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Abstract Introducing neuro-fuzzy concept in decision mak-

ing problems, makes a new way in artificial intelligence and

expert systems. Sometimes, neural networks are used to op-

timize certain performances. In general, knowledge acquisi-

tion becomes difficult when problem’s variables, constraints,

environment, decision maker’s attitude and complex behav-

iour are encountered with. A sense of fuzziness prevails in

these situations; sometimes numerically and sometimes lin-

guistically. Neural networks (or neural nets) help to over-

come this problem. Neural networks are explicitly and im-

plicitly hyped to draw out fuzzy rules from numerical infor-

mation and linguistic information. Logic-gate and switching

circuit mobilize the fuzzy data in crisp environment and can

be used in artificial neural network, also. Game theory has

a tremendous scope in decision making; and consequently

decision makers’ hesitant characters play an important role

in it. In this paper, a game situation is clarified under arti-

ficial neural network through logic-gate switching circuit in

hesitant fuzzy environment with a suitable example; and this

concept can be applied in future for real-life situations.

Keywords Artificial neural networks · Logic gates · Fuzzy

matrix games · Takagi-Sugeno model.

1 Introduction

Basic decision making issues related with game hypotheses

have large-scale implementations in science, engineering,

management science and sociology. Fuzzy set (FS) (Zadeh

(1965)) gives assistance to a brilliant and wonderful role
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to investigate the inner situations of issues identified with

regular day to day existence’s. Although it has a few con-

straints to deal with imprecise information, hazy and murky

data when various kinds of fuzziness, murkiness and unpre-

dictability yield up at the same time. Analysts have nurtured

the fuzzy sets and stretched out the FS to intuitionistic fuzzy

set (IFS) (Atanassov (1986)), hesitant fuzzy set (HFS) (Torra

(2010)), etc. HFS effectively actualized the problems’ envi-

ronments where FS, IFS flunk to depict issues about fuzzi-

ness, uncertainty. HFS portrays a group of values from [0,1]

instead of single one to every member of corresponding set.

Artificial neural frameworks or artificial neural nets are phys-

ical cell frameworks generally able to acquire, store and use

exploratory information towards knowledge. The learning

is acquired in stable mappings inserted in network frame-

work. Neurons or nodes are the basic unit or element of net.

In brain-neuron system, i.e., in neural net systems, activity

starts at networks’ polarization, then the firing rate of neu-

ron is considered through a set of input connections using

synapses on cells and the corresponding dendrite; then neu-

rons are given internal resting space and consequently neu-

ron’s axonal projections are done. In artificial neural nets,

every processing element is marked by an activity level, an

output cost or value, a group of input links, a bias cost, i.e.,

an artificial resting stage of corresponding neuron, and a

bunch of output links. Each of these characteristics of the

unit is expressed mathematically by means of real numbers.

Thus, every connection possesses weight, may be positive

or negative, i.e., synaptic influence which decides the im-

pact of the approaching contribution on the enactment level

of the unit. Weights determine excitatory or inhibitory initi-

ation. Artificial neural network may be classified as the gen-

eralization of brain-style computational methods in mathe-

matical sciences, mainly in applied sciences. McCulloch and

Pitts (1943), Hebb (1949) originated the idea of brain-style

computation. Minsky and Papert (1969) proposed artificial
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intelligence as symbol processing and it became a dominant

theme in artificial intelligence in 1970s.

Contemporarily, von Neumann and Morgenstern (1944) pio-

neered Game Theory. A game constitutes with players, their

turns and returns. These turns are called strategies and re-

turns, quantitatively are termed as payoffs. Players assume

pure strategies randomly, and when with some probabili-

ties, these strategies are defined to be mixed one. Matrix

game and related duality hypothesis in linear programming

problem (LPP) have a linkage in crisp form of intricacies

of issues yet reality wants various dubious natures. Because

of the vulnerability, imprecision attributes of frameworks in

question, and the vagueness, ambiguity of adjudications of

decision players, we understand inclusion of aversion, hesi-

tance environments in game problems. Campos (1989) first

illuminated fuzzy matrix game. Li (2013, 2014) solved ma-

trix games with fuzzy payoffs. Bhaumik et al. (2017), Bhau-

mik and Roy (2021), Bhaumik et al. (2021), Jana and Roy

(2019), Roy and Mula (2016), Roy and Jana (2021) under-

stood matrix games and effectively applied them in real-life

circumstances. Several articles (cf. Azam and Yao (2015),

Collins and Hu (2008), Tang and Li (2020), Xia (2019)) have

been published on fuzzy game theory.

Hirota and Pedrycz (1993) discussed on logic-based neu-

ral networks. Neural nets have been applied in fuzzy logic-

system, soft-computing (cf. Buckley and Hayashi (1992),

Buckley and Hayashi (1995), Jang (1993), Lin and Lee (1991)),

function approximation (Wu and Er (2000)), fuzzy model-

ing (cf. Sugeno and Yasukawa (1993), Takagi and Sugeno

(1985)), etc., but hybrid-neural net has not been applied in

matrix game using logic-gate switching circuits. Also, ma-

trix game under hesitant triangular intuitionistic fuzzy en-

vironment has not been discussed using neural net in liter-

atures. These can be considered as the research gaps from

the others in literatures. The main aims of this study are as

follows:

(i) To construct a game model using artificial neural nets.

