
Fuzzy Model based recognition of handwritten Hindi characters  
 

 

M. Hanmandlu, O.V. Ramana Murthy    Vamsi Krishna Madasu 

Department of Electrical Eng., I.I.T. Delhi, India School of Eng. Systems, QUT, Australia 

mhmandlu@ee.iitd.in      v.madasu@qut.edu.au  

 

 

Abstract 
 

This paper presents the recognition of handwritten 

Hindi Characters based on the modified exponential 

membership function fitted to the  fuzzy sets derived 

from features consisting of normalized distances 

obtained using the Box approach. The exponential 

membership function is modified by two structural 

parameters that are estimated by optimizing an 

objective function that includes the entropy and error 

function. A Reuse Policy that provides guidance from 

the past policies is utilized to improve the 

reinforcement learning. This relies on the past errors 

exploiting the past policies. The Reuse Policy improves 

the speed of convergence of the learning process over 

the strategies that learn without reuse and combined 

with the use of the reinforcement learning, there is a 

25-fold improvement in training. Experimentation is 

carried out on a database of 4750 samples. The overall 

recognition rate is found to be 90.65%. 

 

1. Introduction 
 

Devanāgarī is an abugida script which forms the 

basis for several Indian languages, including Sanskrit, 

Hindi, Marathi, etc. It is written and read from left to 

right. Hindi characters based on the Devanāgarī script 

are distinguished by the presence of matras in addition 

to main characters. Matras are dependent vowels used 

for representing a vowel sound that is not inherent to 

the consonants. Therefore, algorithms developed for 

roman scripts cannot be applied to Indian scripts. Many 

OCRs for Indian scripts have been reported in 

[1,2,3,4,5]. However, very few of these have attempted 

the handwritten Hindi text consisting of composite 

characters that involve both the main characters and 

matras. In this paper, we present a recognition system 

specifically addressing the handwritten Hindi 

characters. However, the proposed recognition scheme 

is applicable to Hindi words as well after their 

decomposition into individual components.  

Printed Devanāgarī character recognition is 

attempted based on Kohenen Neural Network (KNN) 

and Neural Networks [4, 1, 5]. These results are 

extended to Bangla [5], which also has the header line 

like Hindi. Structural features like concavities and 

inter-sections are used as features. A similar approach 

is tried for Gujarati in [2] with limited success. 

Reasonable results are reported for Gurumukhi script 

[4]. Preliminary results are also available in the 

literature on the recognition of two popular scripts in 

south India – Tamil and Kannada [2].  

Unlike English and other Roman scripts, Hindi has 

a few, if any, commercial OCR renders; and the ones 

that have products provide only the custom enterprise 

solutions. Chaudhuri and Pal [5] have developed a 

Devanāgarī OCR system which being marketed as a 

custom solution is not yet available as an off the shelf 

product. The basic components of the system are 

described in the literature [5, 10]. After word and 

character segmentation, a feature based tree classifier is 

used to recognize the basic characters. Error detection 

and correction for the OCR based on the dictionary 

search has led to the recognition accuracy of 91.25% at 

the word level and 97.18% at the character level on 

clean images.  

Bansal [4], has designed a Devanāgarī text 

recognition system by integrating knowledge sources, 

features of characters such as horizontal zero crossings, 

moments, aspect ratios, pixel density in nine zones, 

number, and position of vertex points, with structural 

descriptions of characters. These are used to classify 

characters and perform recognition. On printed 

Devanāgarī recognition rates of approximately 70% 

without any post-processing and 88% correct 

recognition with the help of a word dictionary are 

reported. Both of the above OCR systems require vast 

number of training samples to achieve an acceptable 

level of performance. 

