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Fuzzy modelling of knee joint with genetic

optimization
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Abstract. Modelling of joint properties of lower limbs in people with spinal cord injury is significantly challenging for researchers

due to the complexity of the system. The objective of this study is to develop a knee joint model capable of relating electrical

parameters to dynamic joint torque as well as knee angle for functional electrical stimulation application. The joint model consists

of a segmental dynamic, time-invariant passive properties and uncertain time-variant active properties. The knee joint model

structure comprising optimised equations of motion and fuzzy models to represent the passive viscoelasticity and active muscle

properties is formulated. The model thus formulated is optimised using genetic optimization, and validated against experimental

data. The developed model can be used for simulation of joint movements as well as for control development. The results show

that the model developed gives an accurate dynamic characterisation of the knee joint.
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1. Introduction

Functional electrical stimulation (FES) is a promis-

ing way to restore mobility to individuals paralyzed due

to spinal cord injury (SCI). Musculoskeletal modelling

provides researchers with great potential for studying

the biomechanics of movement through simulation,

which would otherwise require resorting to invasive

methods [22]. Modelling, and hence simulation study

can greatly facilitate to test and tune various FES con-

trollers. In order to develop a control strategy for the

FES to move the leg correctly, an accurate model of

the stimulated muscle has to be used. Accurate mod-

els can facilitate the design of stimulation patterns and

control strategies that will produce the desired force

and motion [24].
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Modelling the human joints is difficult due to the

combination of complex structural anatomy, compli-

cated movement and dynamics and often indeterminate

muscle function [2]. Moreover, most models built

either on experimental or physiological bases are not

appropriate for FES control applications [23]. One

way to develop this model for FES control applica-

tions is to use mathematical approaches. As a result,

many researchers have developed mathematical model

of electrically stimulated muscles based on Hill-type

[10, 15], Huxley-type [11], analytical approaches [14,

17] and physiology approach [26]. Accurate models

of artificial muscle activation in healthy or paraplegic

subjects have been developed but the complexities of

the system resulting mathematical representation have

a large number of parameters that make the model

identification process difficult.

Fuzzy logic has long been known for its ability to

handle a complex nonlinear system without a math-
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ematical model. Fuzzy logic is the fastest growing

soft computing tool in medicine and biomedical engi-

neering [3] with its major strength in nonlinear output

mapping [28]. Biological inspired computation tech-

niques such as genetic algorithms (GA) are used in

designing fuzzy models, particularly for generating

fuzzy rules and adjusting membership functions. To

the authors’ knowledge, there is no extensive study

in the literature regarding musculoskeletal modelling

using fuzzy evolutionary systems.

Knee joint model consists of active muscle prop-

erties and passive viscoelasticity and the equation of

motion of the lower limb. Active properties include

quadriceps muscle activation and muscle contraction

while passive viscoelasticity includes passive viscous

moment and elastic moment of knee joint. Equations of

motion are applied to compute joint movements from

joint moments taking into account gravitational and

inertial effects. The active joint moment is added with

the passive joint moment as an input (torque) to the

lower limb model and this will produce the knee angle

as the output.

In this paper, a new knee joint model includ-

ing optimised segmental dynamics and optimised

dynamic characterization of passive and active

properties based on experimental data is proposed.

The model of a dynamic system of the lower limb

is derived using well known Kane’s equations [29].

The anthropometric inertial parameters such as foot

mass, shank mass, moment of inertia about centre of

mass (COM) and position of COM along the segmen-

tal length of the limb in these equations are optimised

using genetic algorithm (GA). GA adjusted fuzzy mod-

els are used to represent the passive viscoelasticity

(combination of elastic and viscous moments) of knee

joint and the active properties (combination of the

muscle activation and contraction) of the quadriceps

muscle.

The aim of the present study is to develop a model

and procedure, with due consideration of the above

constraints, that would enable to identify for a person

the relationship between the stimulation pulsewidth

and the motion produced by the stimulated mus-

cles. A generic methodology is presented that can

be adopted for accurate estimation of anthropometric

inertia parameters and model of passive viscoelasticity

and active properties of knee joint specific to individ-

uals with SCI. The same approach could also be used,

in principle, for different persons (e.g. with different

ages, weights, heights, and gender).

