
Fuzzy Model based recognition of handwritten Hindi characters

M. Hanmandlu, O.V. Ramana Murthy Vamsi Krishna Madasu

Department of Electrical Eng., I.I.T. Delhi, India School of Eng. Systems, QUT, Australia

mhmandlu@ee.iitd.in v.madasu@qut.edu.au

Abstract

This paper presents the recognition of handwritten

Hindi Characters based on the modified exponential

membership function fitted to the fuzzy sets derived

from features consisting of normalized distances

obtained using the Box approach. The exponential

membership function is modified by two structural

parameters that are estimated by optimizing an

objective function that includes the entropy and error

function. A Reuse Policy that provides guidance from

the past policies is utilized to improve the

reinforcement learning. This relies on the past errors

exploiting the past policies. The Reuse Policy improves

the speed of convergence of the learning process over

the strategies that learn without reuse and combined

with the use of the reinforcement learning, there is a

25-fold improvement in training. Experimentation is

carried out on a database of 4750 samples. The overall

recognition rate is found to be 90.65%.

1. Introduction

Devanāgarī is an abugida script which forms the

basis for several Indian languages, including Sanskrit,

Hindi, Marathi, etc. It is written and read from left to

right. Hindi characters based on the Devanāgarī script

are distinguished by the presence of matras in addition

to main characters. Matras are dependent vowels used

for representing a vowel sound that is not inherent to

the consonants. Therefore, algorithms developed for

roman scripts cannot be applied to Indian scripts. Many

OCRs for Indian scripts have been reported in

[1,2,3,4,5]. However, very few of these have attempted

the handwritten Hindi text consisting of composite

characters that involve both the main characters and

matras. In this paper, we present a recognition system

specifically addressing the handwritten Hindi

characters. However, the proposed recognition scheme

is applicable to Hindi words as well after their

decomposition into individual components.

Printed Devanāgarī character recognition is

attempted based on Kohenen Neural Network (KNN)

and Neural Networks [4, 1, 5]. These results are

extended to Bangla [5], which also has the header line

like Hindi. Structural features like concavities and

inter-sections are used as features. A similar approach

is tried for Gujarati in [2] with limited success.

Reasonable results are reported for Gurumukhi script

[4]. Preliminary results are also available in the

literature on the recognition of two popular scripts in

south India – Tamil and Kannada [2].

Unlike English and other Roman scripts, Hindi has

a few, if any, commercial OCR renders; and the ones

that have products provide only the custom enterprise

solutions. Chaudhuri and Pal [5] have developed a

Devanāgarī OCR system which being marketed as a

custom solution is not yet available as an off the shelf

product. The basic components of the system are

described in the literature [5, 10]. After word and

character segmentation, a feature based tree classifier is

used to recognize the basic characters. Error detection

and correction for the OCR based on the dictionary

search has led to the recognition accuracy of 91.25% at

the word level and 97.18% at the character level on

clean images.

Bansal [4], has designed a Devanāgarī text

recognition system by integrating knowledge sources,

features of characters such as horizontal zero crossings,

moments, aspect ratios, pixel density in nine zones,

number, and position of vertex points, with structural

descriptions of characters. These are used to classify

characters and perform recognition. On printed

Devanāgarī recognition rates of approximately 70%

without any post-processing and 88% correct

recognition with the help of a word dictionary are

reported. Both of the above OCR systems require vast

number of training samples to achieve an acceptable

level of performance.

In [11], Hindi words are identified from bilingual or

multilingual documents based on features of the

Devanāgarī script using Support Vector Machines in

the first step. Identified words are then segmented into

Digital Image Computing Techniques and Applications

0-7695-3067-2/07 $25.00 © 2007 IEEE
DOI 10.1109/DICTA.2007.82

454

individual characters in the next step, where the

composite characters are identified and further

segmented based on the structural properties of the

script and statistical information. Segmented characters

are recognized using generalized Hausdorff image

comparison (GHIC) and post processing is undertaken

to improve the performance. The OCR system is

applied on a complete Hindi–English bilingual

dictionary and a set of ideal images is extracted from

the Hindi documents in PDF format. The recognition

accuracy has attained a figure of 88% for noisy images

and 95% for ideal images.