In [11], Hindi words are identified from bilingual or 

multilingual documents based on features of the 

Devanāgarī script using Support Vector Machines in 

the first step. Identified words are then segmented into 
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individual characters in the next step, where the 

composite characters are identified and further 

segmented based on the structural properties of the 

script and statistical information. Segmented characters 

are recognized using generalized Hausdorff image 

comparison (GHIC) and post processing is undertaken 

to improve the performance. The OCR system is 

applied on a complete Hindi–English bilingual 

dictionary and a set of ideal images is extracted from 

the Hindi documents in PDF format. The recognition 

accuracy has attained a figure of 88% for noisy images 

and 95% for ideal images.  

Sinha and Mahabala [6] attempt to recognize 

Devanāgarī automatically according to their pattern 

analysis system. They choose 26 symbols and extract 

the structural information from the characters. 

However, their study is limited by the sample size and 

it couldn’t achieve any quantitative recognition rate. 

The work of [12] is conceptually an extension by Sinha 

and Mahabala, In that they employ a more 

sophisticated thinning algorithm, a large set of 

characters, a more computer suitable feature extraction 

method, and an exhaustive experimental recognition 

test aiming at a practical level of automated Devanāgarī 

recognition.  

In [13] simple structural features such as a full 

vertical bar, a horizontal line, diagonal lines in both the 

orientations, (e.g. in "p" and "r"), circles of varying 

radii,  semicircles of varying radii and orientations are 

used. A simple feed-forward back propagation network 

with a single hidden layer is used. The network accepts 

23 inputs, corresponding to 23 structural features in the 

feature vector. Using 11 hidden neurons, and 31 output 

neurons, where each output corresponds to a core 

/basic character in the subset of the Devanāgarī 

character set. A recognition rate of 76% is reported.  

In [14] a combination of classifiers capturing both 

on-line and offline features is described yielding a 

classification accuracy of 86.5% with no rejects. The 

combination consists of hidden Markov model and 

nearest neighbor classifiers. The on-line features are 

dx, dy, sin(θ), cos(θ) for each sample point; curvature 

and orientation for each critical point. The off-line 

features are stroke direction histogram for each box of 

5x5 grid; dx and dy from beginning to end of each 

stroke; centre of gravity of each stroke. 

Reinforcement learning [18] is a widely used tool to 

solve different tasks in different domains. By domain 

we mean the rules that define how the actions of the 

learning agent influence the environment, i.e. the state 

transition function. By task we mean the specific 

problem that the agent is trying to solve in the domain. 

The goal of this work is to study how action policies 

that are learned to solve a defined set of tasks can be 

used to solve a new and previously unseen task.  In this 

work, we design a new Learning that implements the   

Reuse Policy ideas [19, 20] efficiently. This learning 

allows us to reuse the past errors to learn a new one, 

improving the results of learning from scratch. The 

improvement is achieved without prior knowledge.  

We will now discuss the concept of Reuse Policy. A 

past policy provides a bias to guide the exploration of 

the environment and speed up the learning of a new 

action policy. The success of this bias depends on 

whether the past policy is “similar” to the actual policy 

or not. In this paper we make use of this concept in 

devising a new Reinforcement learning algorithm that 

reuses the past errors to bias the learning of a new one. 

 

2. Pre-processing 
 

The scanned image is first converted into binary 

image containing ‘0’ and ‘1’ pixels only. Pre-

processing techniques like thinning [9], slant correction 

and smoothing are then applied [17]. After performing 

these techniques, there would be extra ‘0’s on all four 

sides of a character. To standardize the characters, 

extra rows and columns containing only zeros are 

removed from all four sides of the character.  

Depending on the Aspect Ratio (AR) a standard size 

is chosen. Aspect ratio is the ratio of height to width of 

the image. All the characters are therefore fitted in a 

standard window size of 42x32. 

The recognition system has to be validated on the 

generated database as the standard database is not 

available at the moment. Hence, the need arises for a 

large database of handwritten Hindi Characters and 

matras. The database of totally unconstrained 

handwritten characters and matras is therefore created 

using the services of a large number of writers. Many 

different writing styles are present with different sizes 

and stroke widths. The database also includes some 

samples that are difficult to be recognized even by 

humans. The database is divided into two disjoint sets, 

one for training and the other for testing.  