2. Materials and method

2.1. Knee joint moment equation

The shank-quadriceps dynamics are modelled as

the interconnection of passive and active properties of

muscle model and the segmental dynamics. The total

knee-joint moment is given by [17]:

Mi = Ma + Mg + Ms + Md (1)

where Ma refers to an active knee joint moment pro-

duced by electrical stimulation, Ms is the knee joint

elastic moment and Md is the viscous moment repre-

senting the passive behaviour of the knee joint. The

Mi and Mg are represented by equation of motion for

dynamic model of the lower limb. The Ms and Md

are combined and represented by a fuzzy model as

passive viscoelasticity. Figure 1 shows a schematic
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Fig. 1. Schematic representation of the knee joint model.
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representation of the knee joint model consisting of

active properties, passive viscoelasticity and lower

limb model.

The subject participating in this work was a 48 year-

old T2&T3 incomplete paraplegic male with 20 years

post-injury with height = 173 cm and weight = 80 kg.

Informed consent was obtained from the subject.

2.2. Optimization and estimation procedure

In this work, the optimisation process is divided into

two stages; first GA is used to estimate the anthropo-

metric inertia parameter of lower limb and to adjust

the fuzzy parameters to represent the non-linear vis-

coelasticity by minimizing the error between the data

obtained from pendulum test and the model prediction.

Then these optimized equations of motion and fuzzy

viscoelasticity model are used in modelling the active

properties. In the second stage, the active properties are

modelled based on input and output data from elec-

trically stimulated test using multi-objective genetic

algorithm (MOGA) with two objectives; to minimize

the prediction error to fit the experimental data.

2.3. Equations of motion for dynamic model of the

lower limb

A schematic diagram of the lower limb model is

shown in Fig. 2, where q2 = shank length, r1 = position

of COM along the shank, r2 = position of COM along

the foot, θ1 = knee angle and θ2 = ankle angle. The

complexity in analysing multi-joint structure is often

reduced through reducing the number of degrees of

freedom (DoF) to a manageable level [9]. In this

research, the foot at neutral position is defined as 0◦.

Hence, the motion dynamics can be represented in a

simpler form. The gravitational (Mg) moment is repre-

sented by:

Mg = m1g cos θ1r1 + m2g cos θ1q2 (2)

The inertial (Mi) moment is represented by math-

ematical model of the lower limb based on Kane’s

equations as follows:

Mi = −m2q2θ̇
2
1r2 − I1θ̈1 − m1r1

2θ̈1 − m2q
2
2θ̈1 (3)

where, m1 = shank mass, m2 = foot mass, I1 = moment

of inertia about COM, θ̇1 = knee velocity, θ̈1 = knee

acceleration, g = gravity. Anthropometric measure-

2
q

02=θ

2r

1r
1θ

Fig. 2. Lower limb model.

Table 1

Anthropometric data of subject

Segment Length (m)

Shank length 0.426

Foot length 0.168

Approximated position of COM of shank 0.213

Approximated position of COM of soot 0.084

ments of length of the lower limb were made and these

are shown in Table 1.

2.4. Experimental protocol

The experimental protocol entailed two phases as

considered by Ferrarin and Pedotti [17]. The first

involved a passive pendulum test of the lower limb

to estimate the viscoelasticity of knee joint. The sec-

ond phase implied stimulating the quadriceps muscle,

recording the artificially induced movement and com-

puting the produced active knee torque.

2.4.1. Pendulum test

Pendulum test can be used to evaluate passive ele-

ments such as viscosity and elasticity moments of the

knee [27]. Viscoelasticity is combination of elastic-

ity and viscosity and represents passive resistances to

joint motion associated with the structural elements of

the joint tissue and of the muscular-tendon complex

[25]. The subject sat on a chair with arm rests, which

allowed the lower leg to swing freely without knee

flexion movement constrained by the sitting surface.

Movements of the ankle and hip joint were not taken

into consideration to reduce the number of DoF and

made solely dependent upon the knee joint position.