(ii) To apply switching circuit gates in neural nets.

(iii) To compute a quick geometric way for defuzzification

of a set of hesitant fuzzy elements.

The rest of the paper is set as: Preliminaries related to tri-

angular intuitionistic fuzzy set, triangular norm and conorm,

hesitant fuzzy set are talked about in short in Section 2. Sec-

tion 3 describes classical matrix game shortly. In Section 4,

we discuss on neural network model with two subsections;

one for biological neural network and another for artificial

neural network, briefly. In Section 5, logic-gate switching

circuits are defined with the elementary gate operators; and

in Section 6, we develop fuzzy logic-gate switching circuit

oriented artificial neural network model. Matrix games with

artificial neural network and logic-gate-switch are described

in Section 7. A numerical problem is simulated and exer-

cised in Section 8. Section 9 is confined under the consid-

eration of results and the corresponding discussion to the

problem having some comparative analyses with others and

Section 10 finishes up this work with extent of future re-

search scopes.

2 Preliminaries

We introduce here the basic definitions and some proper-

ties on triangular intuitionistic fuzzy set, triangular norm and

conorm, and hesitant fuzzy set.

Let X denotes a universe of discourse. A fuzzy set Ă in X is

distinguished by a membership function µĂ : X ! [0,1]. A

fuzzy set Ă in X can be demonstrated as follows:

Ă = {(x,µĂ(x)) : µĂ(x) 2 [0,1], x 2 X}.

Membership degrees µĂ(x) of Ă are crisp numbers.

Definition 21 Triangular IFN (Li (2013)): An IF number

Â = h(ϕ,ϕ,ϕ); εϕ̂ ,ρϕ̂i having membership & non mem-

bership degrees of an element x = ϕ in Â, being εϕ̂ and

ρϕ̂ , is said to be triangular IFN if its membership and non-

membership functions respectively are defined as pursues:

φÂ(x) =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

εϕ̂

✓

x�ϕ

ϕ�ϕ

◆

, if ϕ  x < ϕ,

εϕ̂ , if x = ϕ,

εϕ̂

✓

ϕ�x
ϕ�ϕ

◆

, if ϕ < x ϕ,

0, if x < ϕ or x > ϕ,

(1)

and

ΦÂ(x) =

8

>

>

>

>

<

>

>

>

>

:

ϕ�x+ρϕ̂ (x�ϕ)

ϕ�ϕ , if ϕ  x < ϕ,

ρϕ̂ , if x = ϕ,
x�ϕ+ρϕ̂ (ϕ�x)

ϕ�ϕ , if ϕ < x ϕ,

1, if x < ϕ or x > ϕ.

(2)

Here, εϕ̂ and ρϕ̂ , in Eqs. (1) and (2), satisfy the con-

ditions: 0  εϕ̂  1, 0  ρϕ̂  1, 0  εϕ̂ + ρϕ̂  1. Also,

πÂ(x) = 1�φÂ(x)�ΦÂ(x) is defined as intuitionistic fuzzy

index of an element x 2 Â.

Arithmetic Operations on Triangular IFNs:

Let ϕ̂ = h(ϕ,ϕ,ϕ);εϕ̂ ,ρϕ̂i and ϑ̂ = h(ϑ ,ϑ ,ϑ);εϑ̂ ,ρϑ̂ i ap-

pear for two triangular IFNs, then the addition, substrac-
tion, multiplication, division and scalar multiplication of the
numbers are conveyed as below:

Addition:

ϕ̂� ϑ̂ = h(ϕ +ϑ ,ϕ +ϑ ,ϕ +ϑ);εϕ̂ ^ εϑ̂ ,ρϕ̂ _ρϑ̂ i. (3)

Substraction:

ϕ̂ ϑ̂ = h(ϕ�ϑ ,ϕ�ϑ ,ϕ�ϑ);εϕ̂ ^ εϑ̂ ,ρϕ̂ _ρϑ̂ i. (4)

Multiplication:

ϕ̂⌦ ϑ̂ =

8

>

<

>

:

h(ϕϑ ,ϕϑ ,ϕϑ);εϕ̂ ^ εϑ̂ ,ρϕ̂ _ρϑ̂ i, i f ϕ̂ > 0, ϑ̂ > 0,

h(ϕϑ ,ϕϑ ,ϕϑ);εϕ̂ ^ εϑ̂ ,ρϕ̂ _ρϑ̂ i, i f ϕ̂ < 0, ϑ̂ > 0,

h(ϕϑ ,ϕϑ ,ϕϑ);εϕ̂ ^ εϑ̂ ,ρϕ̂ _ρϑ̂ i, i f ϕ̂ < 0, ϑ̂ < 0.