The training set captures as many variations and 

different styles of character / character classes as 

possible. In the training phase, we make use of the 

concept by which each feature when collected over 

several samples gives rise to a fuzzy set. We then 

construct a knowledge base (KB) which consists of 

means and variances of features of all fuzzy sets. The 

features extracted from the training set are stored in the 

knowledge base and at the recognition time, used as 

reference features for comparing with those of an 

unknown character or character.  
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3. Coarse Classification of Characters  
 

Devanāgarī characters can be classified into three 

major categories based on the presence of the vertical 

bar, namely, the end-bar characters; the middle-bar 

characters; and the characters without any bar line.  

To determine the presence and position of a vertical 

bar the whole character is divided into 3x3 windows as 

shown in Fig. 1. To detect an end bar, the windows 1x3 

and 2x3 are examined whether they contain more than 

80% of the rows that have at least one black pixel. For 

detecting the presence of a middle bar, we similarly 

examine the windows 1x2 and 2x2. The rest of the 

characters are without a bar. 

 

1x1 1x2 1x3 

2x1     2x2 2x3 

3x1 3x2 3x3 

                                        (a) 

                                    
             (b)             (c)              (d)               (e)  

Fig. 1: (a) 3x3 window, (b) End-bar (c) middle bar 

& (d) Without-bar handwritten characters  

 

Sub Classification I-a 

End bar characters are further classified into two 

categories based on whether the vertical bar and the 

rest of the character are connected or not to the bar.  

� Not connected: xxxx, ’k’k’k’k, .k.k.k.k. 

� Connected components: eeee, t t t t, rrrr, yyyy, uuuu, pppp, llll, cccc, JJJJ, 

KKKK, ; ; ; ;, iiii, vvvv, /k/k/k/k, FkFkFkFk, HkHkHkHk. 

                                                              

     (a)                          (b)                                (c) 

Fig. 2: (a) original image of character (b) character 

image after removal of header line (c) contour image 

 

To detect whether the components of a character are 

connected or not, the header line of the character is 

removed by whitening as shown in Fig. 2(b). The 

position of the first black pixel (from the top left 

corner) of the character without the header line is 

passed on to the contour tracing function. The function 

returns the first contour of the character as shown in 

Fig. 2(c). Then the total number of black pixels is 

calculated both in the contour image and the character 

image without the header line. If the total number of 

pixels of the character image is greater than the total 

number of pixels of the contour image then the 

components of the character under test are not 

connected as in Fig. 2(b). 

Sub Classification I-b 

The connected-components characters with end bar 

are further partitioned into two categories according to 

the height of the (3/4)
th 

part of the characters.  

� More than 80% black rows: llll, {k{k{k{k, KKKK, vvvv, >>>>, [k[k[k[k. 

� Less than 80% black rows: tttt, rrrr, uuuu, pppp, yyyy, cccc, ;;;;, iiii, 

/k/k/k/k, FkFkFkFk, HkHkHkHk, eeee, oooo. 

First (3/4)
th 

part of the character is tested to see whether 

it  contains more than 80% of the rows having at least 

one black pixel as shown in Fig. 3(b). If so, it means 

that the characters belong to {l, {k, K, v, >, [k}. 

otherwise to t, r, u, p, y, c, ;, i, /k, Fk, Hk, e, o. 

 

                                                             

                (a)                       (b) 

Fig. 3: (a) original character image ‘llll’ (b) Three-

fourth
 
portion of the character image 

 

Classification II 

Characters without vertical bars are further 

partitioned into five categories. 

� Open to the right side: gggg, VVVV 

� Open to both the right and left sides: MMMM 

� Closed or almost closed at the bottom: BBBB, <<<< 

� Partially open to the right: nnnn 

� Remaining characters: jjjj, bbbb, NNNN, mmmm 

For further partitioning of without-bar characters, 

firstly, the whole character is divided into 3x3 windows 

as shown in Fig. 1. Characters g and V can be identified 

if the window 3x1 contains more than 80% of the rows 

with at least one black pixel. To detect the character 

“M”, we examine the window 3x3 for 80% of the rows 

that are black as in Fig. 1(d). For detecting the 

characters “B” and “<”, we similarly check the windows 

3x1 and 3x3. If the sum of pixels in the last row of the 

character image is less than three and if the window 

3x3 has more than 80% of the rows with at least one 

black pixel, then the identity of the character is taken as 

“n” as shown in Fig. 1(e). 