For this reason during the experiments the ankle and

hip joint of subject were fixed. The ankle angle was
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fixed at 0◦ using Velcro. The hip angle was fixed at

approximately 100◦ from the horizontal using straps,

so that hip extension was not possible. Thigh was sup-

posed to be stationary and fixed using strap on the chair

so that only the shank-foot dynamics were considered

in the model. This was also to ensure that the limbs

were within the sagittal plane.

Reflexive or voluntary activation of muscles acting

on the knee during the pendulum test was monitored

through the Electromyography (EMG) technique and

repetition of the experiment to rule out uncertainty

due to influence of pendulum movements. Continuous

EMG technique was used for evaluating and record-

ing the electrical activity produced by skeletal muscles

[16] while doing the pendulum test [21]. EMG sig-

nal was recorded via bipolar surface electrodes on the

main muscles on the knee joint (rectus femoris, vasti

and hamstring muscles) to rule out such spastic limb

motion during the passive pendulum trials as in [17].

The knee was slowly extended to a level close to the

horizontal but where the subject still felt comfortable,

by having the experimenter lift it with minimal acceler-

ation. The leg was held in this position until the subject

was fully relaxed and the EMG signals had become

stable at almost zero level. Then the knee was released

and permitting it to swing freely. The knee angle was

recorded using a Biometric electro-goniometer with

sampling frequency of 20 Hz.

2.4.2. Electrically stimulated quadriceps test

Electrically stimulated quadriceps test was used to

obtain the input and output data to model the active

properties produced by FES. Active properties are

the combination of muscle activation and contrac-

tion. Activation dynamics provide muscle response

due to electrical stimulation. The contraction dynam-

ics are the mechanical contraction and relaxation of

muscle and tendon including their length and velocity-

dependent properties.

In this test, the subject sat in the same position as in

the pendulum test. Two surface moistened (2” × 3.5”)

PALS neurostimulation self-adhesive electrodes were

placed on the quadriceps muscle. The cathode (nega-

tive) placed just proximally over the estimated motor

point of rectus femoris and the anode (positive) approx-

imately 4-cm proximal of the patella. HASOMED

current-controlled stimulation device was used to send

the signals to the muscle. The stimulation current was

fixed to 40 mA and the frequency was set to 25 Hz

with a doublet type pulse. The input (stimulation pulse-

width) and the resultant output (knee angle) from this

experiment are shown in Fig. 3.

Additional pendulum and electrical stimulation tri-

als were recorded for the evaluation of the prediction

capability of the models. These data have not been used

in the model identification phase.

2.5. Fuzzy modelling approach

Modelling based on conventional mathematical

tools is not well suited for dealing with complex and

nonlinear systems. By contrast, a fuzzy inference sys-

tem employing fuzzy ‘if–then’ rules can model the

qualitative aspects of human knowledge and reasoning

processes without employing precise quantitative anal-

yses [7]. Fuzzy models are well suited for modelling

non-linear systems such as passive viscoelasticity and

active properties of the quadriceps muscle.

One of the major problems in the not so widespread

use of fuzzy logic is the difficulty in designing mem-

bership functions (MFs) to suit a given problem. A

systematic procedure for choosing the vector of param-

eters that specify the MF is still not available [22].

Tuning of the parameters by trial and error is often nec-

essary for a satisfactory performance to be achieved.

However, the optimisation of fuzzy parameters has

been restricted due to large number of optimisation

parameters. GA is most appropriate for non-linear

models where location of the global optimum is a dif-

ficult task [18]. In this research, GA is used to tune

a Mamdani-type fuzzy model due to its intuitive and

interpretable nature of the rule base.

2.6. Genetic algorithm

Evolutionary computing, GAs are globally search-

ing techniques, which are more likely to converge to

the global optimum and emulate natural genetic oper-

ators such as selection, crossover, and mutation [8].

This evolutionary algorithm in conjunction with fuzzy

logic has been used successfully in biomedical engi-

neering in various applications [13]. The GA approach

is able to search many points simultaneously as well

as able to avoid local optima that traditional gradient

descent algorithms might get stuck in [20]. It may be

possible to use GA techniques to consider problems

which may not be modelled as accurately using other

approaches. Therefore, GA appears to be a potentially

useful approach for these modelling purposes.
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Fig. 3. Stimulation pulse-width (input) and the knee angle (output).

