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Abstract. The paper presents difficulties connected with fuzzy and interval division. If operations such as fuzzy addition, subtraction and mul-

tiplication provide as a result one compact, multidimensional granule, then a result of the fuzzy division can consists of few separated granules. 

Such results are more difficult to use in next calculations. The paper shows that the number of solution granules can be higher than 2 and that 

in certain problems division does not occur explicitly. In certain problems, separation of particular solution granules can be considerable. The 

paper also shows how to realize the fuzzy division when its denominator contains zero. Most types of fuzzy arithmetics forbid such operation. 

However, the paper shows that it is possible. Multidimensional fuzzy RDM arithmetic and horizontal membership functions which facilitate 

detecting of solution granules are also described. The considered problems are visualized by examples.
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larity phenomenon occurs always when the uncertain divisor 

contains zero. If the divisor does not contain zero, then the 

division result always consists of a single granule. Examination 

of the problem has shown that if the multi-granularity occurs 

then the result usually consists of 2 granules, which is intui-

tively understandable. However, the division result can some-

times consist of more granules, e.g. of 4. The next surprising 

observation is that the distance between component granules, 

which intuitively should be infinitely small, can sometimes be 

quite considerable.

The multi-granularity of division result has been observed 

thanks to the application of a new type of fuzzy arithmetic 
that was called multidimensional fuzzy RDM arithmetic 

(MD-F-RDM arithmetic). In papers on other existing types 

of fuzzy arithmetic, the multi-granularity phenomenon has 

not been investigated because of a simple reason: the division 

by the fuzzy divisor containing zero is not allowed. More-

over, mathematical properties of these arithmetic types do 

not allow for such analysis. MD-F-RDM, which is shortly 

presented in Section 2, allows for this kind of division.
The paper is organized as follows: Section 1 describes new, 

horizontal membership functions (MFs) that are the basis of 

MD-F-RDM arithmetic. Other fuzzy arithmetic types use con-

ventional, vertical MFs. Horizontal MFs considerably facili-

tate fuzzy calculations. A characteristic feature of MD-F-RDM 

arithmetic is that its calculation result is not a typical fuzzy 

set, but a multidimensional fuzzy solution set (MDFS-set). 

Such a set has properties of a complete, algebraic solution 

set and gives MD-F-RDM arithmetic properties which other 

fuzzy arithmetic types do not have. These properties are men-

tioned in Section 3. An additional property that has not been 

described in this section is the restoration property, owing 

to which MD-F-RDM arithmetic is able to satisfy the for-

ward-backward calculation test. In Section 4, various exam-

ples of multi-granularity have been described. Among them, 

1. Introduction

Fuzzy arithmetic (FA) [1–7] is an extension of the interval arith-

metic (IA) [4, 8]. It extends a calculation domain from standard 

intervals to fuzzy intervals or fuzzy numbers. Both kinds of 
arithmetic are very important for the uncertainty theory [9], 

granular computing [4], grey systems [10] and computing with 

words [11, 12]. IA and FA are necessary for solving linear and 

nonlinear systems of equations with uncertain coefficients [4]. 

Such systems describe real economic, engineering, medical, en-

vironmental protection (and many other) problems [13–16]. FA 

is a basis for intuitionistic fuzzy arithmetic [17, 18]. It is also ap-

plied in rough-set problems to increase the solution quality [19].

FA meets with considerable interest of scientists and has 

been developed for many years. Numerous FA methods have 

been elaborated, e.g. L-R fuzzy arithmetic [20, 21], FA based 

on discretized fuzzy numbers and on the extension principle of 

Zadeh [22], FA using decomposed fuzzy membership functions 

(standard IA with α-cuts) [22], advanced FA based on transfor-

mation method [23], constrained FA [22] etc. An overview of 

FA methods can be found in [3]. Some of FA methods allow to 

find a solution of simpler problems analytically, but more com-

plicated ones must be solved numerically. All the time, we ob-

serve the emergence of new FA methods, so the question arises: 

what is the reason of such situation? Are existing methods not 

sufficiently effective?

The motivation of this paper is to present a phenomenon 

which can occur during the division of fuzzy numbers, intervals 

and other granular models of uncertain data. This phenomenon 

consists in a multi-granular division result and it does not occur 

in a division of conventional crisp numbers. The multi-granu-



498 Bull.  Pol.  Ac.:  Tech.  65(4)  2017

A. Piegat and M. Pluciński

examples of multi-granularity greater than 2. Observation of 

the multi-granularity was possible thanks to MD-F-RDM arith-

metic, which uses in calculations not only borders of intervals 

but also their insides. In Section 4, a real problem in which the 

multi-granularity can occur is also presented. It is the known 
system-balance problem of Leontief in which an economic 

country-system is described by a set of linear equation. Since 

at least a part of system parameters is uncertain, its determi-

nant is also uncertain and can contain zero. Hence, the fuzzy 

solution set can be multi-granular.

Further on, a short description of the best known and fre-

quently used standard fuzzy arithmetic [24] based on standard 

interval arithmetic [8] will be presented.