 

4. Feature Extraction  
 

For extracting the features, the Box approach 

presented in [15, 16] is used here. This approach 

requires the spatial division of the character image. The 

major advantage of this approach stems from its 

robustness to small variations and ease of 

implementation. 

Each character image is divided into 24 boxes so 

that the portions of a character will be in some of these 

boxes. The choice of the box size is discussed in [21]. 

456



There could be some boxes that are empty, as shown in 

Fig. 4 in which character m. is enclosed in the 6x4 grid 

for illustration. However, all boxes are considered for 

analysis in a sequential order. The choice of number of 

boxes is arrived at by experimentation. By considering 

the bottom left corner as the absolute origin (0,0), the 

coordinate distance (Vector Distance) for the k
th
 pixel 

in the b
th
 box at location (i,j) is computed as: 

  
22 1 / 2( )kbd ji= +              (1) 

 

 
Fig. 4: Illustration of the box method on a Hindi 

character 

 

By dividing the sum of distances of all black pixels 

present in a box with their total number, a Normalized 

Vector Distance (γb) for each box is obtained as: 

 
1

1
,

bn
b

b k

k

d
N

γ
=

= ∑  b=1,2,…..24             (2) 

where,  N is total number of pixels in a box.  

These vector distances constitute a set of features 

based on distances. Therefore, 24 γb’s corresponding to 

24 boxes will constitute a feature set. However, for 

empty boxes, the feature value will be zero.  

 

5. Recognition Scheme  
 

In order to recognize the unknown character set 

using the fuzzy logic, an exponential variant of fuzzy 

membership function is selected. The fuzzy 

membership function is constructed using the 

normalized vector distance. 

The concept of a fuzzy set arising from a set of 

features is as follows. If there are ‘n’ possible features 

for each character and ‘m’ number of character samples 

then a particular feature from each of the samples 

forms a fuzzy set. The means and variances are 

computed for each of the 24 fuzzy sets and these 

constitute the knowledge base (KB). Here, we use the 

training dataset which contains reference characters for 

generating the KB.  

5.1 Creation of KB & Membership Function 
 

The means mi and variance σ2
i for each of the 24 

fuzzy sets of KB are computed from the formulae: 

1

1 iN

i ij

j

m f
n =

= ∑ ; 
2 2

1

1
( )

iN

i ij i

ji

f m
N

σ
=

= −∑         (3) 

where,     

 Ni is the number of samples in the i
th
 set  

 fij stands for the j
th 

feature value of reference 

 character in the i
th
 fuzzy set and i = 1, 2…..24   

For an unknown feature vector x, the 24 features are 

extracted using the Box method. The membership 

function is chosen as, 

2

i i

i

i

x m

x e σµ
− −

=                (4) 

where,  xi is the i
th 

feature of the unknown  character. 

If all xi’s are close to mi’s which represent the 

known statistics of a reference character, then the 

unknown character is identified with this known 

character because all membership function values are 

close to 1 and hence the average membership function 

is almost 1. Let, mj(r), σ
2
j(r) belong to the r

th 
reference 

character with r = 1, 2, 3 …36, we then calculate the 

average membership as, 

2

( )

( )

1

1
( )

j j

j

x m r

c
r

av

j

r e
c

σ
µ

− −

=

= ∑               (5) 

where, c denotes for the number of fuzzy sets.  

Then x∈r if µav(r) is the maximum for r=1, 2 …36. 