2.7. Optimization of anthropometric inertia

parameters and fuzzy viscoelasticity model

using GA

GA is used to optimize the fuzzy systems to repre-

sent the dynamic behaviour of passive viscoelasticity

of the knee joint using fuzzy model and estimation

of the anthropometric inertia parameters such as foot

mass, shank mass, moment of inertia about COM

and positions of COM along the segmental length

of the lower limb as shown in Fig. 4. The ranges

of optimisation values (minimum and maximum) of

these parameters are necessary to ensure that the GA

addresses the identification separately. Moreover, the

repetition of this optimisation helps to ensure consis-

tency of the identification. The goal of GA optimization

process is to minimize the error between the knee angle

obtained experimentally and from the model. The out-

put prediction error is defined as:

e(t) = y(t) − ŷ(t) (3)

where y(t) is the experimental data and ŷ(t) is the esti-

mated current output of knee angle. The ‘goodness of
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fit’ of the identified model is determined using the

objective function by minimizing the mean-squared

error (MSE):

f1 =

⎧

⎨

⎩

∑N

i=1
(y(t) − ŷ(t))2

N

⎫

⎬

⎭

(4)

where N is the number of sample values.

2.7.1. Estimation of anthropometric inertia

parameters

The lower limb dynamics are complex and not well

defined. The complexity of the leg inertial character-

istics is not only due to the limb shape, i.e. different

tissues (Lebiedowska, 2008). Indeed, even the loca-

tion of the COM of elemental parts is imprecise,

and comprehensive analyses of joint kinematics are

extremely difficult. To quantify limb dynamics, accu-

rate estimates of anthropometric inertia parameters

(mass, location of COM, and moments of inertia) are

needed.

2.7.1.1. Moments of inertia. Moments of inertia are

fundamental parameters describing the mass dis-

tribution of body segments which enter into all

computations involving segmental rotations. There is

no unique way of calculating the moment of iner-

tia. To obtain more accurate moment of inertia of

the shank + ankle segment, the minimum (0.32 kg m2)

and maximum (0.58 kg m2) range as reported by

Lebiedowska (2003) is setup and GA optimization

used to determine optimized value of moment of inertia

within this range.

2.7.1.2. Mass and position of COM of shank and foot.

Vatnsdal et al. [4] addressed the masses and positions of

the COM of the lower limb as possible error sources in

the lower limb model. Zatsiorsky and Seluyanov [30]

estimated the mass on the basis of regression equa-

tions based on statistics measured from 100 young

men using gamma-scanner method. However, this

method has a standard error and it is hypothesized

that paraplegics would have different measurements
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as compared with able-bodied subjects. Therefore, it

can potentially introduce large errors, especially while

modelling the passive elements, as the pendulum test

results may be affected by those parameters.

Thus, fine tuning these parameters around the

predicted values with an efficient stochastic search

algorithm such as GA could lead to good solution with

immense potential of extracting accurate subject spe-

cific results. GA is used to optimise the foot and shank

mass within this range as shown in Table 2, while the

approximated positions of COM along the segment

length are assumed as in the centre of the segment

length. To obtain accurate positions, the position of

the COM of shank and foot are optimised with ±10%

tolerance.

2.7.2. Optimization of fuzzy model as passive

viscoelasticity

The Mamdani type fuzzy inference with triangu-

lar membership functions is used to represent passive

viscoealsticity as a non-linear function of knee angle

and knee angular velocity. Piecewise linear triangular

membership functions are preferred, because of their

simplicity and efficiency with respect to computability.

An automatic fuzzy system design method integrates

three stages; determines membership functions, the

rule-consequent parameters, and scaling factor at the

same time. There are 73 parameters for 25 rules that

are optimized. A breakdown of optimized parameter

of the fuzzy system is as follows:-

i) 45 parameters relating to the 15 triangular MFs

(3-element vector that determines the break

points for each MF),

ii) 25 weights associated with the fuzzy rules,

iii) 3 scaling factors for the normalization and de-

normalization of 2 inputs and 1 output of fuzzy

model respectively.

