0, 0] [0.2, 0.3] [0.07, 0.12] [0, 0] [0, 0] [0, 0] [0, 0] 200 
Wafer making (ton-
hours) 

[0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0.2, 0.4] 100 

Cutting (hours) [0.07, 0.12] [0.07, 0.12] [0.07, 0.12] [0.07, 0.12] [0.07, 0.12] [0.07, 0.12] [0.15, 0.25] [0, 0] 400 
Packaging 1 (hours) [0.2, 0.3] [0, 0] [0.2, 0.3] [0, 0] [0.2, 0.3] [0, 0] [0, 0] [0, 0] 400 
Packaging 2 (hours) [0.04, 0.06] [0.2, 0.4] [0.04, 0.06] [0.2, 0.4] [0.04, 0.06] [0.2, 0.4] [1.9, 3.1] [0.1, 0.2] 1200 
Labour (hours) [0.2, 0.4] [0.2, 0.4] [0.2, 0.4] [0.2, 0.4] [0.2, 0.4] [0.2, 0.4] [1.9, 3.1] [1.9, 3.1] 1000 

 
 
 

Table 4: Product-mix and f-values at disparate µ 
µ x1 x2 x3 x4 x5 x6 x7 x8 f 

0.001 239.7161 399.5268 198.9859 331.6432 141.1270 235.2116 139.2046 11.70292 150089.2 
0.1 279.4339 465.7232 234.7411 391.2352 155.3713 258.9522 159.3681 16.73137 165662.6 
0.2 287.5612 479.2687 242.0906 403.4844 158.3183 263.8638 163.5240 17.72523 168585.9 
0.3 293.2170 488.6950 247.2111 247.2111 160.3752 267.2920 166.4218 18.41035 170566.9 
0.4 298.0141 496.6902 251.5579 419.2632 162.1237 270.2061 168.8830 18.98738 172212.8 
0.5 302.5503 504.2506 255.6712 426.1187 163.7803 272.9672 171.2133 19.52965 173740.0 
0.6 307.2207 512.0344 259.9091 433.1819 165.4891 275.8152 173.6153 20.08459 175282.7 
0.7 312.4697 520.7829 264.6756 441.1260 167.4136 279.0226 176.3184 20.70434 176980.6 
0.8 319.1108 531.8513 270.7111 451.1852 169.8541 283.0901 179.7432 21.48254 179074.1 
0.9 329.6295 549.3824 280.2814 467.1356 173.7323 289.5538 185.1788 22.70207 182264.4 

0.999 414.3502 690.5837 354.0144 590.0239 200.0325 333.3874 200.0000 54.48504 200116.4 
 