It is observed that some of the fuzzy sets have a very 

small variance and others, a large variance. This 

spurred the choice of a new membership function in 

[16] involving the structural parameters s & t given by, 

 
' 2 '/i ix

xi e
σµ −∆=                                         (6) 

where,  

     
2 ' 2 2(1 )
i i

t tσ σ= + +  & 
' 2(1 )i i

i i i

x s s x

x x m

∆ = − + ∆

∆ = −
  

The new mean and the new variance are functions of 

the mean and variance of the reference fuzzy set. Thus 

the structural parameters s, t models the variations in 

the mean and variance overall 24 boxes. The choice of 

these parameters has reasoning. That is, if s=1, '

ix∆ = 

∆xi. Thus, s would be perturbed around 1 to reflect 

changes in the means. Similarly, if t=-1, then 2'

iσ  = 2

iσ  

thus, t would reflect the changes in the variances. 

The scanned image is enclosed in a 42x32 window 

which is divided into 24 boxes, each of size 6x4. The 

selected box size was determined after extensive 

experimentation with different box sizes (see [21]).  
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5.2 Estimation of Structural Parameters 
 

An objective function needs to be defined for the 

estimation of these parameters by optimization. The 

average membership function of any character must be 

close to 1, when its features are fit into the statistics of 

a known character. We therefore define the error 

function as,  [ ]21 1 JJ −=               (7) 

where, 1

1
j

c

xC
j

J µ
=

= ∑     

In order to reduce the uncertainty in s and t, we define 

the entropy E as, 

 ln (1 ) ln(1 )  
j j j jx x x xE µ µ µ µ = − + − − ∑    (8) 

The objective function to be minimized is therefore 

chosen as the product of (7) and (8), 

1.JEG =                             (9) 

We now learn the parameters s and t, as follows 

tGtt

sGss

oldnew

oldnew

∂∂−=

∂∂−=

ε

ε
                         (10) 

The learning factor ε (epsilon) is chosen as 0.01. The 

initial values of s and t are taken as 3 and 5 

respectively.  

 

5.3 Reinforcement Learning 
 

In order to speed up the convergence of parameters 

using the gradient descent learning, we will use the 

reinforcement learning by which the past information 

of the objective function is utilized. However this 

requires a ‘re-use policy’ of how to use the past 

information. For this we will define the re-use policy in 

the following way: 

Definition: Reusing a defined past policy requires 

integrating the knowledge of the past policy into the 

current learning process.  

Our approach is to bias the exploratory process of 

the new policy with the past one. In our previous work 

[16], ε was taken as a constant. In this work the policy 

reusage concept is used to derive new learning. Instead 

of taking ε as constant, we make it a variable 

depending on the past errors. We have used here the 

sigmoid function for ε  in which the cumulative of the 

past errors is biased by the term 2k and the slope or 

gain of the function is changed by the term 1k .  

 
1 2( )

1

1
k err k

e
ε

− +
=

∑+
                         (11) 

where, old newerr G G G= − = ∆ .  

In our work, the initial values of k1 and k2 are taken to 

be 0.5 which are then adjusted using the reuse policy. 

The steps in the algorithm are as follows:   

 

Algorithm: 

1. If err∑ is increasing, then ε must decrease.  

 So 1k  should increase. 

2. If err∑ is decreasing, then ε need not change.  

 So 2k  should increase. 

3. If err∑ is constant, then ε should not change.  

 So 1k and 2k are not changed. 

The values of 1k and 2k have been changed with an 

increment of 0.1 while executing the algorithm. 

 

6. Results  
 

The overall recognition rate of all 36 Hindi 

characters considered together is found to be 69.78%. 

As the character set is very large as compared to 

character set a snapshot of this set is shown in Fig. 5, it 

is impossible to get correct classification with only one 

classifier in view of the fact that some of the characters 

have similar shapes.  