(5)
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Division:

ϕ̂↵ ϑ̂ =

8

>

<

>

:

h(ϕ/ϑ ,ϕ/ϑ ,ϕ/ϑ);εϕ̂ ^ εϑ̂ ,ρϕ̂ _ρϑ̂ i, i f ϕ̂ > 0, ϑ̂ > 0,

h(ϕ/ϑ ,ϕ/ϑ ,ϕ/ϑ);εϕ̂ ^ εϑ̂ ,ρϕ̂ _ρϑ̂ i, i f ϕ̂ < 0, ϑ̂ > 0,

h(ϕ/ϑ ,ϕ/ϑ ,ϕ/ϑ);εϕ̂ ^ εϑ̂ ,ρϕ̂ _ρϑ̂ i, i f ϕ̂ < 0, ϑ̂ < 0.

(6)

where “^ ” and “_ ” individually denote min and max op-

erators in fuzzy sense.

Scalar Multiplication: For any real number k,

kϕ̂ =

⇢

h(kϕ,kϕ,kϕ);εϕ̂ ,ρϕ̂i, if k � 0,

h(kϕ,kϕ,kϕ);εϕ̂ ,ρϕ̂i, if k < 0.
(7)

Where the assumption of ϕ̂ > 0 or < 0 are decided by the

extension principle of fuzzy set (Li (2013)).

t-norm and t-conorm are two sorts of operations in fuzzy

sets. They are otherwise called as triangular norm and trian-

gular conorm, respectively.

Definition 22 Triangular norm (Fuller (2000)): A mapping

T is a triangular norm such that, T : [0,1]⇥ [0,1]! [0,1],8x,

y, x1, y1, z2 [0,1], with the following conditions as axioms:

2.2.1: T (x,0) = 0,T (x,1) = x; Boundary condition.

2.2.2: T (x,y) = T (y,x); Condition for symmetricity.

2.2.3: T (x,T (y,z)) = T (T (x,y),z); Condition for associa-

tivity.

2.2.4: T (x,y)  T (x1,y1) if x  x1,y  y1; Condition for

monotonicity.

Definition 23 Triangular co-norm (Fuller (2000)): A map-

ping T is a triangular conorm such that, T : [0,1]⇥ [0,1]!

[0,1],8 x, y, x1, y1, z 2 [0,1], with the following conditions

as axioms:

2.3.1: T (x,0) = x,T (x,1) = 1; Boundary condition.

2.3.2: T (x,y) = T (y,x); Condition for symmetricity.

2.3.3: T (x,T (y,z)) = T (T (x,y),z); Condition for associa-

tivity.

2.3.4: T (x,y)  T (x1,y1) if x  x1,y  y1; Condition for

monotonicity.

Definition 24 Complement of fuzzy set: Considering a fuzzy

sentence p; we describe its complement as some sentence

fulfilling the uniformity: Mc(p) = W �M(p), where Mc(p)

means M(p)’s complementary set; W is the entire set of sen-

tences; M is a membership function that partners p with the

members of M(p).

Definition 25 Hesitant Fuzzy Set (Torra (2010)): Based on

reference set X, AHF is defined to be a hesitant fuzzy set

described by the function hA(x). Here, hA(x) is applied to

X and gives a subset of [0,1], i.e., AHF = {hx,hA(x)i : x 2

X} where hA(x) is named as hesitant fuzzy element (HFE),

an essential unit of HFS, is a set fitted with various merits

in [0,1] represent the conceivable membership degrees to

component x 2 X.

Example 21 AHF = {hx1,0.1,0.4,0.3i,hx2,0.3,0.35i,hx3,

0.2,0.4,0.6,0.69,0.8i} is a HFS; {x1,x2,x3} 2 X, a refer-

ence set and hA(x1) = {0.1,0.4,0.3}, hA(x2) = {0.3,0.35},

hA(x3)= {0.2,0.4,0.6,0.69,0.8} are hesitant fuzzy elements.

Property 2.1: Considering h,h1 and h2 as three HFEs, a

few tasks are characterized by Torra (2010) as pursues:

2.1.1: hc = {1� γ : γ 2 h}, complement of h;

2.1.2: h1[h2 = {γ1_ γ2 : γ1 2 h1,γ2 2 h2};

2.1.3: h1\h2 = {γ1^ γ2 : γ1 2 h1,γ2 2 h2};

Furthermore, in order to aggregate hesitant fuzzy infor-

mation, Xu and Xia (2011) defined some new operations

on h,h1 and h2 with λ > 0 as below:

2.1.4: h1�h2 = {γ1 + γ2� γ1γ2 : γ1 2 h1,γ2 2 h2};

2.1.5: h1⌦h2 = {γ1γ2 : γ1 2 h1,γ2 2 h2};

2.1.6: hλ = {γλ : γ 2 h};

2.1.7: λh = {1� (1� γ)λ : γ 2 h}.

3 Classical matrix game

In this part, we describe some basics on classical game the-

ory. A matrix game is communicated as A = (ai j) where

i = 1,2, . . . , p, j = 1,2, . . . ,q with components as real num-

bers and the corresponding matrix is termed as payoff ma-

trix. We think about two players. Players I and II play row

i and column j, individually and the results to players I and

II are ai j and �ai j, respectively in case of zero-sum con-

cept. Strategies that advantage player’s individual adjust-

ments are picked by players. Expecting the game with ar-

rangement of unadulterated techniques S1 and S2 and that

of blended or mixed strategies X and Y for players I and II

individually, we characterize, S1 = {α1,α2, . . . ,αp}, S2 =

{β1,β2, . . . ,βq}, X = {(X1,X2, . . . ,Xp)
T : ∑

p
i=1 Xi = 1, Xi �

0, i = 1,2, . . . , p}, Y = {(Y1,Y2, . . . ,Yq)
T : ∑

q
j=1 Yj = 1, Yj �

0, j = 1,2, . . . ,q}.

