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Fuzzy Model Predictive Control
Y. L. Huang, Helen H. Lou, J. P. Gong, and Thomas F. Edgar

Abstract—A highly nonlinear system controlled by a linear
model predictive controller (MPC) may not exhibit a satisfactory
dynamic performance. This has led to the development of a
number of nonlinear MPC (NMPC) approaches that permit the
use of first principles-based nonlinear models. Such models can
be accurate over a wide range of operating conditions, but may
be difficult to develop for many industrial cases. Moreover, an
NMPC usually requires tremendous computational effort that
may prohibit its on-line applications. In this paper, a fuzzy model
predictive control (FMPC) approach is introduced to design a
control system for a highly nonlinear process. In this approach,
a process system is described by a fuzzy convolution model that
consists of a number of quasi-linear fuzzy implications (FIs).
In controller design, prediction errors and control energy are
minimized through a two-layered iterative optimization process.
At the lower layer, optimal local control policies are identified to
minimize prediction errors in each subsystem. A near optimum
is then identified through coordinating the subsystems to reach
an overall minimum prediction error at the upper layer. The
two-layered computing scheme avoids extensive on-line nonlinear
optimization and permits the design of a controller based on
linear control theory. The efficacy of the FMPC approach is
demonstrated through three examples.

Index Terms—Control system design, fuzzy logic, model predic-
tive control.

I. INTRODUCTION

M ODEL predictive control (MPC) has emerged as one of
the most attractive control techniques in the chemical

and petrochemical industries during the past decade. In MPC, a
process dynamic model is used to predict future outputs over a
prescribed period [12], [13]. Dynamic matrix control [2], model
algorithmic control [11], and simplified model predictive con-
trol [1] are excellent examples that have been applied to various
industrial processes [3], [4].

Continuous and batch processes in chemical and petro-
chemical plants are inherently nonlinear and many of them
are highly nonlinear. For a highly nonlinear system, a linear
MPC algorithm may not give rise to satisfactory dynamic
performance. Recently, several researchers[9] have developed
nonlinear model predictive control (NMPC) algorithms that
accept various kinds of nonlinear models such as nonlinear
ordinary differential/algebraic equations, partial differential/al-
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gebraic equations, integro-differential equations, and delay
equation models. Such models can be accurate over a wide
range of operating conditions. However, these models, usually
based on the first principles, are very difficult to develop for
many industrial cases. Moreover, an NMPC incorporating a
nonlinear model may require tremendous computational effort
for optimization; this may disqualify it for on-line applications.
If a nonlinear process can be precisely described by a set of
linear submodels in someway, then the design of a model
predictive controller can be greatly simplified.

Reference [15] introduced a novel fuzzy logic-based mod-
eling methodology, where a nonlinear system is divided into a
number of linear or nearly linear subsystems. A quasi-linear em-
pirical model is then developed by means of fuzzy logic for each
subsystem. The model is a rule-based fuzzy implication (FI).
The whole process behavior is characterized by a weighted sum
of the outputs from all quasi-linear FIs. The methodology facil-
itates the development of a nonlinear model that is essentially a
collection of a number of quasi-linear models regulated by fuzzy
logic. It also provides an opportunity to simplify the design of
model predictive controllers.

Reference [10] developed an MPC algorithm using a
Takagi–Sugeno (T–S) type model. However, tremendous diffi-
culties have been found in tuning controller parameters since
the algorithm requires frequent model updating in control.
More recently, [8] proposed an approach for designing a fuzzy
model-based state–space feedback controller. A T–S type
model is the basis of their fuzzy model. However, they essen-
tially treated the fuzzy model as a set of conventional piecewise
linear models. Thus, the uniqueness of a Takagi–Sugeno-type
model exhibiting soft transition through any operating regions
is lost, causing deterioration in the closed-loop dynamic
performance of a system.