 

 

 Fig. 5: Snapshot of Hindi character samples  
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There is a need for coarse classification based on 

structural information to improve the recognition 

results. This is accomplished in two steps: coarse 

classification followed by the final recognition. The 

three categories of course classification are:  

1. Classification Based on Middle bar: dddd, QQQQ 

2. Classification based on the right vertical bar 

based on the following subdivisions - 

� Vertical bar and the rest of the character not 

connected to it: xxxx, ’k’k’k’k, .k.k.k.k 

� Characters with a horizontal middle bar: >>>>, 

eeee, llll, vvvv, HkHkHkHk 

� Characters (no head line) with the upper top 

left open: tttt, rrrr, yyyy, uuuu, pppp, cccc, KKKK 

� Remaining characters: JJJJ, ;;;;, iiii, /k/k/k/k, FkFkFkFk, [k[k[k[k, ?k?k?k?k, ,,,, 

3. Characters without any vertical bar consisting of 

following sub-classes: 

� Open to the right side: gggg, VVVV 

� Open to both the right and left sides: MMMM 

� Closed or almost closed at the bottom: BBBB, <<<< 

� Partially open to the right: nnnn 

� Remaining characters: jjjj, bbbb, NNNN, mmmm 

Coarse segmentation is initially made to obtain 

broad classes like characters having middle bar, end 

bar etc, as explained above. The characters within each 

broad class are then further classified into individual 

characters. Thus the recognition results are obtained by 

performing a coarse classification followed by fuzzy 

based classification. 

We implemented the proposed recognition method 

with a variable learning factor ε determined from the 

reinforcement algorithm. The convergence of structural 

parameters s and t for constant ε is shown in Fig. 6 and 

due to variable  ε  is shown in Fig. 7. The convergence 

of E is shown in Fig.8. Clearly it can be seen that there 

is a 25 fold improvement in the speed of convergence 

during training of s and t.  
 

0 500 1000 1500 2000 2500 3000 3500 4000 4500
1

1.5

2

2.5

3
Convergence of parameter s

Number of iterations

0 500 1000 1500 2000 2500 3000 3500 4000 4500
5

5.2

5.4

5.6

5.8
Convergence of parameter t

Number of iterations

 
Fig. 6: The case where ε is constant 

Table 1 shows learning parameters, structural 

parameters and recognition rates of Hindi characters. 

The overall recognition rate is increased to 90.65%. 

Barring two characters most of the characters have RR 

greater than 80%, whereas 12 characters have RR in 

between 80 to 90%. The rest have more than 90%. 

 

Table 1: Recognition rates after coarse classification 
 

Hindi 

Character 

 

k1 

 

k2 

 

s 

 

t 

RR 

(%) 