The weights of the 25 fuzzy rules are optimised

between 0 and 1 with 2 decimal points in order to

get reasonable accuracy. The rules are identified based

on practical experience with reference to relation-

ship between knee angle and velocity and passive

torque. These identified rules help to reduce the com-

putational time of the optimisation process. Table 3

summarizes the rule base for the fuzzy model encom-

passing possible AND combinations of the input fuzzy

values.

Table 2

Segment mass of subject

Segment Zatsiorsky and Standard Range

mass Seluyanov’s method error (kg)

Foot 1.06 kg 0.11 kg 0.95–1.17

Shank 3.42 kg 0.23 kg 3.19–3.65

Table 3

Rule base of the fuzzy model

Knee angle Knee angular velocity

NB NS ZO PS PB

NB PB PB PB PS ZO

NS PB PB PS ZO NS

ZO PB PS ZO NS NB

PS PS ZO NS NB NB

PB ZO NS NB NB NB

NB = Negative big, NS = Negative small, Z = Zero PS = Positive

small, PB = Positive big.

2.8. Optimisation of fuzzy model as active

properties using MOGA

There is often a problem in this case caused by

the large number of rules which depend on the input

data and number of MF [12]. This usually leads to

a significant increase in the qualitative complexity in

terms of poor transparency and unclear interpretation

of the fuzzy rules as well as quantitative complex-

ity in terms of increased number of operations during

the fuzzy inference process [31]. Therefore, success-

ful fuzzy models should take into account the number

of rules with high efficiency. This is a multi-objective

optimization problem.

Thus, MOGA is used to minimize the prediction

error and the weighting factors of the fuzzy rules

simultaneously. Fitness sharing technique as proposed

by Fonseca and Fleming [5] is applied. Optimiza-

tion of active properties using MOGA with integrating

estimated passive joint viscoelasticity and optimized

equation of motion is shown in Fig. 5. The auto-

matic optimization is implemented in MATLAB with

MOGA Toolbox with two-point crossover and muta-

tion operators to optimise these parameters. Population

size was set to 50 and crossover and mutation proba-

bilities were 0.8 and 0.001 respectively.

Because these design stages may not be indepen-

dent, it is important to consider them simultaneously to

find the optimal solution. The first objective of MOGA

optimization process is to minimize the error between

the knee angle obtained experimentally and from the
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model as equation (4). The second objective of MOGA

is to minimize the sum of the weighting factor of the

fuzzy rules without compromising the first objective:

f2 =

n
∑

i=1

wi (5)

where wi is the i’th rule with n as the total number

of rules.

This minimization process compresses a fuzzy sys-

tem with large number of rules into a smaller fuzzy

system by removing the inactive fuzzy rules and

redundancy in the fuzzy rule base. As a result of

this compression, the number of operations during

the fuzzy inference process is significantly reduced

without compromising the quality of the solution by

reducing the complexity of the fuzzy model. Follow-

ing minimization of the weighting factors of the fuzzy

rules, the average weighting factor is calculated as:

wave =

∑N

i=1
wi

N
(6)

Then the rules with weighting factors smaller than

the average weighting factor value are deleted. Finally

this will end up with reduced number of rules to mini-

mize the fuzzy model complexity.

Since the exact information about relationship

between inputs and output are unknown, there are 439

parameters for 125 rules that are optimized. A break-

down of optimized parameters of the fuzzy system is

as follows:

i) 60 parameters relating to the 20 triangular MFs,

(3-element vector that determines the break

points for each MF).

ii) 125 MFs between Negative Big, Negative Small,

Zero, Positive Small and Positive Big for all rules,

iii) 125 fuzzy operators for the rule’s antecedent

between OR and AND for all rules,

iv) 125 weights that are to be applied to the rule

between 0 and 1 for all rules.

v) 4 scaling factors for the normalization and de-

normalization.