In this paper, a fuzzy model predictive control (FMPC) ap-
proach is introduced to design a control system for a highly non-
linear process system. The approach utilizes the Takagi–Sugeno
modeling methodology to generate a fuzzy convolution model.
With this model, a novel hierarchical control design approach
is described. Three case studies are provided to demonstrate the
attractiveness of the FMPC.

II. FUZZY CONVOLUTION MODEL

Consider a single-input single-output (SISO) highly non-
linear system . The system is decomposed intosubsystems
such that each subsystem demonstrates a linear or nearly linear
behavior. By Takagi–Sugeno’s modeling methodology [15],
a fuzzy quasi-linear model, , or FI, need be developed for
each subsystem. In such a model, the cause–effect relationship
between control and output at the sampling time is
established in a discrete time representation. The subsystems

1063–6706/00$10.00 © 2000 IEEE



666 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 8, NO. 6, DECEMBER 2000

are defined in the fuzzy regions,R . Each fuzzy
region is characterized by the following Cartesian product:

R

(1)

where
measured output at time ;
measured input at time .

An FI is rule based on and consists of a set of symbolic an-
tecedents in the IF part (premise) and a linear numerical ex-
pression in the THEN part (consequence). Each FI is generated
based on a system response to an impulse signal [5], [6]. Thus,
it can be called a fuzzy convolution submodel that has the fol-
lowing structure:

IF is is

is and

is is

is

THEN (2)

where
fuzzy set corresponding to output in the
th FI;

fuzzy set corresponding to input in the th
FI;
impulse response coefficient in theth FI;
model horizon;
difference between and .

A complete fuzzy convolution model for the system consists
of FIs. The system output is inferred as a weighted
average value of the outputs estimated by all FIs, i.e.,

(3)

where is the truth value for theth FI; it can be calculated
based on the fuzzy sets in the IF part, i.e.,

(4)

(3) can be simplified as

(5)

where

(6)

Apparently

(7)

Note that in each fuzzy convolution submodel (2), output
is evaluated by utilizing rather than in

order to minimize an estimation error.

III. FUZZY MODEL PREDICTIVE CONTROL

The design goal of an FMPC is to minimize the predictive
error between an output and a given reference trajectory in the
next steps through the selection of -step optimal control
policies.

A. Problem Formulation

The optimization problem can be formulated as

(8)

and

(9)

where
and respectively, the weighting factors for the predic-

tion error and control energy;
th step output prediction;
th step reference trajectory;
th step control action.

The objective function is subject to a fuzzy convolution model,
which consists of FIs as shown in (2).

In (9), the control policy, , can
be developed by first generatingsets of local control policies,

, where is the
total number of subsystems. The weighted sum of the local con-
trol policies gives the overall control policy. That is

(10)

In the above equation, the weight for theth control action is
the same as that for theth submodel. This is reasonable since
the contribution of the output estimated by theth FI to the
overall process evaluation should be considered the same as that
by the th local control action to the overall system controller.
Substituting (5) and (10) into (9) yields

(11)

The minimization of this objective function requires exten-
sive computational effort since various interactions among sub-
systems exist. To simplify the computation, an alternative objec-
tive function is proposed as a satisfactory approximation of (11).
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According to the Cauchy inequality, the following relationships
hold:

(12)

(13)

The inequalities show that the sum of the weighted squared
errors can be the basis for establishing an upper bound of the
original objective function. This allows us to define the fol-
lowing alternative objective function:

(14)

Note that is greater than . However, the nature of
minimization of is the same as that of . For sim-
plicity, is used as the objective function in the succeeding
text. Equivalently, it can be also written as

(15)

or, more clearly, the optimization problem can be defined as

(16)

where

(17)

Note that the difference between the two objective functions
(16) and (9) will vanish as approaches zero after optimiza-
tion. This means that the output should have a perfect tracking of
a reference trajectory by strong control actions, whenever nec-
essary. Using the alternative objective function in (16), we can
derive a controller by a hierarchical control design approach.