Uncertain values can be modelled in various ways. A very 

popular form is an interval [8]. Its definition is as follows: 

closed interval denoted by [a, b] is the set of real numbers 

given by (1).
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Further on, a short description of the best known and fre-

popular form is an interval [8]. Its definition is as follows:

[a,b] = {x ∈ R : a ≤ x ≤ b}

intervals (FI) [24]. FN and FI are special fuzzy sets defined

real, not precisely known, values of variables.
defined on

common ways of defining the extended operations are based on

tions on fuzzy intervals are defined in terms of arithmetic op

operations defined by (4) and (5)

Currently known methods are not perfect and can be im-

 (1)

Fuzzy arithmetic deals with fuzzy numbers (FN) and fuzzy 
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Further on, a short description of the best known and fre-

popular form is an interval [8]. Its definition is as follows:

intervals (FI) [24]. FN and FI are special fuzzy sets defined
bers R.

real, not precisely known, values of variables.
defined on

common ways of defining the extended operations are based on

tions on fuzzy intervals are defined in terms of arithmetic op

operations defined by (4) and (5)

Currently known methods are not perfect and can be im-

, then 

this special fuzzy interval is called a fuzzy number. A conve-

nient way of expressing any fuzzy interval A is the canonical 

form:

 

A. Piegat, M. Pluciński
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, fL is a real-valued function that is increasing and 

right-continuous, fR is a real-valued function that is decreasing 

and left-continuous. fL and fR can be called left and right border 

of A. a, b, c, d are real numbers such that a ∙ b ∙ c ∙ d. When 

b = c, A is a fuzzy number. When fL and fR are linear functions 

we obtain a special type of fuzzy intervals called trapezoidal 

fuzzy intervals, which are dominant in applications. Any trap-

ezoidal fuzzy interval A is fully characterized by the quadruple 

(a, b, c, d) of real numbers occurring in the special canonical 

form (3) (see Fig. 1).
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 (3)

Let A = (a, b, c, d) be used as a shorthand notation of trap-

ezoidal fuzzy intervals. When b = c in (3), A is usually called 

a triangular fuzzy number.

The most widely used fuzzy arithmetic is called standard 

fuzzy arithmetic (SFA). In SFA, basic arithmetic operations on 

real numbers are extended to operations on fuzzy intervals. Two 

common ways of defining the extended operations are based on 

the μ-cut representation of fuzzy intervals and on the extension 

principle of fuzzy set theory [20].

When the μ-cut representation is applied, arithmetic opera-

tions on fuzzy intervals are defined in terms of arithmetic oper-

ations on closed intervals [8]. If we have two intervals [a1, a2] 
and [b1, b2] then:
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Currently known methods are not perfect and can be im-

, (4)
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 (5)

where: © 2 {+, ¡},  2 {£, ¥} and 0 2/ [b1, b2] if  = ¥.

For fuzzy intervals A and B operations defined by (4) and 

(5) are realized for each μ-cut, μ 2 [0, 1], which is the interval 

and can be denoted as [a–(μ), a
–(μ)] and [b–(μ), b

–
(μ)].

SFA does not posses the inverse element of addition and 

multiplication with properties (6).
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 (6)

The sub-distributivity law and cancellation law for addition 

and multiplication do not hold in SFA. Therefore, application 

possibilities of SFA are limited.

Currently known methods are not perfect and can be im-

proved. The multi-dimensional, relative distance measure fuzzy 

arithmetic (MD RDM-FA) is an alternative method of FA pro-

posed and developed by Polish scientists from Szczecin [5–7, 

11, 13, 18, 25]. Its basic concepts and the idea of horizontal 

membership functions (MF) were proposed by Piegat [25]. Fur-

ther on, these concepts will be shortly presented.

Fig. 1. Trapezoidal membership function
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Figure 1 shows a trapezoidal MF (fuzzy interval). It can be 

noted that triangular or rectangular MFs are a special case of 

this function.

Vertical models of MFs are used in classic fuzzy systems. 

They express a vertical dependence μ = f(x):
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µ(x) =



















(x− a)/(b− a) for x ∈ [a,b) ,

1 for x ∈ [b,c] ,

(d − x)/(d− c) for x ∈ (c,d] ,

0 otherwise.

 (7)

Formula (7) expresses a unique dependence of the ‘ver-

tical’ variable μ from the ‘horizontal’ variable x. However, (7) 

is a model of MF borders only. Function (7) does not model an 

interior of MF. If such function is used in fuzzy calculations, 

only borders of MF (without its interior) are applied. It reduces 

the accuracy of achieved results. Vertical MFs also increase 

computational effort in fuzzy calculations. Hence, an idea of 

horizontal MFs was conceived.

However the question arises whether it is possible to create 

an inverse (‘horizontal’) model x = f –1(μ). At first glance, it 

seems impossible because the dependence would not be unam-

biguous and it would not be a function then. However, it will 

be shown that such inverse model can be created.

Let us consider a horizontal cut of MF on the level μ. Fur-

ther on, this cut will be called μ-cut (not α-cut as usually), as 

in Fig. 2a. Variable αx, αx 2 [0, 1], will be called RDM-variable 

(RDM – relative distance measure). It determines a relative dis-

tance of point x¤ 2 [xL(μ), xR(μ)] from the origin of the local 

coordinate system (Fig. 2).

The RDM-variable αx introduces the local Cartesian coor-

dinate system into the interior of an interval. The left boundary 

xL(μ) of MF and the right boundary xR(μ) are expressed by (8).