The first rule for this model with 3 inputs (stimu-

lation pulsewidth, knee angle, knee angular velocity)

and an output (active joint moment) is as: ‘If input 1 is

MF1 and/or input 2 is MF1 and/or input 3 is MF1 then

output 1 is between MF1 to MF5 with weight between

0 and 1’. Since there are 3 inputs with 5 MFs, the com-

bination of different rules for this system can reach up

to 125 rules.
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3. Results

3.1. Passive viscoleasticity and anthropometric

inertia parameters

The population size of GA was set to 50 and

crossover and mutation probabilities were 0.8 and

0.001 respectively. The automatic GA optimization

process was set to generate up to 200 generations of

solutions. The best solution was kept and the rest were

discarded until there was no significant change in the

MSE observed after the 165th generation. The min-

imum MSE achieved was 1.87. The response of the

model was tested and the result is shown in Fig. 6. The

results showed that the model parameters were esti-

mated well and that the fit between the model and the

experimental data was good.

The optimized values of the anthropometric inertia

parameters such as masses, moment of inertia about

COM and positions of COM along the segmental

length of the subject’s lower limb are shown in Table 4.

The accuracy of these optimised anthropometric iner-

tia parameters was verified through repeated process

of optimisation.

Fig. 6. Responses of the pendulum test and the model.

Table 4

Optimised value of anthropometric inertia parameters

Parameter Optimised value

Foot mass 0.95 kg

Shank mass 3.5 kg

Moment of inertia 0.36 kg m2

Position of COM of foot 0.085 m

Position of COM of shank 0.22 m

The vicoelasticity is represented by a fuzzy model.

The GA optimization was used to optimise 73 param-

eters including 45 associated with the triangular

membership functions, 25 weights associated with the

fuzzy rules and 3 scaling factors of fuzzy model. The

resultant fuzzy rules are shown in Table 5, where the

values in the bracket indicate the weighting factor for

the corresponding rule fired. The scaling factor for the

normalization and de-normalization of two inputs and

output were 0.009, 0.005 and 35 respectively. Fig. 7

shows the optimally shaped inputs and output MFs of

passive viscoelascity model.

Model validation is possibly the most important step

in the modelling process. The model and the optimised

parameters obtained from the optimization process

were validated in terms of consistency and the predic-

tion error. Two validation tests were conducted; first the

model was validated with a set of data different from

the training data. To avoid any change in the actual

plant, the validation data was obtained in the same

experimental arrangement but with a different initial

knee joint angle. The responses of the optimised model

and new experimental data showed a good agreement

as shown in Fig. 8.

In the second validation process, the optimised seg-

mental masses are validated by repeating the same

optimization process for further four times. The five

sets of the optimised parameters emanating from five

different runs of the GA routines were examined and

the results of the optimised anthropometric inertia

parameters from different simulation runs exhibited

acceptable repeatability with only a slight difference

between each other (MSE was between 0.5 and 1.5

degrees) with small standard deviation (less than 0.01).

Therefore, it can be concluded that the optimised

masses obtained were valid.

3.2. Active properties

A new method comprising a MOGA and uncon-

strained MF overlap to automatically design fuzzy

Table 5

Rule base of the fuzzy model

Knee Knee angular velocity

angle NB NS ZO PS PB

NB (0.42) PB (0.59) PB (0.74) PB (0.65) PS (0.60) ZO

NS (0.65) PB (0.76) PB (0.63) PS (0.55) ZO (0.87) NS

ZO (0.49) PB (0.67) PS (0.87) ZO (0.95) NS (0.56) NB

PS (0.87) PS (0.78) ZO (0.78) NS (0.87) NB (0.67) NB

PB (0.85) ZO (0.76) NS (0.65) NB (0.87) NB (0.69) NB
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Fig. 8. Result of first validation.

systems of the active muscle properties is presented.

A MOGA with 50 binary coded individuals was run

for up to 200 generations to optimize the fuzzy param-

eters by simultaneously minimizing both objectives.

The resulting non-dominated solution front after 200

generations and table containing the corresponding

parameter values are shown in Fig. 9. The best solu-

tions achieved were with MSE = 1.88 degrees and sum

of the weighting factors of rules = 31.37. The average

weighting factor was 0.25. The number of fuzzy rules

reduced from 125 to 55 using MOGA by removing the

rules with weighting factors smaller than the average

value.