Sinha and Mahabala [6] attempt to recognize

Devanāgarī automatically according to their pattern

analysis system. They choose 26 symbols and extract

the structural information from the characters.

However, their study is limited by the sample size and

it couldn’t achieve any quantitative recognition rate.

The work of [12] is conceptually an extension by Sinha

and Mahabala, In that they employ a more

sophisticated thinning algorithm, a large set of

characters, a more computer suitable feature extraction

method, and an exhaustive experimental recognition

test aiming at a practical level of automated Devanāgarī

recognition.

In [13] simple structural features such as a full

vertical bar, a horizontal line, diagonal lines in both the

orientations, (e.g. in "p" and "r"), circles of varying

radii, semicircles of varying radii and orientations are

used. A simple feed-forward back propagation network

with a single hidden layer is used. The network accepts

23 inputs, corresponding to 23 structural features in the

feature vector. Using 11 hidden neurons, and 31 output

neurons, where each output corresponds to a core

/basic character in the subset of the Devanāgarī

character set. A recognition rate of 76% is reported.

In [14] a combination of classifiers capturing both

on-line and offline features is described yielding a

classification accuracy of 86.5% with no rejects. The

combination consists of hidden Markov model and

nearest neighbor classifiers. The on-line features are

dx, dy, sin(θ), cos(θ) for each sample point; curvature

and orientation for each critical point. The off-line

features are stroke direction histogram for each box of

5x5 grid; dx and dy from beginning to end of each

stroke; centre of gravity of each stroke.

Reinforcement learning [18] is a widely used tool to

solve different tasks in different domains. By domain

we mean the rules that define how the actions of the

learning agent influence the environment, i.e. the state

transition function. By task we mean the specific

problem that the agent is trying to solve in the domain.

The goal of this work is to study how action policies

that are learned to solve a defined set of tasks can be

used to solve a new and previously unseen task. In this

work, we design a new Learning that implements the

Reuse Policy ideas [19, 20] efficiently. This learning

allows us to reuse the past errors to learn a new one,

improving the results of learning from scratch. The

improvement is achieved without prior knowledge.

We will now discuss the concept of Reuse Policy. A

past policy provides a bias to guide the exploration of

the environment and speed up the learning of a new

action policy. The success of this bias depends on

whether the past policy is “similar” to the actual policy

or not. In this paper we make use of this concept in

devising a new Reinforcement learning algorithm that

reuses the past errors to bias the learning of a new one.

2. Pre-processing

The scanned image is first converted into binary

image containing ‘0’ and ‘1’ pixels only. Pre-

processing techniques like thinning [9], slant correction

and smoothing are then applied [17]. After performing

these techniques, there would be extra ‘0’s on all four

sides of a character. To standardize the characters,

extra rows and columns containing only zeros are

removed from all four sides of the character.

Depending on the Aspect Ratio (AR) a standard size

is chosen. Aspect ratio is the ratio of height to width of

the image. All the characters are therefore fitted in a

standard window size of 42x32.

The recognition system has to be validated on the

generated database as the standard database is not

available at the moment. Hence, the need arises for a

large database of handwritten Hindi Characters and

matras. The database of totally unconstrained

handwritten characters and matras is therefore created

using the services of a large number of writers. Many

different writing styles are present with different sizes

and stroke widths. The database also includes some

samples that are difficult to be recognized even by

humans. The database is divided into two disjoint sets,

one for training and the other for testing.