B. Hierarchical Control Design

By using the basic concept of decomposition-coordination in
a large-scale system theory [7], the controller design can be ac-
complished through a two-layer iterative design process. The
whole design is decomposed into the derivation oflocal con-
trollers. The subsystems regulated by those local controllers will
be coordinated to derive a globally optimal control policy.

1) Lower Layer Design:All subsystems need be consid-
ered in the lower layer. For theth subsystem, the optimization
problem is defined as follows:

(18)

subject to

IF is

is is and

is

is is

THEN

(19)

where serves for system coordination; it is deter-
mined at the upper layer. The information to be transmitted to
the upper layer is included in the following set:

(20)

2) Upper Layer Design:The upper layer coordination
targets the identification of globally optimal control policies
through coordinating for each of the local subsys-
tems. Thus, the objective function in this layer can be defined
as

(21)

Note that in (21) is a vector, where each element is the
difference of and . The minimization is accomplished
by identifying error variable , which forms the
following set for each subsystem

(22)

3) System Coordination:Fig. 1 shows a two-layer structure
for the fuzzy model-based system coordination. From the lower
layer, the local information of output and control insets of

is transmitted to the upper layer. At the upper layer, the
error variables
are evaluated as

(23)
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Fig. 1. Structure of a hierarchical controller design.

These values will be compared with those for the same error
variables calculated in the last iteration, say . If
the smallest tolerable error is termedand

(24)

then the control policies are not optimal and need be modified
at the local layer. This can be accomplished in a new iterative
process by sending down the set for each subsystem. If
the inequality in (24) does not hold, then the control policies
are satisfactory, the predicted output values are reliable, and the
coordination process is finished.

4) Localized Controller Design:At the lower layer, the task
is to identify optimal local control policies and output estima-
tions by all FIs. For clarity, the objective function defined in (17)
can be rewritten in a matrix form as follows:

(25)

where

(26)

(27)

(28)

(29)

(30)

The -step prediction of the output by theth FI can be de-
rived from (19). These predictions can be expressed in a matrix
form

(31)

where

...
...

(32)

(33)

(34)

(35)

(36)

(37)
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The resulting control policy for theth subsystem can be de-
rived as

(38)

where

(39)

Minimizing (38) yields

(40)

Then, the control law by theth FI can be identified as

(41)

where is the feedback gain matrix for theth subsystem; it
can be derived as

(42)

5) Global Control Policy: As the optimal local control poli-
cies at the lower layer are identified through optimization, the
optimal global control policies can be accordingly derived at the
upper layer. That is

(43)

where is evaluated by (10).

C. Implementation Procedure for Fuzzy MPC

Based on the definition of the two-layer optimization prob-
lems and the computational mechanism of identifying optimal
control policies, a procedure is introduced to implement the hi-
erarchical control algorithm.

Step 1) Set the error variables
to zero at the

upper layer and send the sets down to
the corresponding subsystems at the lower layer.
This initial setting comes from the considera-
tion of zero bias between and

.
Step 2) Determine the -step control policy

and estimate the steps of
output for all
subsystems based on their FIs at the lower layer.
In this determination process,

are fixed. The local op-
timal output and control values form the set ,
which is transmitted to the upper layer.

Step 3) Calculate new , based
on (5) and (6) and, further, calculate the new errors

between the currently
estimated output and the one estimated in the last
time, according to (23).

Step 4) Examine the total error of all subsystems

(44)

Step 5) If (a prespecified error tolerance), then let

(45)

and establish the new sets .
These sets should be sent down to all subsystems.
Then go toStep 2.

Step 6) If , then an optimal control policy
and system output can be evaluated as

(46)

(47)

Note that the first step of the derived optimal control policy,
i.e., , is the output of the controller. All
other steps of the control policy are used to predict future out-
puts. Also note that the superscriptis a transpose operator, not
the model horizon.

IV. PARAMETER TUNING

In controller design, the difficulty encountered is how to
quickly minimize the upper bound of the objective function so
that the control actions can force the process to track a specified
trajectory as close as possible. Like the design of a regular
MPC, the parameters to be tuned in the FMPC include model
horizon, control horizon, prediction horizon, and weighting
factors and .