 

. At first glance, it

xL = a+(b− a)µ , xR = d − (d− c)µ

defines not a single value of

-cut level. It defines an information granule and

 (8)

The RDM-variable αx transforms the left boundary xL(μ) 
into the right boundary xR(μ). Contour line x(μ, αx) of constant 

αx values is determined by (9).

 

. At first glance, it

x(µ ,αx) = xL +(xR − xL)αx, αx ∈ [0,1]

defines not a single value of

-cut level. It defines an information granule and

 (9)

The contour line x(μ, αx) is set of points situated at an equal 

relative distance αx from the left boundary of MF xL(μ). A more 

precise form (10) of (9) can be called a horizontal MF.

 

. At first glance, it

x = [a+(b− a)µ ]

+ [(d−a)− (d− c+ b− a)µ ]αx , αx ∈ [0,1]

defines not a single value of

-cut level. It defines an information granule and

 (10)

The horizontal MF x = f(μ, αx) is a function of two variables 

and exists in 3D-space (Fig. 3). It is unique.

Fig. 2. Visualization of the horizontal approach to fuzzy membership 

functions

Fig. 3. Horizontal MF x = (1 + 2μ) + (4 ¡ 3μ)αx, αx 2 [0, 1], corre-
sponding to vertical function shown in Fig. 2

The horizontal MF x = f(μ, αx) defines not a single value of 

the variable x, but a set of possible values of x corresponding 

to a given μ-cut level. It defines an information granule and 

hence it will be denoted as xgr. Formula (10) describes the trap-

ezoidal MF. However, it can be adapted to triangular MF by 

setting b = c and to rectangular MF by setting a = b and c = d. 
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Boundaries of these functions are linear. To derive formulas 

for nonlinear boundaries, e.g. of Gauss type, formulas for the 

left and right boundary should be determined and used in (8).

2. Operations of MD RDM fuzzy arithmetic

Let xgr = f(μ, αx) be a horizontal MF representing a fuzzy in-

terval X (11) and ygr = f(μ, αy) be a horizontal MF representing 

a fuzzy interval Y (12).

 

. At first glance, it

defines not a single value of

-cut level. It defines an information granule and

X : xgr = [ax +(bx − ax)µ ]

+ [(dx − ax)− (dx − cx + bx − ax)µ ]αx

µ ,αx ∈ [0,1]

, (11)

 

. At first glance, it

defines not a single value of

-cut level. It defines an information granule and

Y : ygr = [ay +(by − ay)µ ]

+ [(dy −ay)− (dy − cy + by− ay)µ ]αy

µ ,αy ∈ [0,1]

, (12)

Addition of two independent fuzzy intervals

 

. At first glance, it

defines not a single value of

-cut level. It defines an information granule and

µ ,αx,αy ∈ [0,1]

. At first glance, it

defines not a single value of

-cut level. It defines an information granule and

X +Y = Z : xgr(µ ,αx)+ ygr(µ ,αy) = z

0 1

. At first glance, it

defines not a single value of

-cut level. It defines an information granule and

) = zgr(µ ,αx,αy) ,
 (13)

For example, if X is trapezoidal MF (1, 3, 4, 5):

 

. At first glance, it

defines not a single value of

-cut level. It defines an information granule and

xgr = (1+ 2µ)+ (4− 3µ)αx ,, (14)

and Y is trapezoidal MF (1, 2, 3, 4):

 

. At first glance, it

defines not a single value of

-cut level. It defines an information granule and

ygr = (1+ µ)+ (3−2µ)αy, (15)

then zgr is given by:

 

. At first glance, it

10)

defines not a single value of

-cut level. It defines an information granule and

zgr = (2+ 3µ)+ (4−3µ)αx+(3−2µ)αy,

. At first glance, it

defines not a single value of

-cut level. It defines an information granule and

µ ,αx,αy ∈ [0,1] .
(16)

 (16)

The 4D-solution (16) exists in the space which cannot be 

seen. Therefore we can be interested in its low dimensional rep-

resentations. Frequently, the 2D-representation in the form of 

span s(zgr) is determined. It can be found with known methods 
of function examination:
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is determined. It can be found with known meth-

s(zgr) = [min
αx,αy

zgr(µ ,αx,αy),max
αx,αy

zgr(µ ,αx,αy)]

tion. If we are interested in the 2D simplified representatio

shown in a simplified way, in the

.

In the case discussed, extrema of (16) do not lie inside, but 

on boundaries of the result domain. The minimum corresponds 

to αx = αy = 0 and the maximum to αx = αy = 1. The span of 
the 4D-result granule (16) is given by:
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is determined. It can be found with known meth-

s(zgr) = [2+ 3µ ,9− 2µ ] , µ ∈ [0,1]

tion. If we are interested in the 2D simplified representatio

shown in a simplified way, in the

. (17)

The span (17) is not the addition result. The addition result 

has the form of 4D-function (16). The span is only a 2D-infor-

mation about the maximal uncertainty of the result.