The training set captures as many variations and

different styles of character / character classes as

possible. In the training phase, we make use of the

concept by which each feature when collected over

several samples gives rise to a fuzzy set. We then

construct a knowledge base (KB) which consists of

means and variances of features of all fuzzy sets. The

features extracted from the training set are stored in the

knowledge base and at the recognition time, used as

reference features for comparing with those of an

unknown character or character.

455

3. Coarse Classification of Characters

Devanāgarī characters can be classified into three

major categories based on the presence of the vertical

bar, namely, the end-bar characters; the middle-bar

characters; and the characters without any bar line.

To determine the presence and position of a vertical

bar the whole character is divided into 3x3 windows as

shown in Fig. 1. To detect an end bar, the windows 1x3

and 2x3 are examined whether they contain more than

80% of the rows that have at least one black pixel. For

detecting the presence of a middle bar, we similarly

examine the windows 1x2 and 2x2. The rest of the

characters are without a bar.

1x1 1x2 1x3

2x1 2x2 2x3

3x1 3x2 3x3

 (a)

 (b) (c) (d) (e)

Fig. 1: (a) 3x3 window, (b) End-bar (c) middle bar

& (d) Without-bar handwritten characters

Sub Classification I-a

End bar characters are further classified into two

categories based on whether the vertical bar and the

rest of the character are connected or not to the bar.

� Not connected: xxxx, ’k’k’k’k, .k.k.k.k.

� Connected components: eeee, t t t t, rrrr, yyyy, uuuu, pppp, llll, cccc, JJJJ,

KKKK, ; ; ; ;, iiii, vvvv, /k/k/k/k, FkFkFkFk, HkHkHkHk.

 (a) (b) (c)

Fig. 2: (a) original image of character (b) character

image after removal of header line (c) contour image

To detect whether the components of a character are

connected or not, the header line of the character is

removed by whitening as shown in Fig. 2(b). The

position of the first black pixel (from the top left

corner) of the character without the header line is

passed on to the contour tracing function. The function

returns the first contour of the character as shown in

Fig. 2(c). Then the total number of black pixels is

calculated both in the contour image and the character

image without the header line. If the total number of

pixels of the character image is greater than the total

number of pixels of the contour image then the

components of the character under test are not

connected as in Fig. 2(b).

Sub Classification I-b

The connected-components characters with end bar

are further partitioned into two categories according to

the height of the (3/4)
th

part of the characters.

� More than 80% black rows: llll, {k{k{k{k, KKKK, vvvv, >>>>, [k[k[k[k.

� Less than 80% black rows: tttt, rrrr, uuuu, pppp, yyyy, cccc, ;;;;, iiii,

/k/k/k/k, FkFkFkFk, HkHkHkHk, eeee, oooo.

First (3/4)
th

part of the character is tested to see whether

it contains more than 80% of the rows having at least

one black pixel as shown in Fig. 3(b). If so, it means

that the characters belong to {l, {k, K, v, >, [k}.

otherwise to t, r, u, p, y, c, ;, i, /k, Fk, Hk, e, o.

 (a) (b)

Fig. 3: (a) original character image ‘llll’ (b) Three-

fourth

portion of the character image

Classification II

Characters without vertical bars are further

partitioned into five categories.

� Open to the right side: gggg, VVVV

� Open to both the right and left sides: MMMM

� Closed or almost closed at the bottom: BBBB, <<<<

� Partially open to the right: nnnn

� Remaining characters: jjjj, bbbb, NNNN, mmmm

For further partitioning of without-bar characters,

firstly, the whole character is divided into 3x3 windows

as shown in Fig. 1. Characters g and V can be identified

if the window 3x1 contains more than 80% of the rows

with at least one black pixel. To detect the character

“M”, we examine the window 3x3 for 80% of the rows

that are black as in Fig. 1(d). For detecting the

characters “B” and “<”, we similarly check the windows

3x1 and 3x3. If the sum of pixels in the last row of the

character image is less than three and if the window

3x3 has more than 80% of the rows with at least one

black pixel, then the identity of the character is taken as

“n” as shown in Fig. 1(e).

