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Abstract - In this paper, a fuzzy model for
power system operation is presented. Uncertainties in
loads and generations are modelled as fuzzy
numbers. System behavior under known (while
uncertain) injections is dealt with by a DC fuzzy power
flow model. System optimal (while uncertain)
operation is calculated with linear programming
procedures where the problem nature and structure
allows some efficient techniques such as Dantzig
Wolfe decomposition and dual simplex to be used.
Among the results, one obtains a fuzzy cost value for
system operation and possibility distributions for
branch power flows and power generations. Some risk
analysis is possible, as system robustness and
exposure indices can be derived and hedging policies
can be investigated.

INTRODUCTION

Recently, some papers have been published
on the subject of "fuzzy load flow" [1,2]. Uncertainty in
loads and power generations was directly taken in
account with the help of concepts from the fuzzy set
theory. In fact, one of Lofti Zadeh's contributions to
system modelling is the representation of vague,
incomplete knowledge or qualitative information that
does not have a random nature and therefore cannot
be represented by a probabilistic approach. Fuzzy set
theory provided also a basis for the interpretation of
membership functions as possibility distributions
[3,4,5,6], which is a very useful concept in many
practical applications.

Fuzzy load data are given under the form of
possibility distributions for loads and generations.
These distributions can be derived from qualitative
assessment or linguistic declarations such as a simple
" load in bus k will be more or less  10 MW". In this
paper, we will not go deeply into these representation
techniques, but several approaches have been
proposed and we would like to mention references
[7,8] for their simplicity and psychological background.
In planning studies, uncertainty in loads derives from
load forecasting which is, in one way or another,
related to the economic and political scenarios that
have been considered.

The results of a fuzzy load flow study are
mainly the possibility distributions of line power flows
and node voltages. Some immediate and interesting
conclusions may be obtained from them, considering
that they represent globally and in a lumped form a
whole set of scenarios examined at one time, with
their degree of possibility (or credibility, if desired).
Line flow and node voltage sensitivity to power
injection uncertainty are readily available, and "what
may happen" in a human sense can be provided as a
result, with increased information value if channeled
through an adequate man-machine interface.

As fuzzy flows are related to a feasibility idea,
one would like to go a little further into an operation
concept, in the sense that power generation is driven
by economics and therefore uncertainty in future loads
implies uncertainty in dispatch decisions. The present
paper presents a first approach to this concern.

In order to represent this operational feature,
one must in some way try to "optimize" the uncertainty
in generation costs. As this means combining
optimization and power flows, we reach a fuzzy
optimal power flow (FOPF) workframe; at the
present stage of evolution, the tool developed uses
DC fuzzy load flow model and linear programming.

As it will be shown, FOPF can be used not
only to calculate power injection and line flow
possibility distributions (under the assumption that the
system will be operated as economically as possible)
but also to assess the robustness of the system
performance and the degree of exposure to an
uncertain future.

ABOUT FUZZY SET THEORY

Basic concepts

Fuzzy Set theory can be considered as an
extension of n-valued logic if the number of the
admissible logic values tends to infinity. For instance,
given a subset  X1 of an universe X, the membership
degree of an element x1 to X1 is included in:

- {0,1} in Boole's logic;
- {0,0.5,1} in Lukasiewicz's trivalued logic;
- [0,1] if normalized fuzzy sets are considered.

According to (1), a fuzzy set Ã is characterized
by a membership function µÃ(x) relating each element
x1 to its compatibility degree with X1. In this case, the
transition between the extreme situations of full and



complete lack of membership is gradual. In certain
circumstances, a fuzzy set can be associated to a
possibility distribution. In such cases, the membership
function corresponds to a possibility distribution
function.