Subtraction of two independent fuzzy intervals
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µ ,αx,αy ∈ [0,1]

tion. If we are interested in the 2D simplified representatio

shown in a simplified way, in the
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is determined. It can be found with known meth-

X −Y = Z : xgr(µ ,αx)− ygr(µ ,αy) = z

µ α α 0 1

tion. If we are interested in the 2D simplified representatio

shown in a simplified way, in the
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is determined. It can be found with known meth-

) = zgr(µ ,αx,αy) ,

tion. If we are interested in the 2D simplified representatio

shown in a simplified way, in the

 (18)

For example, if X and Y are trapezoidal MF (14) and (15) 

then the result is given by:
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is determined. It can be found with known meth-

zgr = µ +(4− 3µ)αx− (3− 2µ)αy,

tion. If we are interested in the 2D simplified representatio

shown in a simplified way, in the
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is determined. It can be found with known meth-

µ ,αx,αy ∈ [0,1] .

tion. If we are interested in the 2D simplified representatio

shown in a simplified way, in the

 (19)

If we are interested in the span representation s(zgr) of the 

4D-subtraction result, then it can be determined from:
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is determined. It can be found with known meth-

s(zgr) = [min
αx,αy

zgr,max
αx,αy

zgr] = [−3+ 3µ ,4− 2µ ] ,

µ ∈ [0,1] .

tion. If we are interested in the 2D simplified representatio

shown in a simplified way, in the

 (20)

The span (20) of zgr (19) corresponds to αx = 0, αy = 1 for 
minzgr and αx = 1, αy = 0 for maxzgr.

Multiplication of two independent fuzzy intervals
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is determined. It can be found with known meth-

X ·Y = Z : xgr(µ ,αx) · y
gr(µ ,αy) = zgr(µ ,αx,αy) ,

µ ,αx,αy ∈ [0,1]

tion. If we are interested in the 2D simplified representatio

shown in a simplified way, in the

 (21)

For example, if X and Y are trapezoidal MF (14) and (15) 

then the multiplication result zgr is expressed by:
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is determined. It can be found with known meth-

zgr = xgr
· ygr = [(1+ 2µ)+ (4− 3µ)αx]

1 3 2

tion. If we are interested in the 2D simplified representatio

shown in a simplified way, in the
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is determined. It can be found with known meth-

xgr
· y

1

tion. If we are interested in the 2D simplified representatio

shown in a simplified way, in the
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is determined. It can be found with known meth-

· [(1+ µ)+ (3− 2µ)αy] , µ ,αx,αy ∈ [0,1] .

tion. If we are interested in the 2D simplified representatio

shown in a simplified way, in the

 (22)

Formula (22) describes the full 4D-result of the multiplica-

tion. If we are interested in the 2D simplified representation of 

this result in the form of a span s(zgr) then formula (23) should 

be used.

 

A. Piegat, M. Pluciński

is determined. It can be found with known meth-

tion. If we are interested in the 2D simplified representatio

s(zgr) = [min
αx,αy

zgr,max
αx,αy

zgr]

shown in a simplified way, in the
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is determined. It can be found with known meth-

tion. If we are interested in the 2D simplified representatio

,(5− µ)(4−µ)] , µ ∈ [0,1] .

(23)

shown in a simplified way, in the
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is determined. It can be found with known meth-

tion. If we are interested in the 2D simplified representatio

= [(1+ 2µ)(1+ µ), 5 shown in a simplified way, in the
 (23)

Figure 4 shows the MF of the span representation of the 

multiplication result.

Division X/Y of two independent fuzzy intervals, 0 2/ Y
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is determined. It can be found with known meth-

tion. If we are interested in the 2D simplified representatio

X/Y = Z : xgr(µ ,αx)/ygr(µ ,αy) = zgr(µ ,αx,αy) ,

µ ,αx,αy ∈ [0,1]

shown in a simplified way, in the

 (24)

For example, if X and Y are trapezoidal MF (14) and (15) 

then the division result zgr is given by:
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is determined. It can be found with known meth-

tion. If we are interested in the 2D simplified representatio

zgr = xgr/ygr =
(1+ 2µ)+ (4− 3µ)αx

(1+ µ)+ (3− 2µ)αy
,

µ ,αx,αy ∈ [0,1] .

shown in a simplified way, in the

 (25)
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3. Mathematical properties of MD RDM  
fuzzy arithmetic

Commutativity

For any fuzzy intervals X and Y, equations (27) and (28) 

are true.

 X  + Y  =  Y  + X  (27)

 XY  =  YX  (28)

Associativity

For any fuzzy intervals X, Y and Z, equations (29) and (30) 

are true.

 X  + (Y  + Z)  =  (X  + Y ) + Z  (29)

 X(YZ)  =  (XY)Z  (30)

Neutral element of addition and multiplication

In MD RDM FA, there exist additive and multiplicative 

neutral elements such as the degenerate interval 0 and 1 for 

any interval X.

 X  + 0  =  0 + X  = X  (31)

 X ¢1  =  1¢X  = X  (32)

Fig. 4. MF of the span representation of the 4D multiplication result (22)

Fig. 5. Span representation of the 4D division result (25)

Fig. 6. Simplified view of the 4D-solution granule (25) zgr(x, y, z) in 
3D-space X£Y£Z, without μ-coordinate

The span representation s(zgr) of the result (25) is expressed 

by (26) and is shown in Fig. 5.
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is determined. It can be found with known meth-

tion. If we are interested in the 2D simplified representatio
s(zgr) = [min

αx,αy

zgr,max
αx,αy

zgr]

=

[

1+ 2µ

4− µ
,

5− µ

1+ µ

]

, µ ∈ [0,1] .

shown in a simplified way, in the

 (26)

The solution granule of the division (25) is 4-dimensional, 

so it cannot be presented in its full space. However, it can be 

shown in a simplified way, in the X£Y£Z 3D-space, without 

μ-coordinate. Figure 6 presents surfaces for constant μ = 0 and 
μ = 1 values.