4. Feature Extraction

For extracting the features, the Box approach

presented in [15, 16] is used here. This approach

requires the spatial division of the character image. The

major advantage of this approach stems from its

robustness to small variations and ease of

implementation.

Each character image is divided into 24 boxes so

that the portions of a character will be in some of these

boxes. The choice of the box size is discussed in [21].

456

There could be some boxes that are empty, as shown in

Fig. 4 in which character m. is enclosed in the 6x4 grid

for illustration. However, all boxes are considered for

analysis in a sequential order. The choice of number of

boxes is arrived at by experimentation. By considering

the bottom left corner as the absolute origin (0,0), the

coordinate distance (Vector Distance) for the k
th
 pixel

in the b
th
 box at location (i,j) is computed as:

22 1 / 2()kbd ji= + (1)

Fig. 4: Illustration of the box method on a Hindi

character

By dividing the sum of distances of all black pixels

present in a box with their total number, a Normalized

Vector Distance (γb) for each box is obtained as:

1

1
,

bn
b

b k

k

d
N

γ
=

= ∑ b=1,2,…..24 (2)

where, N is total number of pixels in a box.

These vector distances constitute a set of features

based on distances. Therefore, 24 γb’s corresponding to

24 boxes will constitute a feature set. However, for

empty boxes, the feature value will be zero.

5. Recognition Scheme

In order to recognize the unknown character set

using the fuzzy logic, an exponential variant of fuzzy

membership function is selected. The fuzzy

membership function is constructed using the

normalized vector distance.

The concept of a fuzzy set arising from a set of

features is as follows. If there are ‘n’ possible features

for each character and ‘m’ number of character samples

then a particular feature from each of the samples

forms a fuzzy set. The means and variances are

computed for each of the 24 fuzzy sets and these

constitute the knowledge base (KB). Here, we use the

training dataset which contains reference characters for

generating the KB.

5.1 Creation of KB & Membership Function

The means mi and variance σ2
i for each of the 24

fuzzy sets of KB are computed from the formulae:

1

1 iN

i ij

j

m f
n =

= ∑ ;
2 2

1

1
()

iN

i ij i

ji

f m
N

σ
=

= −∑ (3)

where,

 Ni is the number of samples in the i
th
 set

 fij stands for the j
th

feature value of reference

 character in the i
th
 fuzzy set and i = 1, 2…..24

For an unknown feature vector x, the 24 features are

extracted using the Box method. The membership

function is chosen as,

2

i i

i

i

x m

x e σµ
− −

= (4)

where, xi is the i
th

feature of the unknown character.

If all xi’s are close to mi’s which represent the

known statistics of a reference character, then the

unknown character is identified with this known

character because all membership function values are

close to 1 and hence the average membership function

is almost 1. Let, mj(r), σ
2
j(r) belong to the r

th
reference

character with r = 1, 2, 3 …36, we then calculate the

average membership as,

2

()

()

1

1
()

j j

j

x m r

c
r

av

j

r e
c

σ
µ

− −

=

= ∑ (5)

where, c denotes for the number of fuzzy sets.

Then x∈r if µav(r) is the maximum for r=1, 2 …36.

It is observed that some of the fuzzy sets have a very

small variance and others, a large variance. This

spurred the choice of a new membership function in

[16] involving the structural parameters s & t given by,

' 2 '/i ix

xi e
σµ −∆= (6)

where,

2 ' 2 2(1)
i i

t tσ σ= + + &
' 2(1)i i

i i i

x s s x

x x m

∆ = − + ∆

∆ = −

The new mean and the new variance are functions of

the mean and variance of the reference fuzzy set. Thus

the structural parameters s, t models the variations in

the mean and variance overall 24 boxes. The choice of

these parameters has reasoning. That is, if s=1, '

ix∆ =

∆xi. Thus, s would be perturbed around 1 to reflect

changes in the means. Similarly, if t=-1, then 2'

iσ = 2

iσ

thus, t would reflect the changes in the variances.