Ã = {(x1,µÃ(x1)), x1∈ X1} (1)

An  α-level set or an  α-core of a fuzzy set Ã
defined in X1  is the hard set Aα  obtained from Ã for
each  α∈ [0,1] such that:

Aα  = {x1∈ X1 : µÃ(x1) ≥ α } (2)

The support set of a fuzzy set Ã, S(Ã), is the
hard set containing the elements of X1 having their
membership function in ]0,1].

A fuzzy set Ã is said to be a fuzzy number,
FN, if it is a convex fuzzy set of the real line R such
that its membership function is piecewise continuous.

Algebraic operations involving fuzzy sets

The usual algebraic operations can be readily
extended to fuzzy sets using the Extension Principle
formulated by Zadeh.  In particular, given the fuzzy
sets Ã and Õ, the addition Ã+Õ is calculated by (4)
and (5). The product of a fuzzy set Ã by a real c is
given by (6) and (7).

Õ = {(y1,µÕ(y1)), y1∈ X1} (3)

Ã+Õ = {(z1,µÃ+Õ(z1)), z1∈ X1} (4)

µÃ+Õ(z1) = max { min [µÃ(x1),µÕ(y1)]} (5)
                z1=x1+y1

c.Ã = {(x1,µcÃ(x1)),x1∈ X1} (6)

µcÃ (x) = µÃ(c.x) (7)

It should be emphasized that the max-min
convolution used to extend several algebraic
operations fuzzy sets is much simpler than if
probabilistic concepts are considered. This fact
strongly contributes to make algebraic operations with
fuzzy sets very efficient in a computational framework.

Ordering (?) of fuzzy numbers [9]

 The removal of a fuzzy set Ã regarding a real
k, Rem(Ã,k), is defined as the mean value of its left
and right removals which correspond to the areas A1
and A1+A2 of Fig. 1, respectively.

Fig. 1. Left and right removals of a fuzzy number Ã.

Rem(Ã,k) can be considered to be associated
to the distance from Ã to k. However, this ordering is
not strict. In other words, in general there is not an
injective correspondence between a set of fuzzy sets
and R. In the attempt to establish an ordering, some
undecided situations may be solved with other criteria
such as the mean value or the amplitude of S(Ã). For
practical purposes, however, the successive
application of these three criteria is satisfactory.

Fig. 2. Trapezoidal fuzzy number.

If one considers the trapezoidal FN Ã
represented in Fig. 2, its removal for k=0 is given by

Rem(Ã,0) = (x1+ x2 + x3 + x4)/4 

A FN such as Ã is usually represented by its
breaking points:

Ã <=> (x1, x2, x3, x4)

UNCERTAIN LOAD AND GENERATION
REPRESENTATION

An uncertain load will be represented by a
fuzzy number which is in fact a membership function
over the real set. FNs may have a variety of shapes
(within some conditions) but for simplicity we will deal
mainly with data represented by trapezoidal
membership functions (with triangular ones as a
special case). A linguistic declaration such as
"peak values will surely not occur below 10 or above
30 MW, and the best estimate is, say, between 20 and
25 MW"
will be translated into a FN such as in Fig. 3.



Fig. 3 - FN representing a qualitative linguistic load
prediction.

As far as generation is concerned, one must
distinguish two cases, namely controllable and
uncontrolable power sources:

a) controllable power sources - they refer to
power stations or other power injection facilities
operated by the utility who performs the study: their
possibility distributions will come as a result of the
FOPF study;

b) uncontrolable power sources - in some
studies, these are related with independent power
producers that due to governmental or contract
regulations can inject power in the system without
dispatch control; in other cases (mainly in distribution
systems), these may represent the presence of eolic
sources: their possibility distributions must be given as
data to the model.

PROPOSED METHODOLOGY

The OPF is usually defined as an optimization
problem where one aims at identifying the best
operation point of an electrical network under some
criteria subject to operational and security constraints
[10].

When loads or generations are described in
terms of possibility distributions the problem turns into
Fuzzy Optimal Power Flow. In this paper, we use a
DC fuzzy power flow model, for its simplicity. In the
following paragraphs, a general incremental approach
is adopted so that linearization errors and problem
dimension are kept within acceptable limits.