So far, there has been no rigorous solution to the selection of
optimal model horizon , control horizon , and prediction
horizon for MPC design. In this work, a number of rules of
thumb are used to select three horizons [13]. In this work,is
selected so that open-loop settling time, which is equal
to the time for the open-loop step response to be 99% complete.
Note that increasing results in a more conservative control
action that has a stabilizing effect but also increases the compu-
tational effort. On the other hand,is the number of future con-
trol actions that are calculated in the optimization step to reduce
the predicted errors. The computational effort increases asis
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Fig. 2. Open-loop dynamic response of a nonlinear system to a unit set change (Example 1).

increased. A smaller value of leads to a robust controller that
is relatively insensitive to model errors. Tradeoff must be taken
in selecting and based on dynamic responses and compu-
tational errors. Computational time is actually not a problem.
This fuzzy logic-based MPC design avoids considerably com-
putational burden caused by traditionally used highly nonlinear
models and nonlinear optimization.

The ranges of weighting factors and can be very
wide. There have been no systematic and rigorous approaches
available for optimally determining these factors. In this work,
a heuristic approach is proposed. The basic idea of the approach
is delineated below.

For the system being decomposed intosubsystems, there
are weighting factors to be determined. For any subsystem,
the importance is not the magnitudes of and , but their
relative magnitudes. Thus, to simplify their selection, we can set
all , to the same, say .

The remaining weighting factors should be de-
termined independently through optimizing each subsystem.
These factors need be retuned when a global system opti-
mization is considered. This can be a time-consuming task
because there is no systematic approach to follow. There is
no guarantee that a solution with the total tolerable errors less
than is globally optimal by this approach [referred to (24)].
A systematic three-step procedure is proposed for turning
weighting factors. The change of value gradually will
help identify better solutions, but still not guarantee the global
optimality. Alternatively, the tuning can be accomplished
by initially setting all to the same, say which is
equal to . Then is gradually
reduced during global optimization. Therefore, we propose the
following three-step procedure to tune the weighting factors.

Step 1) Select a value for and assign it to all local
controllers. Then, determine independently for

Fig. 3. Definition of fuzzy setsA andA for FIsR andR , respectively
(Example 1).

each local controller in order to minimize the objec-
tive function for that subsystem.

Step 2) Identify the largest that is denoted as . Then,
assign to all subsystems.

Step 3) Examine the system’s closed-loop dynamic perfor-
mance. If not satisfied, then reduce the value of
gradually until the most desirable dynamic perfor-
mance is identified.

V. CASE STUDIES

Three highly nonlinear systems are selected for studying the
proposed design approach. The first system is modeled by two
FIs. The second system’s input–output data contains various
noises. A fuzzy convolution model consisting of three FIs is de-
veloped. The third example is about the control of a continuous-
stirred tank reactor (CSTR), which was studied by [9]. Fuzzy
model predictive controllers are designed to realize closed-loop
control for all these systems.

Example 1:
a) Process modeling:The process demonstrates non-

linear behavior in responding to a unit step change (Fig. 2, solid



HUANG et al.: FUZZY MODEL PREDICTIVE CONTROL 671

TABLE I
MODEL COEFFICIENTS(h ) FOR EXAMPLE 1

line). The system responds nearly exponentially, although quite
slowly, during the first 1.1 min. The output is then increased
quickly until min, where the response becomes
sluggish. For this system, a simple fuzzy convolution model
consisting of two FIs ( and ) is developed as follows:

IF is

THEN (48)

IF is

THEN (49)

The fuzzy sets and in the FIs are defined in Fig. 3.
The coefficients of the two FIs
are listed in Table I. The model horizon is set to 70. Note that
when , for instance, is evaluated by rather

than is used. This is more desirable since reflects an
error correction based on both and in the th step.

b) Controller design: In designing the FMPC controller,
predictive horizon and control horizon are set to three and two,
respectively. Weighting factors are selected as follows:

(50)

(51)

The two local controllers are synthesized and the feedback
gain matrices are

(52)

(53)

c) Simulation: System simulation is conducted to study
how the change of the weighting factors and the selection of
reference trajectories affect the system’s dynamic performance
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Fig. 4. Structure of the FMPC controller.

and to compare the dynamic responses by the FMPC and a con-
ventional MPC.