The scanned image is enclosed in a 42x32 window

which is divided into 24 boxes, each of size 6x4. The

selected box size was determined after extensive

experimentation with different box sizes (see [21]).

457

5.2 Estimation of Structural Parameters

An objective function needs to be defined for the

estimation of these parameters by optimization. The

average membership function of any character must be

close to 1, when its features are fit into the statistics of

a known character. We therefore define the error

function as, []21 1 JJ −= (7)

where, 1

1
j

c

xC
j

J µ
=

= ∑

In order to reduce the uncertainty in s and t, we define

the entropy E as,

 ln (1) ln(1)
j j j jx x x xE µ µ µ µ = − + − − ∑ (8)

The objective function to be minimized is therefore

chosen as the product of (7) and (8),

1.JEG = (9)

We now learn the parameters s and t, as follows

tGtt

sGss

oldnew

oldnew

∂∂−=

∂∂−=

ε

ε
 (10)

The learning factor ε (epsilon) is chosen as 0.01. The

initial values of s and t are taken as 3 and 5

respectively.

5.3 Reinforcement Learning

In order to speed up the convergence of parameters

using the gradient descent learning, we will use the

reinforcement learning by which the past information

of the objective function is utilized. However this

requires a ‘re-use policy’ of how to use the past

information. For this we will define the re-use policy in

the following way:

Definition: Reusing a defined past policy requires

integrating the knowledge of the past policy into the

current learning process.

Our approach is to bias the exploratory process of

the new policy with the past one. In our previous work

[16], ε was taken as a constant. In this work the policy

reusage concept is used to derive new learning. Instead

of taking ε as constant, we make it a variable

depending on the past errors. We have used here the

sigmoid function for ε in which the cumulative of the

past errors is biased by the term 2k and the slope or

gain of the function is changed by the term 1k .

1 2()

1

1
k err k

e
ε

− +
=

∑+
 (11)

where, old newerr G G G= − = ∆ .

In our work, the initial values of k1 and k2 are taken to

be 0.5 which are then adjusted using the reuse policy.

The steps in the algorithm are as follows:

Algorithm:

1. If err∑ is increasing, then ε must decrease.

 So 1k should increase.

2. If err∑ is decreasing, then ε need not change.

 So 2k should increase.

3. If err∑ is constant, then ε should not change.

 So 1k and 2k are not changed.

The values of 1k and 2k have been changed with an

increment of 0.1 while executing the algorithm.

6. Results

The overall recognition rate of all 36 Hindi

characters considered together is found to be 69.78%.

As the character set is very large as compared to

character set a snapshot of this set is shown in Fig. 5, it

is impossible to get correct classification with only one

classifier in view of the fact that some of the characters

have similar shapes.

 Fig. 5: Snapshot of Hindi character samples

458

There is a need for coarse classification based on

structural information to improve the recognition

results. This is accomplished in two steps: coarse

classification followed by the final recognition. The

three categories of course classification are:

1. Classification Based on Middle bar: dddd, QQQQ

2. Classification based on the right vertical bar

based on the following subdivisions -

� Vertical bar and the rest of the character not

connected to it: xxxx, ’k’k’k’k, .k.k.k.k

� Characters with a horizontal middle bar: >>>>,

eeee, llll, vvvv, HkHkHkHk

� Characters (no head line) with the upper top

left open: tttt, rrrr, yyyy, uuuu, pppp, cccc, KKKK

� Remaining characters: JJJJ, ;;;;, iiii, /k/k/k/k, FkFkFkFk, [k[k[k[k, ?k?k?k?k, ,,,,

3. Characters without any vertical bar consisting of

following sub-classes:

� Open to the right side: gggg, VVVV

� Open to both the right and left sides: MMMM

� Closed or almost closed at the bottom: BBBB, <<<<

� Partially open to the right: nnnn

� Remaining characters: jjjj, bbbb, NNNN, mmmm

Coarse segmentation is initially made to obtain

broad classes like characters having middle bar, end

bar etc, as explained above. The characters within each

broad class are then further classified into individual

characters. Thus the recognition results are obtained by

performing a coarse classification followed by fuzzy

based classification.