As Fig. 6 shows, the solution granule (25) is uniform. This 

results from the fact that the divisor does not contain zero. As it 

will be shown further on, division results can be discontinuous 

and multi-granular in more complicated cases.
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Inverse elements

In MD RDM FA, fuzzy interval:

Fig. 6. Simplified view of the 4D-solution granule (25)

−X : −xgr =− [a+(b− a)µ ]− [(d− a)

− µ(d−a+b− c)]αx , αx ∈ [0,1] ,

per 1 kg of the product is uncertain because it de-

of 1 kg of the product is also uncertain because

kets, shops, dealers). It also depends on volume of purchase
product. Profit

is the number of kilo-

is an additive inverse element of fuzzy interval:

Fig. 6. Simplified view of the 4D-solution granule (25)

− µ(d− a+ b− c)]αx , αx ∈ [0,1] .

per 1 kg of the product is uncertain because it de-

of 1 kg of the product is also uncertain because

kets, shops, dealers). It also depends on volume of purchase
product. Profit

is the number of kilo-

Fig. 6. Simplified view of the 4D-solution granule (25)

X : xgr = [a+(b− a)µ ]+ [(d− a)

µ d a b c α

per 1 kg of the product is uncertain because it de-

of 1 kg of the product is also uncertain because

kets, shops, dealers). It also depends on volume of purchase
product. Profit

is the number of kilo-

Fig. 6. Simplified view of the 4D-solution granule (25)

d−a

c α

per 1 kg of the product is uncertain because it de-

of 1 kg of the product is also uncertain because

kets, shops, dealers). It also depends on volume of purchase
product. Profit

is the number of kilo-

If parameters of two fuzzy intervals X and Y are equal: 

ax = ay, bx = by, cx = cy, dx = dy, then the interval ¡Y is the 

additive inverse interval of X, when also inner RDM-variables 

are equal: αx = αy. It means full coupling (correlation) of both 

uncertain values x and y modelled by intervals.

Assuming that 0 2/ X, a multiplicative inverse element of the 

fuzzy interval X is equal in MD RDM FA:

Fig. 6. Simplified view of the 4D-solution granule (25)

1

X
:

1

xgr
=

1

[a+(b−a)µ]+ [(d −a)−µ(d −a+b−c)]αx
,

αx ∈ [0,1] .

per 1 kg of the product is uncertain because it de-

of 1 kg of the product is also uncertain because

kets, shops, dealers). It also depends on volume of purchase
product. Profit

is the number of kilo-

If parameters of two fuzzy intervals X and Y are equal: 

ax = ay, bx = by, cx = cy, dx = dy, then the interval 1/Y is 

the multiplicative inverse interval of X only when also inner 

RDM-variables are equal: αx = αy. It means full coupling (cor-

relation) of both uncertain values x and y modelled by intervals. 

Such full or partial correlation of uncertain variables occurs in 

many real problems.

Sub-distributivity law

The sub-distributivity law holds in MD RDM FA:

 X(Y  + Z)  =  XY  + XZ .  (33)

The consequence of this law is the possibility of formula 

transformations. They do not change the calculation result.

Cancellation law for addition and multiplication

Cancellation laws (34) and (35) hold in MD RDM FA:

 X  + Z  =  Y  + Z  ) X  = Y ,  (34)

 XZ  =  YZ  ) X  = Y .  (35)

4. Multi-granularity phenomenon in division  
of fuzzy intervals

As it was presented in Section 2, result in the form of only one 

granule is achieved during dividing fuzzy intervals X and Y, 

0 2/ Y. However, it will be shown further on that the solution is 

multi-granular if a denominator set contains 0.

Three examples below describe problems in which division 

by fuzzy denominator containing 0 occurs and in which solu-

tions will be multi-granular.

Example 1. A company produces a food product. The produc-

tion cost c1 per 1 kg of the product is uncertain because it 
depends on current prices of components changing from month 

to month and on negotiations with many suppliers. Price p1 of 

1 kg of the product is also uncertain because it is also a result 
of negotiations with customers (supermarkets, shops, dealers). 
It also depends on volume of purchased product. Profit Pr of 

the company is equal to the difference between incomes and 

costs: Pr = In ¡ Cs. The global income can be calculated as: 

In = n ¢ p1, where n is the number of kilograms of the product. 
General costs of production are equal to Cs = 100 000 + n ¢ c1, 

where the number 100 000 describes fixed costs of the company.
Hence, the company profit Pr is expressed by equation:
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fixed costs of the company.
Hence, the company profit

Pr = n · p1 − (100000+ n ·c1) = n

profit ‘about 5 500 000’ defined by the triangular fuzzy number

as ‘about 1’ defined by the triangular fuzzy number

1.2, 1.4). How many kilograms

An oil rafinery produces regular and super gaso- bank of the river and has to get to any place of the concrete
quay on the northern bank between points B