It is known that in designing a model predictive controller, the
reference trajectory should be adjustable according to
the control requirement [14]. In this case, a first-order response
is selected as the reference trajectory which is described as

(54)

where is the magnitude of a step change;is the time con-
stant which is the only adjustable parameter. In this case,is
equal to one, and is set to 2.5 (Case I) and 0.5 (Case II). Fig. 4
gives the structure of the FMPC controller. Note that all local
controllers will be used all the time. This means that there is
no switch from one local controller to the other in operation. As
shown in (5), the system output is inferred as a weighted
average value of the outputs of all subsystems. On the other
hand, the overall control policy to the process under control is
the weighted sum of all local control policies, as shown in (10).
This kind of design not only eliminates the controller switch
problem and thus possible system instability, but also provides
a much more smooth control performance in process operation.
Fig. 5 provides the closed-loop dynamic response of the system
under different values of, which shows how a speedy response
can be adjusted.

Fig. 6 gives the comparison of the closed-loop dynamic per-
formance of the system when parameter matrix is set differ-
ently. In this case, is maintained at 2.5. The dynamic response
with the smallest norm of (Case III) is the most desirable.
If the norm is reduced further, the response will become worse
due to the appearance of oscillation (not plotted in the figure).

To demonstrate the superiority of the FMPC design method-
ology, we also conducted a series of simulations by using an
optimally designed conventional MPC. Fig. 7 illustrates the dif-
ferent control qualities of the system when FMPC and MPC are
both optimally designed (with different ). In this example,
the FMPC demonstrates a much better control performance.

Example 2:
a) Process modeling:The open-loop dynamic response

of the system is shown in Fig. 8, where large noise exists. A

Fig. 5. Closed-loop dynamic responses with the same parameter design
[W = diagf20; 20;10g andW = diagf25; 25g].

fuzzy dynamic model containing three FIs is developed as fol-
lows:

IF is

THEN (55)

IF is

THEN (56)

IF is

THEN (57)

Fuzzy sets are defined in Fig. 9. The model
horizon is set to 80. The coefficients
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Fig. 6. Closed-loop dynamic responses of the system using the same
W (=diagf20; 20;10g) and the differentW when� = 2:5.

Fig. 7. Comparison of the closed-loop dynamic responses by the FMPC and
an MPC when� = 2:5.

of the three FIs are derived in Table II. The system
dynamics derived by the model is depicted in Fig. 8 (see the
smooth curve).

b) Controller design: In designing an FMPC controller,
predictive horizon and control horizons are set to three and two,
respectively. Weighting factors are selected below:

(58)

(59)

Fig. 8. Open-loop dynamic response of a nonlinear system to a unit set change
(Example 2).

Fig. 9. Definition of fuzzy setsB throughB for FIs R throughR ,
respectively (Example 2).

The three local controllers are synthesized. Their feedback
gain matrices are obtained as follows:

(60)

(61)

(62)

c) Simulation: Fig. 10 depicts the dynamic responses in
differentvaluesof when for the reference trajectory isset to
0.88. When is equal to , the dynamic response
is the most desirable (Case I). As a comparison, the dynamic
response under a smaller norm of (Case II) is plotted in
the same figure. In this case, the closed-loop response becomes
unstable. It should be pointed out that the unstable stage does
not happen in other two examples. The number of trials for a
satisfactory cannot be determined prior to looking at system
dynamics.

The designed controller can also properly control the system
when different set point changes occur. Fig. 11 demonstrates
the closed-loop dynamic responses using four different set point
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TABLE II
MODEL COEFFICIENTS(h ) FOR EXAMPLE 2

changes ( and ), all yielding satisfactory per-
formance.