We implemented the proposed recognition method

with a variable learning factor ε determined from the

reinforcement algorithm. The convergence of structural

parameters s and t for constant ε is shown in Fig. 6 and

due to variable ε is shown in Fig. 7. The convergence

of E is shown in Fig.8. Clearly it can be seen that there

is a 25 fold improvement in the speed of convergence

during training of s and t.

0 500 1000 1500 2000 2500 3000 3500 4000 4500
1

1.5

2

2.5

3
Convergence of parameter s

Number of iterations

0 500 1000 1500 2000 2500 3000 3500 4000 4500
5

5.2

5.4

5.6

5.8
Convergence of parameter t

Number of iterations

Fig. 6: The case where ε is constant

Table 1 shows learning parameters, structural

parameters and recognition rates of Hindi characters.

The overall recognition rate is increased to 90.65%.

Barring two characters most of the characters have RR

greater than 80%, whereas 12 characters have RR in

between 80 to 90%. The rest have more than 90%.

Table 1: Recognition rates after coarse classification

Hindi

Character

k1

k2

s

t

RR

(%)

 22.9 8.1 1.1106 5.80 92%

15.7 5.3 1.03 5.6168 92%

 7.9 3.1 1.0552 5.4982 85.19%

26.5 8.5 1.101 5.8552 94.87%

 9.5 3.5 1.0524 5.5836 92.59%

26.6 9.4 1.1195 5.9638 86.21%

 12.7 4.3 1.1267 5.5956 75.00%

27.9 9.1 1.0334 5.659 81.82%

25.6 9.4 1.0606 5.7144 93%

 - - - - 100%

21.4 7.6 1.0519 5.6637 91.67%

 21.6 7.4 1.0961 5.7739 92.31%

25.3 11.7 1.0038 5.672 85.71%

 11.6 4.4 1.0874 5.5843 95%

 18.5 6.5 1.0984 5.7125 84%

12.9 4.1 1.0678 5.5786 85%

12.2 4.8 1.1106 5.6583 90%

4.2 1.8 1.2152 5.4702 85.71%

 19 6 1.0745 5.8097 96.55%

12.7 4.3 1.0836 5.5696 90.63%

 15.8 5.2 1.0807 5.7051 92%

15.2 5.8 1.133 5.6246 84.62%

 8.7 3.3 1.0446 5.5188 95.83%

- - - - 100%

 6.5 2.5 1.0835 5.5496 94.44%

25.8 9.2 1.0788 5.8175 100%

 9.2 3.8 1.0528 5.5234 76.92%

21.4 7.6 1.0374 5.6341 88%

 13.6 4.4 1.0676 5.6185 90%

12.3 4.7 1.07 5.5892 96.97%

 20.3 6.7 1.0994 5.7622 85.71%

11.1 3.9 1.0106 5.5387 88%

 15.4 5.6 1.1008 5.6786 85%

6.5 2.5 1.1144 5.5194 100%

 18.9 6.1 1.0577 5.668 94.44%

15.4 5.6 1.0726 5.6814 94.87%

Overall Recognition Rate (RR) 90.64%

459

Table 2: Recognition rates after Mismatch

considerations

Hindi

Character

k1

k2

s

t

RR

(%)