Fuzzy DC Power Flow

A fuzzy description of the bus angles and
active power flows can be obtained using an
incremental DC model considering the following steps:

a) a deterministic DC load flow is previously run using
the specified injected active powers associated with
the medium point of their possibility distributions.
Thus, deterministic values for the angles (θd) and
active power flows (Pdik) are obtained.

b) the possibility distributions (∆Pi) of the deviations
from the specified active injected powers (Pi)
regarding the deterministic values (Pdi) are evaluated.

c) the possibility distributions of both bus angle
deviations and active power flow deviations can be
evaluated considering the DC model matrix [B] and
the sensitivity coefficient matrix [A]. The possibility
distributions of bus angles and active power flows are
obtained by superimposing their respective
increments to the deterministic values.

 [∆θ]    = [B]-1.[ ∆P] (10)
  [∆Pik] = [A].[ ∆P] (11)

Generator modelling

The generator cost functions are linearized in
a known way namely for the generators having non
linear convex cost functions. These are decomposed
in two or more linear sections according to its
nonlinearity degree. In other words, these generators
are represented by a number of fictitious generators
having constant incremental costs.

Objective function

The attribute to be minimized is the
(uncertain) cost of energy generation needed to meet
uncertain load requirements. It is translated into an
objective function resulting from the addition of fuzzy
numbers. The ordering in the attribute space is
imposed by taking the removal of the fuzzy objective
value.

              ng
Z = Σ ai.Gi (

             i=1
where

- ng- number of generators;
- ai - incremental cost of generator i;
- Gi - fuzzy generation at bus i.

Operational constraints

As we use a DC power flow formulation, no
transmission losses are considered. Therefore, the
uncertainty in loads is directly related to uncertainty in
generations. If loads and generations are represented
by trapezoidal FNs, one has the following power
balance equation

        ng
         Σ  Gi  +  Guc  =  L (
       i=1

Gi <=> (Gi1, Gi2, Gi3, Gi4) (
Guc <=> (Guc1, Guc2, Guc3, Guc4) (
L <=> (L1, L2, L3, L4) (

where
- Gi - generation possibility distribution  of

generator i;
- Guc - possibility distribution of generated

power by uncontrolled sources;
- L - total load possibility distribution;

The deconvolution of this fuzzy equation can
be achieved by decomposing it in the following four
algebraic equations:

       ng
        Σ Gik  =  Lk  -  Guck           k=1,...,4 (
       i=1

Security constraints



The security constraints are considered in
classical OPF studies to obtain operating points
satisfying certain maximum and minimum values of
some variables. In the FOPF model, constraints
related to thermal limits in the network branches are
included under the form of power flow limits. The
constraint corresponding to branch l is given by:

 ]Plmin,Plmax[ ⊃ S(Pl)                      l=1,..,nl (18)

where
- Pl - possibility distribution of line l active

power flow;
- Plmin and Plmax - extreme admissible values

of branch l active power flow;
- nl - number of network branches.

It should be stressed that using the known
sensitivity coefficient matrix [A], it is possible to
express this type of constraints in terms of the
injected powers and, thus, of the control variables.

Complete model

The complete model is a minimization
problem formed by objective function (12) and
constraints (17) and (18). Besides, the following
constraints related to generators must also be
included:

Gimin≤Gi1≤Gi2≤Gi3≤Gi4≤Gimax      i=1,...,ng (19)

These constraints are included to ensure that
generation possibility distributions preserve the
increasing nature of their support sets.

Considering a network having ng generators
and nl branches this model incorporates:

- 4.ng  variables;
- 4 + 5.ng  + 5.nl  constraints.

The high number of constraints and variables
not only suggests but also advises the use of an
incremental methodology when a FOPF study is to be
performed considering a large network.