1) Example 3—Control of a continuous-stirred tank reactor
(CSTR): [9] studied the control of a highly nonlinear CSTR
process, which is very common in chemical and petrochem-
ical plants. The control problem is selected here for testing the
FMPC approach. In the process, an irreversible, exothermic re-
action A B occurs in a constant volume reactor that is cooled
by a single coolant stream. The process is modeled by the fol-
lowing equations [9]:

(63)

(64)

The objective of the design is to control the measured con-
centration of , by manipulating coolant flow rate

. The nominal parameter values of the process appear
in Table III.

b) Fuzzy modeling:In our study, the above rigorous
model is used to generate a series of input–output time-series
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Fig. 10. Closed-loop dynamic responses of the system using the same
W (=diagf20; 20;10g) and the differentW when� = 0:88.

Fig. 11. Closed-loop dynamic responses under different set point change
(y ) whenW = diagf20;20;10g andW = diagf25; 25g and
� = 0:88.

data. The sampling time of the process measurements is set
to 0.083 min (5 s). The data is then used to develop a fuzzy
convolution model as follows:

IF is

THEN

(65)

TABLE III
SPECIFICATION OF THECSTR—EXAMPLE 3 [9]

Fig. 12. Definition of fuzzy setsQ andQ for FIsR andR , respectively
(Example 3).

IF is

THEN

(66)

The fuzzy model is structurally very simple, which requires
only two FIs. The fuzzy sets and in the model are defined
in Fig. 12. The open-loop response with various step changes
in the coolant flow rate shows that the fuzzy convolution model
can nearly perfectly describe the process dynamic behavior
(Fig. 13). It also indicates that the process is indeed highly
nonlinear. For each FI, the model horizon based on the impulse
responses is set to 100 to ensure the completion of the dynamic
response.

c) Controller Design: According to the FMPC controller
design approach, each FI defines a subsystem. A localized con-
troller need be designed for each subsystem. In design, the pre-
dictive horizon and control horizon are set to eight and five, re-
spectively. The weighting factors in are all 20 000 on the
diagonal, and those in are all 6.658 also on the diagonal.

The feedback gain matrices of the two local controller are
listed in (67) and (68), shown at the bottom of the next page.

d) Simulation: A series of simulations are conducted to
examine the control quality by the FMPC controller. In testing
the set point tracking capability, the set point of was changed
from the nominal operating point 0.1 mol/l to 0.135, to 0.12, to
0.105, to 0.75, and then to 0.09 (see the dash line in Fig. 14). The
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Fig. 13. Open-loop composition response of the CSTR process (Example 3).

Fig. 14. Concentration set-point tracking of the CSTR process.

dynamic response of the system is depicted in the same figure.
Apparently, the control dynamics is as good as [9].

Fig. 15 illustrates the disturbance rejection performance of
the FMPC controller. In simulation, the disturbances of the feed
concentration and the coolant temperature are
added to the system. The feed concentration changes from 0.1
mol/l to 0.095 at 1 min, and back to 0.1 at 7 min. The coolant
temperature is decreased by 10C at 18.5 min and gets back

to the nominal value at 28 min. The dynamic response in the
figure shows that the FMPC system has a strong disturbance
rejection capability.

VI. CONCLUDING REMARKS

A highly nonlinear system can be modeled by Takagi–
Sugeno’s fuzzy modeling methodology. If the model is de-

(67)

(68)
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Fig. 15. Concentration disturbance rejection of the CSTR process.

veloped using impulse signal, the resultant one is a fuzzy
convolution model. With this type of model, a novel FMPC
methodology is developed in this paper. By this methodology,
a controller is designed through a hierarchical control design,
which can readily identify a near optimal system structure
and parameters. The approach effectively avoids extensive
optimization steps usually encountered in designing a NMPC,
while the computational time is nearly negligible. This greatly
advances the feasibility of on-line applications.
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