 13.8 12.7 1.244 6.368 70.83%

 12.5 11 1.0376 6.4578 100%

 14.4 10.9 1.0651 6.4975 85.19%

 13.5 12.3 1.1369 6.5147 89.74%

 11.7 10.5 1.2314 6.491 92.59%

 13 13.7 1.2137 6.4222 100%

 14.6 11.3 1.1294 6.6211 60.71%

 13.5 11.3 1.0669 6.5004 78.79%

 14.1 13 1.0972 6.4738 96.67%

 - - - - 100%

 12l.1 10.4 1.136 6.4517 88.89%

 13 10.8 1.2542 6.4098 92.31%

 11.1 11.6 1.0261 6.4193 85.71%

 13 12.8 1.1529 6.5148 95%

 11.8 12.8 1.1195 6.5199 84.62%

 11.7 10.1 1.0881 6.5029 100%

 12.5 14.9 1.1945 6.4783 83.78%

 11 12.3 1.115 6.4796 85.71%

 13 13.3 1.1949 6.4613 96.55%

 12 13.7 1.1849 6.5653 96.77%

 14.5 13.7 1.1799 6.5149 90%

 15.4 16.6 1.1289 6.5388 84.62%

 10.3 9.6 1.1082 6.4856 95.83%

 - - - - 100%

 12.8 11.1 1.1067 6.5295 94.44%

 12.6 12.7 1.1615 6.4477 100%

 10.2 10.9 1.0952 6.4716 84.62%

 11.8 11.9 1.0593 6.4839 84%

 12.2 10.6 1.228 6.4132 93.33%

 12.5 11.8 1.0668 6.5913 96.97%

 15.1 14.7 1.1625 6.5009 100%

 12.3 9 1.0813 6.5267 91.67%

 11.9 12.3 1.2172 6.4206 83.78%

 13.1 12.1 1.117 6.5298 100%

 14.8 13.2 1.0539 6.486 100%

 14 11.9 1.1808 6.5651 96.88%

Overall Recognition Rate (RR) 91.3172%

0 50 100 150 200 250 300 350 400
0.5

1

1.5

2

2.5

3
Convergence of parameter s

Number of iterations

0 50 100 150 200 250 300 350 400
5

5.2

5.4

5.6

5.8
Convergence of parameter t

Number of iterations

Fig 7: The case where ε is variable

0 50 100 150 200 250 300 350 400
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
Convergence of parameter epsilon

Number of iterations

 Fig. 8 Convergence of ε

Based on the tolerance sets obtained we now

evaluate a second performance criterion to fine tune the

recognition rate. The image is now divided into 7x4

instead of 6x4. We chose this particular size because of

it being the second best next to 6x4. Now again the

recognition rates are calculated this time comparing

each character with only its mismatched characters.

The overall recognition rate is increased to 91.3172%

7. Conclusions

As the recognition of Hindi characters is a daunting

task, coarse classification is necessitated. The coarse

classification of Hindi characters is undertaken by

making use of structural features like the location of

vertical bar, connectivity of character components, and

which side the characters are open to etc. The

normalized distance used as a feature is found to be

effective. A modified membership function is used to

represent the fuzzy sets arising out of features of

samples.

The reinforcement learning was applied for training

the structural parameters resulting in a 25-fold

improvement in the speed of convergence. In document

processing, where computing time is a major factor,

this learning may be helpful. The overall recognition

rate with coarse classification is found to be 90.65%.

460

Acknowledgement

The first two authors gratefully acknowledge the

financial support of Department of Science &

Technology, Government of India for this work.

8. References

[1] S. Khedekar, V. Ramanaprasad, S. Setlur, and V.

Govindaraju, “Text - Image Separation in Devanāgarī

Documents”, Proc. Seventh International Conference

on Document Analysis and Recognition, 2003, pp.

1265-1269.

[2] R. Bajaj, L. Dey, and S. Chaudhury, “Devnagari

character recognition by combining decision of multiple

connectionist classifiers”, Sadhana, 27(1), 2002, pp.

59–72.