Here Xi (i= 1,2, . . . , p) and Yj ( j = 1,2, . . . ,q) are probabili-

ties in which the players I and II sort-out their pure strategies

αi 2 S1 (i = 1,2, . . . , p) and β j 2 S2 ( j = 1,2, . . . ,q) individ-

ually and game is enunciated as G⌘ (X ,Y,A).

Basically, we wish to get the most favourable strategy(ies)

for players’ and the value of considered game. The estima-

tion of the game is characterized to be the maximum ensured

gain to maximizing player I or the minimum conceivable

loss to minimizing player II; and here the best strategic pro-

cedures are utilized by both players. If a player records the

most exceedingly awful potential results of all things con-

sidering his or her prospective strategies, the individual in

question will pick that strategy, the most reasonable for the

person in question. This idea is observed as maximin and

minimax principle. When maximin for player I and mini-

max for player II be equal then the existence of a saddle

point in corresponding game is certified (von Neumann and

Morgenstern (1944) noted the term saddle point).
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Expect that player I uses any mixed strategy from X . Clearly,

player I’s normal increase floor is min(X tAY ) and if shortly

be denoted by v, we need to maximize v, state v⇤ for certain

X⇤ 2 X , as v(X⇤) = max(min{∑
p
i=1 ai jXi : j = 1,2, . . . ,q}).

Such X⇤ and v⇤, respectively called player I’s maximin strat-

egy and game-value, are obtained from the accompanying

LPP in Model 1 as:

Model 1

maximize v (8)

subject to
p

∑
i=1

ai jXi � v ( j = 1,2, . . . ,q), (9)

p

∑
i=1

Xi = 1, (10)

Xi � 0 (i = 1,2, . . . , p). (11)

What’s more, with same contention, player II’s optimal or

minimax strategy, say Y ⇤ 2 Y , and game value, state w⇤ are

depicted from Model 2 as:

Model 2

minimize w (12)

subject to

q

∑
j=1

ai jYj  w (i = 1,2, . . . , p), (13)

q

∑
j=1

Yj = 1, (14)

Yj � 0 ( j = 1,2, . . . ,q). (15)

4 Neural network model

4.1 Biological network system

A typical neuron or nerve cell belongs to the vertebrate ner-

vous system which contains the nucleus (genetic informer)

and offers to two sorts of cell processes, axon and dendron.

Axon acts as transmitting element or output element whereas

dendron as input element. Branches of the axon of one neu-

ron communicate with signals to other neuron at a site is

called the synapse. Synapses are the elementary signal pro-

cessing devices.

Though the brain with its nervous system makes up for the

slow rate of operation with a few factors, the brain is an

exceptionally perplexing, non-linear, parallel data handling

framework. From early stage of childhood to adult stage,

synapses are modified gradually through the learning pro-

cess. And these motivate the scientists to use neural net-

works and the related sciences in artificial intelligence like

pattern recognition, perception, and motor controlling in fuzzy

sets and systems. Thus neural networks motivate to gener-

ate fuzzy rules from examples (cf. Sugeno and Yasukawa

(1993), Wang and Mendel (1992)).

4.2 Artificial neural network

In mathematics, biological structures of neural systems in-

fluence mathematical modeling to construct network func-

tions as forward and backward calculations. And this leads

to artificial neural network (ANN). ANN was found its roots

almost 75 years ago in the works of McCulloch and Pitts

(1943) and later by others (cf. Buckley and Hayashi (1992),

Buckley and Hayashi (1995), Kwan and Cai (1994)).

Definition 41 Artificial neural network(ANN): ANNs are

physical cell frameworks which can acquire, store and use

experimental information, knowledge and complex utilitar-

ian relations by summing up from a restricted amount of

preparing data.

Fig. 1. A simple neural network model.

Definition 42 Hybrid neural-net (Fuller (2000)): In a sim-

ple net, as picturesquely in Fig. 1, all input criteria like

signals as well as weights are reals. Signals interact with

weights and pass through one to another layer using sig-

moidal function. This straightforward neural net with in-

crease, expansion, and sigmoidal function is called regu-

lar (or standard) neural net. If triangular-norm, triangular-

conorm or their combination are employed and used in next

layer we call it hybrid neural net.

Definition 43 Fuzzy hybrid neural-net: When weights are

crisp and signals are fuzzy then hybrid neural net is termed

as fuzzy hybrid neural net. A fuzzy hybrid neural net may not

use multiplication, addition and sigmoidal function.