1 km. The remaining northern bank of the river is

km/h. The ferry has to reach the opposite bank within time
1 hour. The distance to the bank is 1 km. We must

As the ferry (apart from its own move) is floated by the water

and the course angle of the ferry is defined as:

, Fig. 7. Taking into
account all known values, we get new interval dependencies

A. Piegat, M. Pluciński

fixed costs of the company.
Hence, the company profit

1) = n · (p1 − c1)− 100000 .

profit ‘about 5 500 000’ defined by the triangular fuzzy number

as ‘about 1’ defined by the triangular fuzzy number

1.2, 1.4). How many kilograms

An oil rafinery produces regular and super gaso- bank of the river and has to get to any place of the concrete
quay on the northern bank between points B

1 km. The remaining northern bank of the river is

km/h. The ferry has to reach the opposite bank within time
1 hour. The distance to the bank is 1 km. We must

As the ferry (apart from its own move) is floated by the water

and the course angle of the ferry is defined as:

, Fig. 7. Taking into
account all known values, we get new interval dependencies

In the next year, the company managers plan to achieve general 

profit ‘about 5 500 000’ defined by the triangular fuzzy number 
(5 300 000, 5 500 000, 5 700 000). Company experts evaluated 
the cost c1 as ‘about 1’ defined by the triangular fuzzy number 

(0.9, 1, 1.1) and the price p1 as ‘about 1.2’ expressed by (1, 1.2, 

1.4). How many kilograms n of the product should the company 

produce in the next year?

To obtain the answer, the following calculation should be 

realized:
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fixed costs of the company.
Hence, the company profit

profit ‘about 5 500 000’ defined by the triangular fuzzy number

as ‘about 1’ defined by the triangular fuzzy number

1.2, 1.4). How many kilograms

n =
Pr− 100000

p1 − c1

=

An oil rafinery produces regular and super gaso- bank of the river and has to get to any place of the concrete
quay on the northern bank between points B

1 km. The remaining northern bank of the river is

km/h. The ferry has to reach the opposite bank within time
1 hour. The distance to the bank is 1 km. We must

As the ferry (apart from its own move) is floated by the water

and the course angle of the ferry is defined as:

, Fig. 7. Taking into
account all known values, we get new interval dependencies

A. Piegat, M. Pluciński

fixed costs of the company.
Hence, the company profit

profit ‘about 5 500 000’ defined by the triangular fuzzy number

as ‘about 1’ defined by the triangular fuzzy number

1.2, 1.4). How many kilograms

000
=

(5.3 ·106,5.5 ·106,5.7 ·106)+ 105

(1,1.2,1.4)− (0.9,1.0,1.1)
.

(36)

An oil rafinery produces regular and super gaso- bank of the river and has to get to any place of the concrete
quay on the northern bank between points B

1 km. The remaining northern bank of the river is

km/h. The ferry has to reach the opposite bank within time
1 hour. The distance to the bank is 1 km. We must

As the ferry (apart from its own move) is floated by the water

and the course angle of the ferry is defined as:

, Fig. 7. Taking into
account all known values, we get new interval dependencies

 (36)

Denominator of the formula (36) contains 0 in a hidden way. 

Example 1 corresponds to Case 3 of division described in the 

paper further on.

Example 2. An oil rafinery produces regular and super gasoline 

using two production lines. Line 1 produces gasoline according 

to an older process and line 2 according to a newer process. The 

older process produces about 6.0 units of regular and about 5.5 

units of super gasoline in one run. The newer process produces 

about 8.5 units of regular and about 8 units of super gasoline. 

Production results are uncertain because 3 types of crude oils 

used in the production (supplied by few companies) are of dif-

ferent quality.

Uncertain results can be described by the following triangle 

fuzzy numbers:
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fixed costs of the company.
Hence, the company profit

profit ‘about 5 500 000’ defined by the triangular fuzzy number

as ‘about 1’ defined by the triangular fuzzy number

1.2, 1.4). How many kilograms

An oil rafinery produces regular and super gaso-

about 5.5 = ˜5.5 = (5.2,5.5,5.8) ,

about 6.0 = ˜6.0 = (5.7,6.0,6.3) ,

about 8.0 = ˜8.0 = (7.8,8.0,8.2) ,

about 8.5 = ˜8.5 = (8.2,8.5,8.8) .

bank of the river and has to get to any place of the concrete
quay on the northern bank between points B

1 km. The remaining northern bank of the river is

km/h. The ferry has to reach the opposite bank within time
1 hour. The distance to the bank is 1 km. We must

As the ferry (apart from its own move) is floated by the water

and the course angle of the ferry is defined as:

, Fig. 7. Taking into
account all known values, we get new interval dependencies

In the next month the company predicts to get contracts for 

production of about 500 units of regular and about 350 units of 
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super gasoline, where uncertain values are described by triangle 

fuzzy numbers:
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fixed costs of the company.
Hence, the company profit

profit ‘about 5 500 000’ defined by the triangular fuzzy number

as ‘about 1’ defined by the triangular fuzzy number

1.2, 1.4). How many kilograms

An oil rafinery produces regular and super gaso-

about 500 = ˜500 = (480,500,520) ,

about 350 = ˜350 = (330,350,370) .

bank of the river and has to get to any place of the concrete
quay on the northern bank between points B

1 km. The remaining northern bank of the river is

km/h. The ferry has to reach the opposite bank within time
1 hour. The distance to the bank is 1 km. We must

As the ferry (apart from its own move) is floated by the water

and the course angle of the ferry is defined as:

, Fig. 7. Taking into
account all known values, we get new interval dependencies

Let us denote by x1 – the number of production runs of line 1 

(older process) and by x2 – the number of runs of line 2 (newer 

process). After x1 runs of line 1 and x2 runs of line 2 amount 

of regular gasoline will be 6̃x1 + 8.̃5x2 and of super gasoline 

5.̃5x1 + 8̃x2. How many runs x1 of line 1 and x2 of line 2 are 

necessary to fulfil the contract commitments?