FOPF algorithm

The proposed incremental methodology starts
from an operating point that satisfies the power
balance equation. The violated limits of generation
and power flows are then identified. After selecting the
most severe power flow violation the related
constraints are incorporated in an incremental
optimization model. As a result of this incremental
study, one gets the deviations of the initial generations
needed to cancel the selected violation. The number
of violated limits of both generation and power flows is
generally a small percentage of the total possible
ones. Thus, the optimal solution can be identified by
solving problems of small dimension when compared

to the complete ones. The FOPF algorithm flowchart
is presented in Fig. 4. Its basic steps will be described
in the following paragraphs.

A - Considering that loads and generations are
represented by trapezoidal fuzzy numbers, the basic
fuzzy dispatch is formulated as:

            ng        4
Min Z = Σ   ai  . Σ  Gik/4 (20)
              i=1     k=1

ng 
Σ   Gik  =  Lk - Guck        k=1,...,4 (21)

            i=1
          Gimin≤Gi1≤Gi2≤Gi3≤Gi4≤Gimax i=1,...,ng  (22)

This is a linear optimization problem having
four coupling constraints and ng sets of constraints
each one related to each generator. The coefficient
matrix of this problem has a block diagonal structure
so that the Dantzig Wolfe decomposition principle can
be used to solve it. In this case, the master problem
has 4+ng constraints and there are ng subproblems
having, each one, 5 constraints.

Fig. 4.  FOPF algorithm flowchart.

B - The linear incremental model is used to redispatch
some generations so that the most severe power flow
violation is canceled. Let us consider deviations ∆Gik
(k=1,...,4) related to the several generators. These
variables can have either negative or positive values
so that they will have to be substituted by differences
of non-negative ones. The linear incremental model is
formed by:



a) Power balance incremental equation

If the initial basic generations are to be
changed by ∆Gik (k=1,...,4), the power balance
incremental equation is given by:

        ng
         Σ   ∆Gik  = 0                           k=1,..,4  (23)
       i=1

b) Incremental constraints related to the most severe
power flow violation

Let us suppose the violation of the maximum
power flow limit on branch l was found to be the most
severe one. This power flow can be expressed,
through sensitivity coefficients, in terms of the injected
powers. As it is only possible to change the generated
powers of controlled generators one would get:

                   ng                           n
(Pl + ∆Pl) = Σ  ali. (Pi + ∆Pi)  +  Σ  ali . Pi (24)
                  i=2                          i=ng+1

where
- (Pl+∆Pl) - new possibility distribution of

branch l power flow;
- (Pi+∆Pi) - new possibility distribution of

controlled i node injected power;
- Pi - possibility distribution of injected power

other nodes;
- ali - sensitivity coefficient of branch l/node i;
- n - number of network nodes. Node 1 is

assumed to be the angle reference.

As loads possibility distributions are constant,
the deviations of the ng injected powers are, in fact,
deviations of controlled generations. Thus, it is
possible to derive the following four constraints:

   Σali. ∆Gik+Σali. ∆Gi(5-k)≤Plmax-Plk   k=1,...,4 (25)
 i∈ ng1              i∈ ng2

where
- ng1 and ng2 - subsets of nodes having

controlled generators whose elements in branch l of
the sensitivity coefficient matrix [A] are either positive
or negative;

- Plmax - branch l power flow maximum
admissible value;

- Plk - k element of branch l power flow
possibility distribution.

 c) Constraints related to the generators

The incremental model will also have to
incorporate constraints to ensure that the increasing
nature of the generation possibility distribution support
set is not violated. In incremental terms we get:

Gik+∆Gik≤Gi(k+1)+∆Gi(k+1)  k=1,2,3 i=1,...,ng (26)

d) Objective function

The objective function to be minimized is now
given by the summation of the production costs
related to the initial possibility distribution deviations.
Thus, we have:

           ng        4
∆Z =    Σ   ai   Σ  ∆Gik/4 (27)

              i=1     k=1

The coefficient matrix of this linear problem
keeps a block diagonal structure and the Dantzig
Wolfe decomposition principle can be still applied.