In ANN, signal flows or transfers on the basis of the net’s

activity, sometimes, termed as an activation or transfer func-

tion. The output of the flow persists if the value of activa-

tion function remains greater than some parameters, say, the

threshold-level.
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Definition 44 Max fuzzy neuron (Kwan and Cai (1994)):

The signal Xi interfaced with the weight Wi produces pi =
WiXi, i = 1,2. The input value pi is aggregated utilizing the

most extreme conorm z=max{p1, p2}=max{W1X1,W2X2}

and the j-th yield of the neuron is registered by y j = g j( f (z�

θ)) = g j( f (max{W1X1,W2X2}� θ)), where f is an initia-

tion capacity and θ is known as the threshold-level.

Definition 45 Min fuzzy neuron (Kwan and Cai (1994)):

The signal Xi communicated with the weight Wi produces

pi = WiXi, i = 1,2. The input value pi is amassed utilizing

the minimum norm z=min{p1, p2}=min{W1X1,W2X2} and

the j-th output of neuron is processed by y j = g j( f (z�θ))=

g j( f (min{W1X1,

W2X2}� θ)), where f and θ are the same as in Definition

44.

In this paper, we consider Max fuzzy neuron and Min fuzzy

neuron with t-norm and t-conorm in processing of the prob-

lem’s solution.

Fig. 2. Max fuzzy and Min fuzzy neuron nets.

5 Logic-gate switching circuit

In algebra of switching circuits, electrical or electronic switch-

ing circuits are depicted mathematically or planned to get an

outline for circuit having some criteria. In switching circuits,

we can consider conductor-nonconductor, charged-uncharged,

decidedly and contrarily polarized components. These days,

semi-conductor components in switching circuits have more

importance. In specific situation, switches are meant as so-

called gates, or combination of gates. This can be treated as

emblematic portrayal. In this way a gate (or combination of

gates) is a polynomial p which has the elements xi for each

i. We depict the gate as an acknowledgement of a switching

function. In the event that, as for worth, p= 1 (or 0), we have

current (or no current) through switching circuit p. Exam-

ples of switching gates with properties as output, are given

in Fig. 3 (Xis are treated here as input variables). Since, hu-

Fig. 3. Examples of some special gates.

man thinking, nowadays are not confined within 1-0 logical

concept, a consequent fuzzy approach tends the switching

circuit output towards linguistic variables like fuzzy sets. So

the output in switching circuit also collaborates the crisp and

fuzzy concept.

6 Fuzzy logic-gate switching circuit oriented artificial

neural network (FGSC-ANN) model

Here, we discuss the steps algorithmically to collaborate the

fuzzy data through the artificial neural net. From the col-

lected data, the required optimal value is obtained applying

the following Algorithm 1.

Algorithm 1: Construction of FGSC-ANN using fuzzy num-

bers.

Step 1.1: Collection of input data.

Step 1.2: Weight assign with input-data according to prob-

lem, if required.

Step 1.3: Weighted-data summation.

Step 1.4: Summed data are divided with two switches namely,

original and corresponding NOT gate.

Step 1.5: All combinations are get together.

Step 1.6: All combined data set forms a geometrical fig-

ure, may be any polygon.

Step 1.7: Each vertex of the polygon is ranked according

to their distances from centroid of the polygon.

Step 1.8: Signal flows through the minimum distance.

Step 1.9: Optimum vertex is obtained.

7 ANN based fuzzy matrix game

In ANNs, weighted interconnections are established by math-

ematical formulation, termed as rules. Rules are basically
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governed by two approaches, crisp approach and fuzzy ap-

proach. A mathematical model when uses fuzzy set in a

way is termed as a fuzzy approach of model rather than

the crisp set oriented approach. When ambiguous, uncertain,

imprecise conditions are applied in if-then relationship be-

tween the variables of the rules in ANNs, fuzzy neural net-

works (FNNs) are originated. FNNs are classified by using

two models namely, Mamdani model (Mamdani and Assil-

ian (1975)) and Takagi-Sugeno model (cf. Sugeno and Ya-

sukawa (1993), Takagi and Sugeno (1985)), depend on the

structures of if-then rules. If the antecedent (if part) and the

consequent (then part) are fuzzy propositions like:

Ri : If x is Ai then y is Bi, i = 1(1)k, where Ai and Bi are

from linguistic fuzzy sets and k is the number of rules in the

model, then the Mamdani model is useful to apply. When

knowledge is acquired in quantitative or data-based infor-

mation, then knowledge can be accessed through the Takagi-

Sugeno-Kang (TSK) model.

Here we consider zero-order TSK fuzzy model with four

rules and say it as Modified TSK Model.

Modified TSK Model:

Assumption: If x and y are inputs then output is z.