The response of the model was tested and the result

is shown in Fig. 10. The results showed that the

model parameters were estimated well and that the

fit between the model and the experimental data was

good. The scaling factor for the normalization and de-

normalization of 3 fuzzy system inputs and outputs

were recorded as S1 = 0.006, S2 = 0.005, S3 = 0.008

and S4 = 21.7. In the fuzzy system, only 55 fuzzy rules

with weighting factor more than 0.25 were used to

model these active properties. Figure 11 shows the opti-
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Fig. 9. MOGA optimization results.

mally shaped three inputs and one output MFs of active

properties model.

The model was validated with a set of input and out-

put data different from the modelling data. To avoid

any change in the actual plant, the validation data

was obtained in the same experimental arrangement

but with different amplitude (slightly higher) of the
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Fig. 10. The experimentally measured and simulated knee angles.

stimulation pulsewidth. These input and correspond-

ing output data were used as validation data set. The

responses of the optimised model and new experi-

mental data are shown in Fig. 12. It is seen that the

experimental and model response showed good agree-

ment with MSE = 3.25 degrees. The reduced rules

fuzzy system can be used to represent the input and

output non-linear behaviour of active properties of the

knee joint.

3.3. Complete knee joint model

The active and passive properties fuzzy model thus

developed needs to be integrated with optimised equa-

tions of motion to have a complete model of the

knee joint as shown in Fig. 13. Equations of motion

are applied to compute joint movements from joint

moments taking into account gravitational and inertial

effects. The purpose of modelling these properties is

to use as a simulation platform of the knee joint model

for control purposes.
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Fig. 11. Optimised membership functions of active properties model.

4. Discussion

Development of an effective control algorithm is

reliant on accurate modelling of the system to be con-

trolled. The active properties model is integrated with

passive properties and optimised equation of motion

to have a complete model of the knee joint. The pas-

sive properties and active properties could be difficult
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Fig. 13. Complete knee joint model.

to model due to their complexity and nonlinearity.

To the authors’ knowledge, this is the first time GA

optimised fuzzy logic models have been systemati-

cally used for modelling of these properties. There is

a primary advantage to the use of a fuzzy logic-based

modelling scheme as compared to conventional math-

ematical methods; fuzzy logic reduces the difficulties

of modelling complex systems.

With the aid of optimization techniques, a fuzzy

inference system can be created that accurately char-

acterizes dynamic behaviour of a muscle. The most

important point is that GAs are intrinsically parallel,

which allows them to implicitly evaluate many schema

at once. GAs are particularly well-suited to solving

problems where the space of all potential solutions is

truly huge such as nonlinear problems [1]. Nonlinearity

is the norm, where changing one component may have

ripple effects on the entire system, and where multiple

changes that individually are detrimental may lead to

much greater improvements in fitness when combined.

Therefore, fuzzy model with genetic optimization has

been used to eliminate the development of complex

mathematical model and help to simplify the modelling

task.

Fuzzy models with more membership functions

could produce better fits, but the problem with long
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computing times rapidly become more severe as the

number of rules increases. In order to reduce the sys-

tem’s computational time, the 125 rule base designed

previously are optimized and reduced to 55 rules using

MOGA as explained in section 2.8. Another contribu-

tion of this study is in the use of optimisation tools to

estimate the values of anthropometric inertia parameter

for each subject based on pendulum test. The anthro-

pometric inertia parameters in these equations have

been estimated within given ranges using GA. This

could be an easy method to estimate these parameters

without going through complicated experiments since

these parameters vary for each subject. Finally, such a

model can be utilized as a platform for simulation of

the system and development of control approaches.

5. Conclusion

A new approach of modelling the knee joint of

an SCI patient has been presented. While the esti-

mated models exhibited good prediction capabilities,

it is comparatively less burdened with complex math-

ematics. The study has identified some of the potential

benefits of using fuzzy logic and GA. In comparison

with conventional quantitative techniques, fuzzy logic

is simpler to implement as it eliminates the compli-

cated mathematical modelling process and uses a set

of fuzzy rules instead. A generic methodology has been

presented that can be adopted for accurate modelling

of knee joints of specific individuals with SCI. Iden-

tifying a generic and robust part of this model along

with minimal set of subject-specific parameters could

potentially comprise future work on the current mod-

elling techniques. Future work may also include using

this model as part of a larger musculoskeletal model of

the lower limb for computer simulation studies.
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