C - The generation possibility distributions can now be
recalculated as a result of solving the previous
incremental problem. Regarding generator i one
would get:

Gi'<=>(Gi1+∆Gi1,Gi2+∆Gi2,Gi3+∆Gi3,Gi4+∆Gi4)(28)

These new distributions can violate either their
minimum or maximum admissible values. If the
minimum was violated, constraint (29) will be
incorporated in the incremental model, while this will
occur with constraint (30) if the maximum was
violated.

Gi1+∆Gi1 ≤ Gimin (29)
Gi4+∆Gi4 ≤ Gimax (30)

The block diagonal structure of the coefficient
matrix is not destroyed by the successive
incorporation of these constraints. The solution of the
augmented problem from the beginning is not
necessary if one considers that the solution of the
incremental problem obtained in the previous iteration
remains optimal but not admissible. This fact
suggests the use of dual simplex techniques to
overcome the non admissibility.

Solution using  α- cuts

In the previous iteration scheme it was
considered that generator and power flow possibility
distributions were always described by trapezoidal
fuzzy numbers. However, when a violation, as
represented in Fig. 5, occurs the problem can be
solved by redispatching only the fuzzy subset between
Plmax and Pl4. This can be achieved considering, in
the generator possibility distributions, variables related
to this α-cut.

This kind of situation can also occur when a
generator limit violation is identified.  This technique
leads to a new way of looking at the objective function
as the removal expression changes when a new α-cut
is considered. The expression of the objective
function must be changed to the new expression of



the removal, but nevertheless  it  remains  linear.
Besides, a  progressive increasing

Fig. 5.  Violation of a power flow related to an α- cut.

of problem dimension occurs both in terms of
variables and constraints. However, the generation
and power flow possibility distributions will also be
allowed to lose their initial trapezoidal shape. Thus,
one gets a more flexible problem as there is a larger
number of possible solutions to be analyzed. Finally, it
should be emphasized that this problem remains
linear as the generator possibility distributions are
characterized by linear sections between α-cuts.

ROBUSTNESS, EXPOSURE AND HEDGING

The concepts of robustness and exposure are
part of the general workframe of risk analysis; on
power system applications they have been well
summarized in ref. [11].

If, as a result of a FOPF study, a feasible
solution for the possibility distributions of both power
injection and line power flow has been reached, then
the configuration under study must be taken as fully
robust for the whole set of scenarios underlying the
assumed load uncertainties.

However, many cases will only be possible for
a given α-cut level or above. Below that level, either
line power flow possibility at some lines or power
generation possibility at some nodes go beyond
preset limits. In this case, the system may be said as
(1- α) robust, having an α degree of exposure. This
degree comes associated with the network element
which has its limit violated for a higher α value. One
may therefore rank system components as for
exposure degrees by systematically allowing the
relaxation of the most exposed constraint (by, for
example, a reasonable power step) and so identify the
critical elements in a network for which reinforcement
strategies should first be considered.

For instance, if one finds that a link k imposes
a degree of exposure of 0.6 and reinforcing its
capacity (say by an amount of 10 MW) causes
another line j to impose a degree of exposure of 0.4,
one can say that an exposure reduction of 0.2 could
be obtained at the cost of  increasing 10 MW in line k
capacity. We are therefore also in face of a proposal
for a hedging policy.

It must be underlined that the measure of
degree of exposure mentioned above is not at all

related with probabilistic concepts, and thus has not
been expressed in percentage values. It depends only
on the qualitative assessment by the engineer or the
decision maker of the possibility of different future
scenarios (or their degree of credibility). In this we
differ from other proposals that deal with this same
problem, where a confusion between probabilities
(subjective probabilities, in fact) and possibilities may
be detected. Usually these items are not dealt within a
rigorous theoretical frame.