Rules:

R1: If x is X1 and y is Y1 then z is a11, i.e., the output is

((X1,Y1),a11)

R2: If x is X2 and y is Y1 then z is a21, i.e., the output is

((X2,Y1),a21)

R3: If x is X1 and y is Y2 then z is a12, i.e., the output is

((X1,Y2),a12)

R4: If x is X2 and y is Y2 then z is a22, i.e., the output is

((X2,Y2),a22)

If all of a11,a12,a21 and a22 are assumed as fuzzy numbers,

the fuzzy game, in matrix form can be written as the follow-

ing with X1,X2 as player I’s strategies and Y1,Y2 are that for

player II,

G =

✓

Y1 Y2

X1 a11 a12

X2 a21 a22

◆

Here, for example, the payoff a11 emerged as the outcome

when player I plays his/her strategy X1 and player II plays

Y1. Consider player I’s strategies have weights w1 and w2

and player II’s strategies have weights w3 and w4 respec-

tively. Therefore, according to the concept of game theory,

discussed in Section III, we must have
8

>

>

>

>

<

>

>

>

>

:

f1 = w1a11X1 +w2a21X2 � vI ;

f2 = w1a12X1 +w2a22X2 � vI ;

g1 = w3a11Y1 +w4a12Y2  vII ;

g2 = w3a21Y 1+w4a22Y2  vII .

Assuming that each rectangular game has a solution and as-

suming vI and vII to be the game values for players I and

Fig. 4. Diagrammatic form of Player I’s problem.

Fig. 5. Pictorial form of Player II’s problem.

II, respectively which are to be optimized. So, in Figs. 4

and 5, f1, f2 and g1,g2 are the combined form in Max fuzzy

neuron and Min fuzzy neuron respectively according to the

existence of the saddle point(s) or can be summed according

to the non-existence of saddle point to derive the optimum

results through Algorithm 2.

Algorithm 2: Construction of matrix game solution.

Step 2.1: Construction of rules of the matrix game accord-

ing to the strategies of the players.

Step 2.2: Combination of rules to form the payoffs of the

matrix game.

Step 2.3: Application of the concept of the saddle point or

mixed strategy to the matrix game.

Step 2.4: Achieving optimum strategies and obtaining the

game value.

Algorithm 3: Construction of ANN-logic gate-switching cir-

cuit oriented matrix game solution.

Step 3.1: Follow Algorithm 1, stepwise.

Step 3.2: Follow Algorithm 2, stepwise.
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8 Numerical simulation

Consider the existence of two business houses H1 and H2.

By selling their products, both these houses are aiming to

increase their profits in terms of market-shares. One wishes

to maximize his gain and the other aims to cut his lost. The

two houses consider various strategies. House H1 considers

X1: Advertisement,

X2: Reducing the printed price.

And house H2 chooses

Y1: Attracting packaging features,

Y2: Giving promotion-pack to customers free of cost.

Again we consider that these two houses have their own

managing bodies which call meetings regularly (say, every

three months or every six months) to put some weights on

their decisions. The decisions after each meeting may vary

from the previous meeting’s decisions or not. So, hesitant

environment arises. Both the houses have efforts to increase

their market-shares considering the fact that when one house

profits, the other loses. So the outcome, after applying strate-

gies, are the profit-percentage of the houses in terms of mar-

ket shares. If we consider this problem as a game issue with

two players I and II representing houses H1 and H2, respec-

tively, then the payoff matrix is as follows:

Ǧ =

✓

Y1 Y2

X1 Č11 Č12

X2 Č21 Č22

◆

Here, player I has strategies X1 and X2; player II has Y1 and

Y2. And the payoff elements are hesitant triangular intuition-

istic fuzzy elements Či j, i, j = 1,2 with their corresponding

weights, separated by second semicolon, are given below:

Č11 = {h(5.7,7.7,9.3);0.7,0.2i;0.4,h(5,7,9);0.6,0.3i;0.3,
h(5.7,7.7,9);0.8,0.1i;0.3};

Č12 = {h(8,9,10);0.6,0.3i;0.5,h(8.3,9.7,10);0.7,0.2i;0.3,

h(7,9,10);0.6,0.2i;0.2};

Č21 = {h(8.33,9.67,10);0.6,0.4i;0.4,h(3,5,7);0.6,0.3i;0.4,
h(6.5,8.6,10);0.4,0.5i;0.2};

Č22 = {h(6.5,8.2,9.3);0.8,0.1i;0.3,h(7,9,10);0.7,0.2i;0.4,
h(6.3,8.3,9.7);0.7,0.2i;0.3}.

Here, Č12 = {h(8,9,10);0.6,0.3i;0.5,h(8.3,9.7,10);0.7,

0.2i;0.3,h(7,9,10);0.6,0.2i;0.2} indicates that if player I

assumes X1 and player II considers Y2, then the profit will

be 90% with minimum 80% to maximum 100% having 6%

positive chance and 3% pessimistic chance if the managing

body gives 5% weight to their decisions. In the following

meeting the decisions remain same and no problem arises

but if weight are given 3% then the profit percentage is 97,

lying between 83 and 100 having 7% positive chance. The

remaining member of the set can be depicted likewise.

Now, using the regular neural net structure, we combine the

data in hesitant fuzzy set and using the mean averaging op-

erator, we get from Č11, x1 = h(5.49,7.49,9.12);0.6,0.3i.