[3] S. Antanani and L. Agnihotri, “Gujarati character

recognition”, Proc. Fifth International Conference on

Document Analysis and Recognition, 1999, pp. 418–

421.

[4] V. Bansal and R. M. K. Sinha, “A Devanāgarī OCR and

a brief review of OCR research for Indian scripts”,

Proc. STRANS01, 2001.

[5] B.B. Chaudhuri and U. Pal, “An OCR system to read

two Indian language scripts: Bangla and Devanāgarī”,

Proc. Fourth IEEE International Conference on

Document Analysis and Recognition, 1997, pp. 1011–

1015.

[6] R.M.K. Sinha and H.N. Mahabala, “Machine

recognition of Devanāgarī script”, IEEE Transactions

on Systems, Man and Cybernetics, 9(8), 1979, pp. 435-

441.

[7] Y.B. Mahdy and M.T. El-Melegy, “Encoding patterns

for efficient classification by Nearest Neighbor

classifiers and Neural Networks with application to

handwritten Hindi character recognition”, Proc. Third

International Conference on Signal Processing, pp.

1362-1365.

[8] H.Y.Y. Sanossian, “Feature Extraction Technique for

Hindi Characters”, Proc. IEEE Workshop on Neural

Networks for Signal Processing VIII, 1998, pp. 524-

530.

[9] Y. Suganuma, “Learning structures of visual patterns

from single instances”, Artificial Intelligence, 50(1),

1991, pp. 1–36.

[10] B. B. Chaudhuri and U. Pal, “Skew angle detection of

digitized Indian script documents”, IEEE Transactions

on Pattern Analysis and Machine Intelligence, 19(2),

1997, pp. 182–186.

[11] H. Ma and D. Doermann,” Adaptive Hindi OCR using

generalized Hausdorff image comparison”, ACM

Transactions on Asian Language Information

Processing, 2(3), 2003, pp. 193–218.

[12] K. Jayanthi, A. Suzuki, H. Kanai, Y. Kawazoe, M.

Kimura and K. Kido, “Devanāgarī Character

Recognition Using Structure Analysis”, Proc. IEEE-

TENCON, 1989, pp. 363-366.

[13] P. Iyer, A. Singh and S. Sanyal, “Optical Character

Recognition System for Noisy Images in Devanāgarī

Script”, Proc. Workshop on OCR & DS-2005, 2005.

[14] S.D. Connell, R.M.K. Sinha and A.K. Jain,

“Recognition of Unconstrained On-line Devanāgarī

Characters”, Proc. International Conference on Pattern

Recognition, 2000, pp. 368-371.

[15] M. Hanmandlu, K.R.M. Mohan, S. Chakraborty, S.

Goyal and D. Roy Choudhury, “Unconstrained

handwritten character recognition based on fuzzy

logic”, Pattern Recognition, 36(3), 2003, pp. 603-623.

[16] M. Hanmandlu, M.H.M. Yusof. And V.K. Madasu,

“Off-line signature verification and forgery detection

using fuzzy modeling”, Pattern Recognition, 38(3),

2005, pp. 341-356.

[17] M. Hanmandlu and O. V. Ramana Murthy, “Fuzzy

logic based handwritten Hindi character Recognition”,

Proc. International Conference on Cognition and

Recognition, 2005.

[18] R. S. Sutton and A. G. Barto. Reinforcement

Learning: An Introduction. MIT Press, Cambridge,

Massachusetts, 1998.

[19] C. J. C. H. Watkins. Learning from Delayed Rewards,

PhD Thesis, King’s College, Cambridge, UK, 1989.

[20] F. Fern´andez and M. Veloso. Exploration and policy

reuse. Technical Report CMU-CS-05-172, School of

Computer Science, Carnegie Mellon University, 2005.

[21] M. Hanmandlu, O. V. Ramana Murthy, “Fuzzy Model

based recognition of handwritten numerals”, Pattern

Recognition, 40(6), 2007, pp.1840-1854.

461