It must also be said that an approach by
bounded intervals is coherent and may be seen as a
particular case of a fuzzy set approach, where for
instance the membership functions would be all
rectangular and with value 1 over the intervals and 0
outside.

Indices of robustness and exposure calculation

The indices of robustness and exposure of an
electric system can be evaluated by performing
several incremental studies for different α-cut levels.
The selection of the next α-cut to be used can be
guided by a process similar to the bisection method
applied, for instance, to the solution of non linear
equations. Admit that it is found that the system has
no solution for the initial specified imprecision, that is
for α=0; in the next step the α=1 level will be tried. If
the FOPF doesn't also have a solution for this level
the system can't even accommodate the loads related
to the least specified imprecision. If there is a solution
for α=1 another incremental study for α=0.5 will be
run. This iterative process can go on until a desired
pre-established precision is obtained.

Improvement of system robustness

When one wishes to improve the system
robustness index, two questions can be devised:

a) How will it be possible to improve the system
robustness index by a given amount?

To answer this question it is essential to
identify the constraint, or constraints, whose violation
is responsible for a given value of the robustness
index. This can be achieved, for instance, by
performing an incremental study for a level just below
the exposure index α. This study won't have a
solution but it will be possible to identify the referred
constraints through the inspection of the simplex
tableau available when the non admissibility is
detected. The resources related to those constraints
will be the ones to be increased or decreased,
depending on the constraints, if the robustness index
is to be improved. The quantification of the resources
to be altered will be achieved by performing a number
of incremental FOPF studies for increased or
decreased values of those resources until the desired
α is reached. In fact, this corresponds to a parametric



study involving the independent terms of some
constraints of the linear incremental model.

b) What will it be the impact on α of increasing a
generator or power flow limit?

Let us suppose that a constraint responsible
for a given level of the exposure index is identified.
The planner admits a change in the related resource
by a given amount. However, he wishes to estimate
the improvement of the exposure index. This
evaluation can be obtained, for instance, by
performing an iterative bisection process similar to the
one previously described. The levels to be
investigated are now in the interval [0, α[, where α is
the initial exposure index.

APPLICATION EXAMPLE

System data

For the sake of clarity, the proposed
methodology is exemplified using a very small system
such as the 6 bus/6 branch network presented in Fig.
6. The corresponding data are given in tables 1, 2 and
3.

Fig. 6. Network used to exemplify the proposed
methodology.

  generator    section   Gimim    Gimax    increm. cost
                                     (MW)     (MW)      ($/MWhour)

1    1    0.0  50.0 1000.0
1    2    0.0  40.0 3000.0
1    3    0.0  40.0 6000.0
2    1  20.0  60.0   500.0
2    2    0.0  50.0 1000.0
2    3    0.0  20.0    2000.0
6    1  10.0  60.0 1000.0
6    2    0.0  50.0 2000.0

Tab. 1 Generator data.

        Bus i             Li1          Li2           Li3          Li4
                           (MW)     (MW)     (MW)    (MW)

2 10.0 15.0 20.0 25.0
3 100.0 110.0 120.0 130.0
4 50.0 60.0 65.0 70.0
5 40.0 45.0 50.0 60.0
6 10.0 15.0 20.0 25.0

Tab. 2 Load trapezoidal possibility distributions.

     branch  sending   receiving            x            Pijmax       
     number   bus            bus              (pu)         (MW)

1 1 2 0.0057   80.0
2 1 3 0.0057 112.0
3 2 3 0.0084 100.0
4 3 4 0.0164 100.0
5 4 5 0.0078   80.0
6 5 6 0.0078 110.0

Tab. 3 Line and transformer data.