Similarly the others are obtained as:
8

>

<

>

:

x2 = h(7.89,9.21,10.00);0.6,0.3i

x3 = h(5.83,7.58,8.80);0.4,0.5i

x4 = h(6.64,8.55,9.70);0.7,0.2i

Since every switching circuit has two inputs as ‘on’ and

‘off’, we consider the xi as ‘on’ and the x̄i as ‘off’ to maintain

the circuit rational. This consideration is important on the

basis of neural net since in the course of passing signal from

one neuron to another, only the predefined/prefixed neuron

is in on mode, others are in off mode.
8

>

>

>

>

<

>

>

>

>

:

x̄1 = h(0.88,2.51,4.51);0.3,0.6i

x̄2 = h(0.00,0.79,2.11);0.3,0.6i

x̄3 = h(1.20,2.42,4.17);0.5,0.4i

x̄4 = h(0.30,1.45,3.36);0.2,0.7i

Now, using the multiplication operations on triangular in-

tuitionistic fuzzy numbers using Eq. (5), we compute the

values of the following sixteen combinations:

x1x2x3x4, x̄1x2x3x4, x1x̄2x3x4, x1x2x̄3x4,x1x2x3x̄4, x̄1x̄2x3x4,

x̄1x2x̄3x4, x̄1x2x3x̄4,x1x̄2x̄3x4, x1x̄2x3x̄4, x1x2x̄3x̄4, x̄1x̄2x̄3x4,
x̄1x̄2x3x̄4, x1x̄2x̄3x̄4, x̄1x2x̄3x̄4 and x̄1x̄2x̄3x̄4.

For example, x̄1x2x3x̄4 = h(12.14,254.08,1333.51);0.2,0.7i

and the others.

These set of values of sixteen fuzzy numbers can be assigned

as sixteen vertices of a solid figure as in Fig. 6.

Now, inspired from the articles (cf. Coupland and John

Fig. 6. A solid three-dimensional figure with sixteen vertices.

(2008), Wu et al. (2012)), the centroid of the figure is com-

puted using the formulae: ∑Vi
i
, i = 1(1)n; Here, n = 16 and

V denote the vertices (In Figs. 6 and 7, denoted by As and

Bt ; s, t = 1, . . . ,8).

The centroid of the figure is the triangular fuzzy number

h(153.25,624.99,1747.43);0.2,0.7i. Now, computing the Eu-

clidean distances of all vertices from the centroid, the short-

est distance arises for the vertex x̄1x2x̄3x4 and the farthest for

the vertex x1x2x3x4. Now considering the vertex x̄1x2x̄3x4,

we form the payoff matrix, given in TABLE I.
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TABLE I: Payoff matrix of the game problem.
Payoff matrix

Players’

strate-

gies

Y1 Y2

X1 h(0.88,2.51,4.51);0.3,0.6i h(7.89,9.21,10);0.6,0.3i
X2 h(1.20,2.42,4.17);0.5,0.4i h(6.64,8.55,9.70);0.7,0.2i

Considering player I’s strategies have weights w1 = 0.5,w2 =

0.5 and player II’s strategies have weights w3 = 0.5,w4 =

0.5 respectively and using Definition 43, 44 and 45,

Max fuzzy neuron {Min fuzzy neuron}= max{min{w3a11,

w4a12},min{w3a21,w4a22}} = (0.5)(2.63), and Min fuzzy

neuron {Max fuzzy neuron} = min{max{w1a11,w2a21},

max{w1a12,w2a22}}=(0.5)(2.63). Thus, we get, Max fuzzy

neuron {Min fuzzy neuron}=Min fuzzy neuron {Max fuzzy

neuron}.

The existence of the saddle point gives the strategy sets for

players I and II, respectively X1 and Y1 and the value of the

game in triangular intuitionistic fuzzy form is h(0.88,2.51,

4.51);0.3,0.6i.

But, considering player I’s strategies have weights w1 = 0.6,
w2 = 0.4 and player II’s strategies have weights w3 = 0.5,

w4 = 0.5 respectively, we obtain,

Max fuzzy neuron {Min fuzzy neuron}= max{min{w3a11,

w4a12},min{w3a21,w4a22}}= max{min{1.315,4.515},
min{1.295,4.145}}= 1.315, and Min fuzzy neuron {Max

fuzzy neuron} = min{max{w1a11,w2a21},max{w1a12,
w2a22}}= min{max{1.578,1.036},max{5.418,3.316}}

= 1.578. And again get, Max fuzzy neuron {Min fuzzy

neuron}6=Min fuzzy neuron {Max fuzzy neuron}; but we

infer that the defuzzified crisp value V of the game satis-

fies 1.315  V  1.578. If we consider the weights w1 =
0.9,w2 = 0.1,w3 = 0.25,w4 = 0.75, then using Definition

43, 44 and 45, we derive, Max fuzzy neuron {Min fuzzy

neuron}=max{min{w3a11,w4a12},min{w3a21,w4a22}}=

0.658, and Min fuzzy neuron {Max fuzzy neuron} = min

{max{w1a11,w2a21},max{w1a12,w2a22}}= 2.371.

Payoff matrices for player I and player II are diverse because

of different weights, earmarked for the strategies of the play-

ers, and consequently we get different values of the game.