 22.9 8.1 1.1106 5.80 92% 

 
15.7 5.3 1.03 5.6168 92% 

 7.9 3.1 1.0552 5.4982 85.19% 

 
26.5 8.5 1.101 5.8552 94.87% 

 9.5 3.5 1.0524 5.5836 92.59% 

 
26.6 9.4 1.1195 5.9638 86.21% 

 12.7 4.3 1.1267 5.5956 75.00% 

 
27.9 9.1 1.0334 5.659 81.82% 

 
25.6 9.4 1.0606 5.7144 93% 

 - - - - 100% 

 
21.4 7.6 1.0519 5.6637 91.67% 

 21.6 7.4 1.0961 5.7739 92.31% 

 
25.3 11.7 1.0038 5.672 85.71% 

 11.6 4.4 1.0874 5.5843 95% 

 18.5 6.5 1.0984 5.7125 84% 

 
12.9 4.1 1.0678 5.5786 85% 

 
12.2 4.8 1.1106 5.6583 90% 

 
4.2 1.8 1.2152 5.4702 85.71% 

 19 6 1.0745 5.8097 96.55% 

 
12.7 4.3 1.0836 5.5696 90.63% 

 15.8 5.2 1.0807 5.7051 92% 

 
15.2 5.8 1.133 5.6246 84.62% 

 8.7 3.3 1.0446 5.5188 95.83% 

 
- - - - 100% 

 6.5 2.5 1.0835 5.5496 94.44% 

 
25.8 9.2 1.0788 5.8175 100% 

 9.2 3.8 1.0528 5.5234 76.92% 

 
21.4 7.6 1.0374 5.6341 88% 

 13.6 4.4 1.0676 5.6185 90% 

 
12.3 4.7 1.07 5.5892 96.97% 

 20.3 6.7 1.0994 5.7622 85.71% 

 
11.1 3.9 1.0106 5.5387 88% 

 15.4 5.6 1.1008 5.6786 85% 

 
6.5 2.5 1.1144 5.5194 100% 

 18.9 6.1 1.0577 5.668 94.44% 

 
15.4 5.6 1.0726 5.6814 94.87% 

Overall Recognition Rate (RR) 90.64% 
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Table 2: Recognition rates after Mismatch 

considerations 
 

Hindi 

Character 

 

k1 

 

k2 

 

s 

 

t 

RR 

(%) 

 13.8 12.7 1.244 6.368 70.83% 

 12.5 11 1.0376 6.4578 100% 

 14.4 10.9 1.0651 6.4975 85.19% 

 13.5 12.3 1.1369 6.5147 89.74% 

 11.7 10.5 1.2314 6.491 92.59% 

 13 13.7 1.2137 6.4222 100% 

 14.6 11.3 1.1294 6.6211 60.71% 

 13.5 11.3 1.0669 6.5004 78.79% 

 14.1 13 1.0972 6.4738 96.67% 

 - - - - 100% 

 12l.1 10.4 1.136 6.4517 88.89% 

 13 10.8 1.2542 6.4098 92.31% 

 11.1 11.6 1.0261 6.4193 85.71% 

 13 12.8 1.1529 6.5148 95% 

 11.8 12.8 1.1195 6.5199 84.62% 

 11.7 10.1 1.0881 6.5029 100% 

 12.5 14.9 1.1945 6.4783 83.78% 

 11 12.3 1.115 6.4796 85.71% 

 13 13.3 1.1949 6.4613 96.55% 

 12 13.7 1.1849 6.5653 96.77% 

 14.5 13.7 1.1799 6.5149 90% 

 15.4 16.6 1.1289 6.5388 84.62% 

 10.3 9.6 1.1082 6.4856 95.83% 

 - - - - 100% 

 12.8 11.1 1.1067 6.5295 94.44% 

 12.6 12.7 1.1615 6.4477 100% 

 10.2 10.9 1.0952 6.4716 84.62% 

 11.8 11.9 1.0593 6.4839 84% 

 12.2 10.6 1.228 6.4132 93.33% 

 12.5 11.8 1.0668 6.5913 96.97% 

 15.1 14.7 1.1625 6.5009 100% 

 12.3 9 1.0813 6.5267 91.67% 

 11.9 12.3 1.2172 6.4206 83.78% 

 13.1 12.1 1.117 6.5298 100% 

 14.8 13.2 1.0539 6.486 100% 

 14 11.9 1.1808 6.5651 96.88% 

Overall Recognition Rate (RR) 91.3172% 
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Fig 7: The case where ε is variable 
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 Fig. 8 Convergence of ε 
 

Based on the tolerance sets obtained we now 

evaluate a second performance criterion to fine tune the 

recognition rate. The image is now divided into 7x4 

instead of 6x4. We chose this particular size because of 

it being the second best next to 6x4. Now again the 

recognition rates are calculated this time comparing 

each character with only its mismatched characters. 

The overall recognition rate is increased to 91.3172% 

 

7. Conclusions  
 

As the recognition of Hindi characters is a daunting 

task, coarse classification is necessitated. The coarse 

classification of Hindi characters is undertaken by 

making use of structural features like the location of 

vertical bar, connectivity of character components, and 

which side the characters are open to etc. The 

normalized distance used as a feature is found to be 

effective. A modified membership function is used to 

represent the fuzzy sets arising out of features of 

samples.  

The reinforcement learning was applied for training 

the structural parameters resulting in a 25-fold 

improvement in the speed of convergence. In document 

processing, where computing time is a major factor, 

this learning may be helpful. The overall recognition 

rate with coarse classification is found to be 90.65%.  
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