FOPF algorithm calculations

The model (20) to (22) was used to evaluate
the initial power dispatch presented in Tab. 4.

 generator  section    Gij1         Gij2        Gij3       Gij4
                                (MW)       (MW)     (MW)     (MW)
       1 1 40.0 50.0 50.0 50.0

1 2 0.0 0.0 0.0 20.0
1 3 0.0 0.0 0.0  0.0
2 1 60.0 60.0 60.0 60.0
2 2 50.0 50.0 50.0 50.0
2 3   0.0 20.0 20.0 20.0
6 1 60.0 60.0 60.0 60.0
6 2   0.0   5.0 35.0 50.0
Tab. 4  Generator initial trapezoidal possibility

distributions.

The generated active powers are, thus, given
by:

G1 <=> (40.0 ; 50.0 ; 50.0 ; 70.0) MW
G2 <=> (110.0 ; 130.0 ; 130.0 ; 130.0) MW
G6 <=> (60.0 ; 65.0 ; 95.0 ; 110.0) MW

These generation possibility distributions will
now be used to evaluate the power flow possibility
distributions using the DC fuzzy power flow model.
The corresponding trapezoidal distributions are given
in tab. 5.

   branch          Pl1             Pl2           Pl3              Pl4
   number       (MW)         (MW)       (MW)          (MW)
       1  -59.6 -43.0 -23.6  -4.2

2   29.6  63.0 103.6 135.8
3   50.4   70.5  87.8  99.3
4    -1.0   25.0  70.0  95.0
5  -60.0 -35.0    5.0  25.0
6 -100.0 -80.0 -50.0 -35.0

Tab. 5. Power flow trapezoidal possibility distributions.

According to these results, the maximum limit
of line 2 power flow was violated. The related α level
is 0.7326. This violation will now be canceled by
solving the incremental linear model described by
(23), (25), (26), (27), (29) and (30). It must also be
said that each generation will now be described by 6
variables as an α-cut is now considered. The solution
of this incremental linear model produces deviations
that will be superimposed on the initial generation



possibility distributions. However, a solution that does
not violate any generator limit is only identified after
incorporating in the incremental model 9 constraints
related to minimum or maximum generator limits.
After performing this iterative process it is possible to
evaluate the generations referred to in tab. 6.

 gen. section  Gi1    Gi2      Gi3       Gi4    Gi5      Gi6
                     (MW) (MW) (MW) (MW)  (MW)   (MW)

1 1   6.6 28.6 41.6 50.0 50.0 50.0
1 2   0.0   0.0   0.0   0.0 0.0 20.0
1 3   0.0   0.0   0.0   0.0 0.0 0.0
2 1 60.0 60.0 60.0 60.0 60.0 60.0
2 2 50.0 50.0 50.0 50.0 50.0 50.0
2 3   0.0   0.0   0.0 20.0 20.0 20.0
6 1 60.0 60.0 60.0 60.0 60.0 60.0
6 2 33.4 33.4 33.4 35.0 44.4 50.0

    Tab. 6. New generation non trapezoidal possibility
distributions.

The new generated active power possibility
distributions are, thus, given by:

G1 <=> (6.6; 28.6 ; 41.6 ; 50.0 ; 50.0 ; 70.0) MW
G2 <=> (110.0;10.0;110.0;130.0;130.0;130.0) MW
G6 <=> (93.4 ; 93.4; 93.4 ; 95.0 ; 104.4 ; 110.0) MW

The possibility distributions of G1 and G6 are
presented in Fig. 7. It should be noted that these
distributions have breaking points at level 0.7326 due
to the related α-cut.

Fig. 7. Generation G1 and G6 possibility distributions.