But in each cases, optimal strategies for player I from player

I’s payoff matrix and optimal strategies for player II from

corresponding payoff matrix are, respectively: (X⇤1 ,X
⇤
2 ) =

(1,0), (Y ⇤1 ,Y
⇤
2 ) = (1,0). If we consider different weights

to different strategies, we get the different resolutions. The

whole procedure is picturesquely represented in Fig. 7 (Here,

ǎi j is hesitant triangular IF numbered-set and kai j are its

members), where the game model is performed through Al-

gorithm 2.

9 Results and discussion

In this work, we contemplate fuzzy matrix game with re-

spect of ANN and fuzzy logic gate switching circuit. De-

fuzzification technique using the centroid concept is applied

and achieved a fine result to the matrix game problems.

Here we notice that the weights assigned to the strategies of

the players or decision makers, when changed, give an in-

teresting resolution. As the weights are changed, the crisp

value of the game are changed, simultaneously. When we

consider player I’s strategies with weights w1 = 0.5,w2 =

0.5 and player II’s strategies with weights w3 = 0.5,w4 = 0.5

respectively, we see the crisp value of the game as 1.315 and

the profits in terms of market-shares is 25.1% with minimum

8.8% and maximum 45.1% in addition with 3% optimistic

and 6% pessimistic chance. But if we apply the weights as

w1 = 0.6,w2 = 0.4,w3 = 0.5,w4 = 0.5, we observe that the

crisp game value lies between 1.315 and 1.578 with fuzzy

value of the game within h(0.88,2.51,4.51);0.3,0.6i and

h(1.20,2.42,4.17);0.5,0.4iwith corresponding weights. This

significantly suggests that the value of a decision, here game,

depends upon the decision makers’, here players’, choices of

weights of the alternatives, here strategies, of the game.

9.1 Comparative Analysis

Our proposed study, in comparison with others, has some

significant advantages. Our study is based on hesitant fuzzy

sets and elements by considering artificial neural network

and logic gate switching circuits. This kind of idea has not

been thought of before. For this reason, the result-relative

comparison is beyond the scope. The superiority of the pro-

posed study can be obtained from the following discussions.

(i) Esfahlani et al. (2019) considered the intuitive neuro-

rehabilitation video game employing the fusion of ar-

tificial neural network (ANN), inverse kinematics and

fuzzy logic algorithms. Particularly, this paper manifests

an approach to rectify incorrect positioning through real-

time visual feedback on the screen of video game. But

in our proposed study, we have considered the extended

version of fuzzy sets as hesitant fuzzy sets. We have de-

veloped game model using artificial neural nets applying

switching circuit gates in neural nets by defuzzifying of

hesitant fuzzy elements.

(ii) Abu-Khalaf et al. (2008) in their paper presented an ap-

plication of neural networks to find closed-form repre-

sentation of feedback strategies for a zero-sum game that

appears in the H∞ control. Uncertain environments are

not considered in this paper whereas, in our proposed

study, hesitant fuzzy environment is assumed in real-life

problematic situations.

(iii) In the paper by Mansoori et al. (2019), the fuzzy con-

strained matrix game problems were assumed in triangu-

lar fuzzy numbers using the concepts of recurrent neural

network (RNN). In our proposed work, we have con-

sidered artificial hybrid neural-net logic-gate switching
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Fig. 7. Combined model for logic-gate-fuzzy-ANN system.

circuit in fuzzy matrix game under hesitant triangular

intuitionistic fuzzy environment.

10 Conclusion

A few articles have been publicized using game theory in

different fields, (cf. Bhaumik et al. (2020), Jana and Roy

(2018), Roy and Bhaumik (2018), Roy (2010), Sadeghi and

Zandieh (2011)) successfully. Hesitant fuzzy concept is also

an important tool to represent the decision makers’ hesitance

characteristics and successfully have been applied in differ-

ent aspects (cf. Chen and Xu (2014), Chen et al. (2013), Ro-

driguez et al. (2012), Torra and Narukawa (2009), Yu et al.

(2013)). The major objectives of this work, to explore the

potentiality of the neuro-fuzzy systems in modeling game

phenomenon and to access its behavioural structures through

artificial neural network and logic-gate switching circuits,

are fulfilled. From the model description, our suggested

methodology is unique in the following manners:

(i) This is (probably) the main endeavour to explain fuzzy

matrix game using max fuzzy neuron and min fuzzy neu-

ron in hybrid fuzzy neural network.

(ii) This is the fast approach to combine the hesitant fuzzy

elements using neural network.

(iii) The applied defuzzification method is unique in the sense

that it can be applied easily.

(iv) In future research works, this model can be applied in

marketing, finance, medical sciences, engineering, etc.

The analysis of the results indicates that the rendition of

FGSC-ANN model in game theory would be significantly

improved if the input data are transformed into the normal

or real domain prior to model formulation. The results of the

proposed study highly encourage the researchers with a sug-

gestion that ANN is viable for modeling daily life problems

in the light of game theory.

Abbreviations: IFS:Intuitionistic Fuzzy Set, IFN: Intuitionistic Fuzzy

Number, HFS: Hesitant Fuzzy Set, LPP: Linear Programming Prob-

lem, ANN: Artificial Neural Network, TSK: Takagi-Sugeno-Kang,

FGSC-ANN: Fuzzy logic Gate Switching Circuit oriented Artificial

Neural Network
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