Afterwards, the DC fuzzy power flow model
was used to evaluate the power flow possibility
distributions (tab. 7). The branch 4 and 6 power flow
possibility distributions are presented in Fig. 8. The
transformer power flow possibility distribution is
specially interesting as a reversion of the power flow,
for the specified uncertainty conditions, can be
detected. This could have, for instance, implications in
plant design and protection project.

branch    Pl1      Pl2       Pl3        Pl4         Pl5        Pl6
              (MW)     (MW)     (MW)      (MW)       (MW)
(MW)

1 -59.6 -49.0 -43.0 -17.6 -14.3 5.4
2  29.5  50.3  63.0  89.2 95.3 112.0
3  50.4  59.4  64.8  79.7 82.3 89.7
4 -10.0  10.3  25.0  41.6 47.0 61.6
5 -60.0 -47.0 -35.0 -23.4 -19.4 -8.4
6 -100.0 -90.7 -80.0 -73.4 -72.0 -68.4

Tab. 7  New power flow non trapezoidal possibility
distributions.

The new power flow distributions don't violate
any limit and therefore this solution is considered
optimal. In this case, the system has a solution for
every future scenario of loads underlying the assumed
uncertainty. Therefore, the system exposure index is
0.0, and the corresponding robustness index is 1.0.

Fig. 8. Transf. 4 and branch 6 power flow possibility
distributions.

Hedging strategy

Let us now admit that the power flow limits of
lines 3 and 6 were originally reduced to 70.0 and 80.0
MW, respectively. The incremental FOPF model will
now reveal that no generation possibility distributions
are able to meet the load uncertainty. Thus, it is
possible to evaluate the exposure and robustness
index performing the bisection iterative process
already described. This process would then lead us
to:

- exposure index    -            α = 0.455
- robustness index -      1- α  = 0.545

Finally, an improvement in the robustness
index of 20% is looked for setting an α target of α´=
0.364. By performing an incremental study for a level
just below α = 0.455 it is possible to identify the
constraint responsible for the non existence of
solutions for α´∈  [0,α[. In this case one concludes
that line 6 power flow inferior limit has to be increased
to improve the robustness index. The new value of
line 6 power flow inferior limit is evaluated by
performing a parametric study involving the 4
constraints related to the violation of this line inferior
limit. In this case, it is sufficient to change this limit
from 80.0 to 84.0 MW to guarantee α' = 0.364.



CONCLUSIONS

Dealing with forecasting (specially about the
future...) is extremely complex and a need has been
always felt for tools to work within a frame of
uncertainties. It is now recognized that probabilistic
approaches cannot model every kind of uncertainty,
and that those having a qualitative nature find in the
fuzzy set theory an adequate treatment. With the work
described in this paper, we have shown that
uncertainties in loads or generations (not of
probabilistic type) can be incorporated into power
system models so as to give a better (while uncertain)
image of system behavior.

In fact, from a DC fuzzy power flow model one
can derive possibility distributions of branch power
flows from known uncertainty in injected powers. This
analysis will always act as a constraint in dispatch
decisions, driven by an economic objective.
Therefore, the uncertainty in these decisions depends
not only on load imprecision but also on eventual
corrective measures to insure safe system operation.
This global uncertainty, by itself, would lead to a large
set of possible decisions; however, an ordering can be
imposed in this set in such a way that, in some sense,
operation cost and its uncertainty are both minimized.

It can be shown (and not surprisingly) that the
optimal fuzzy solutions differ in many cases from
those that would have been calculated if only the
central values of the possibility distributions were
taken. In fact, this seems to be a more realistic
system operation forecasting modelling than any
deterministic studies.

As a consequence of dealing with fuzzy
events, a whole set of load scenarios is analyzed at
one time, discarding the need for expensive
simulation studies. A direct result of this is having
measures of system robustness and exposure to
uncertain future scenarios available, and being able to
easily identify the critical network elements. Hedging
policies can also be investigated, either by setting as
target a system robustness value or by analyzing the
effect of reinforcements at critical places on the
exposure index.

Although several aspects of system behavior
are not yet dealt with in this paper, it seems a
promising research area to combine the fuzzy
approach with probabilistic modelling of, for instance,
forced outages of system components. Theoretical
tools for such combined analysis of probabilistic and
fuzzy numbers are available.
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