The results x1 and x2 have not to be integers because it is 

possible to organize fractional runs that use raw materials in 

an appropriate proportion. To determine results x1 and x2, fol-

lowing equation system has to be solved:
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fixed costs of the company.
Hence, the company profit

profit ‘about 5 500 000’ defined by the triangular fuzzy number

as ‘about 1’ defined by the triangular fuzzy number

1.2, 1.4). How many kilograms

An oil rafinery produces regular and super gaso-

[

6̃ ˜8.5
˜5.5 8̃

][

x1

x2

]

=

[

˜500

˜350

]

bank of the river and has to get to any place of the concrete
quay on the northern bank between points B

1 km. The remaining northern bank of the river is

km/h. The ferry has to reach the opposite bank within time
1 hour. The distance to the bank is 1 km. We must

As the ferry (apart from its own move) is floated by the water

and the course angle of the ferry is defined as:

, Fig. 7. Taking into
account all known values, we get new interval dependencies

. (37)

The results are given by x1 = D1/D and x2 = D2/D where:  

D = 6̃ ¢ 8̃ ¡ 5.̃5 ¢ 8.̃5, D1 = 50̃0 ¢ 8̃ ¡ 35̃0 ¢ 8.̃5 and D2 = 6̃ ¢ 35̃0 ¡  

¡ 5.̃5 ¢ 50̃0.

Determinant D = (5.7, 6, 6.3) ¢ (7.8, 8, 8.2) ¡ (5.2, 5.5, 5.8) ¢ 
¢ (8.2, 8.5, 8.8) contains 0 as one of possible values. Therefore 

the solution of the problem corresponds to Case 5 presented 

further on in the paper and it will be multi-granular.

Example 3. The ferry departs from point A on the southern 

bank of the river and has to get to any place of the concrete quay 
on the northern bank between points B1 and B2, the distance 

lB1B2 = 1 km. The remaining northern bank of the river is not 
suitable for mooring, Fig. 7. An average speed of the river de-

pends on the water level and varies in the range V1 2 [2, 4] km/h. 
The ferry has to reach the opposite bank within time T = 1 hour. 
The distance to the bank is d = 1 km. We must specify an angle 
β and a speed V2 in relation to water, assuming that the ferry 

should reach the point B located between points B1 and B2.

As the ferry (apart from its own move) is floated by the 

water with a speed V1, a horizontal component of the relative 

speed V2 should satisfy the next condition:
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fixed costs of the company.
Hence, the company profit

profit ‘about 5 500 000’ defined by the triangular fuzzy number

as ‘about 1’ defined by the triangular fuzzy number

1.2, 1.4). How many kilograms

An oil rafinery produces regular and super gaso- bank of the river and has to get to any place of the concrete
quay on the northern bank between points B

1 km. The remaining northern bank of the river is

km/h. The ferry has to reach the opposite bank within time
1 hour. The distance to the bank is 1 km. We must

As the ferry (apart from its own move) is floated by the water

(V2x +V1)T = lAB · cosα

and the course angle of the ferry is defined as:

, Fig. 7. Taking into
account all known values, we get new interval dependencies

. (39)

Thus, the total speed V2 of the ferry can be calculated as:
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fixed costs of the company.
Hence, the company profit

profit ‘about 5 500 000’ defined by the triangular fuzzy number

as ‘about 1’ defined by the triangular fuzzy number

1.2, 1.4). How many kilograms

An oil rafinery produces regular and super gaso- bank of the river and has to get to any place of the concrete
quay on the northern bank between points B

1 km. The remaining northern bank of the river is

km/h. The ferry has to reach the opposite bank within time
1 hour. The distance to the bank is 1 km. We must

As the ferry (apart from its own move) is floated by the water

2

+

(

d

T

)2

and the course angle of the ferry is defined as:

, Fig. 7. Taking into
account all known values, we get new interval dependencies
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fixed costs of the company.
Hence, the company profit

profit ‘about 5 500 000’ defined by the triangular fuzzy number

as ‘about 1’ defined by the triangular fuzzy number

1.2, 1.4). How many kilograms

An oil rafinery produces regular and super gaso- bank of the river and has to get to any place of the concrete
quay on the northern bank between points B

1 km. The remaining northern bank of the river is

km/h. The ferry has to reach the opposite bank within time
1 hour. The distance to the bank is 1 km. We must

As the ferry (apart from its own move) is floated by the water

V2 =
√

V 2
2x +V 2

2y =

√

(

lAB · cosα

T
−V1

)2

and the course angle of the ferry is defined as:

, Fig. 7. Taking into
account all known values, we get new interval dependencies

, (40)

and the course angle of the ferry is defined as:
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fixed costs of the company.
Hence, the company profit

profit ‘about 5 500 000’ defined by the triangular fuzzy number

as ‘about 1’ defined by the triangular fuzzy number

1.2, 1.4). How many kilograms

An oil rafinery produces regular and super gaso- bank of the river and has to get to any place of the concrete
quay on the northern bank between points B

1 km. The remaining northern bank of the river is

km/h. The ferry has to reach the opposite bank within time
1 hour. The distance to the bank is 1 km. We must

As the ferry (apart from its own move) is floated by the water

and the course angle of the ferry is defined as:

tgβ =
V2y

V2x

=
lAB · sinα

lAB · cosα −V1T

, Fig. 7. Taking into
account all known values, we get new interval dependencies

. (41)

The value of lAB  ¢ sinα always equals 1 and the value of 

lAB  ¢ cosα must be included in the interval [2, 3], Fig. 7. Taking 
into account all known values, we obtain new interval depen-

dencies from equations (40) and (41):
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fixed costs of the company.
Hence, the company profit

profit ‘about 5 500 000’ defined by the triangular fuzzy number

as ‘about 1’ defined by the triangular fuzzy number

1.2, 1.4). How many kilograms

An oil rafinery produces regular and super gaso-

-

bank of the river and has to get to any place of the concrete
quay on the northern bank between points B

1 km. The remaining northern bank of the river is

km/h. The ferry has to reach the opposite bank within time
1 hour. The distance to the bank is 1 km. We must

As the ferry (apart from its own move) is floated by the water

and the course angle of the ferry is defined as:

, Fig. 7. Taking into
account all known values, we get new interval dependencies

V2 =

√

(

[2,3]

1
− [2,4]

)2

+

(

1

1

)2

=
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fixed costs of the company.
Hence, the company profit

profit ‘about 5 500 000’ defined by the triangular fuzzy number

as ‘about 1’ defined by the triangular fuzzy number

1.2, 1.4). How many kilograms

An oil rafinery produces regular and super gaso- bank of the river and has to get to any place of the concrete
quay on the northern bank between points B

1 km. The remaining northern bank of the river is

km/h. The ferry has to reach the opposite bank within time
1 hour. The distance to the bank is 1 km. We must

As the ferry (apart from its own move) is floated by the water

and the course angle of the ferry is defined as:

, Fig. 7. Taking into
account all known values, we get new interval dependencies

2

=
√

([2,3]− [2,4])2+ 1 ,

 (42)
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fixed costs of the company.
Hence, the company profit

profit ‘about 5 500 000’ defined by the triangular fuzzy number

as ‘about 1’ defined by the triangular fuzzy number

1.2, 1.4). How many kilograms

An oil rafinery produces regular and super gaso- bank of the river and has to get to any place of the concrete
quay on the northern bank between points B

1 km. The remaining northern bank of the river is

km/h. The ferry has to reach the opposite bank within time
1 hour. The distance to the bank is 1 km. We must

As the ferry (apart from its own move) is floated by the water

and the course angle of the ferry is defined as:

, Fig. 7. Taking into
account all known values, we get new interval dependencies

tgβ =
1

[2,3]− [2,4]
. (43)

Formulas (42) and (43) determine the relative speed V2 and 

the course angle β of the ferry and it can be seen that they are 

coupled. The RDM arithmetic, in contrast to the standard in-

terval arithmetic, allows for taking into account such couplings. 
The interval [2, 3], describing the concrete quay on the northern 

bank between points B1 and B2, is defined as:

 

interval arithmetic, allows for the taking into account of s

the northern bank between points B , is defined as:

lAB · cosα = 2+αB1B2, αB1B2 ∈ [0,1]

Is it possible to divide: (about 2)/(about 0)? Of course

Taking into account (49), we get the formula for the division

, (44)

and the interval describing values of the river speed is:

 

interval arithmetic, allows for the taking into account of s

the northern bank between points B , is defined as:

V1 = 2+ 2αV1, αV1 ∈ [0,1]

Is it possible to divide: (about 2)/(about 0)? Of course

Taking into account (49), we get the formula for the division

. (45)

Finally, possible values of V2 and tgβ are described by equa-

tions:

 

interval arithmetic, allows for the taking into account of s

the northern bank between points B , is defined as:

V2 =

√

(2+αB1B2)+ (2+ 2αV1)
2 + 1,

Is it possible to divide: (about 2)/(about 0)? Of course

Taking into account (49), we get the formula for the division

interval arithmetic, allows for the taking into account of s

the northern bank between points B , is defined as:

1 αB1B2,αV 1 ∈ [0,1] ,
(46)

Is it possible to divide: (about 2)/(about 0)? Of course

Taking into account (49), we get the formula for the division

 (46)

 

interval arithmetic, allows for the taking into account of s

the northern bank between points B , is defined as:

√

tgβ =
1

(2+αB1B2)− (2+ 2αV1)
=

1

αB1B2 − 2αV1

Is it possible to divide: (about 2)/(about 0)? Of course

Taking into account (49), we get the formula for the division

. (47)

Formulas (46) and (47) also show that the speed V2 and the 

angle β are coupled. The speed should be calculated according 

to the chosen course angle.

Fig. 7. An illustration to Example 3

A vertical component of the relative speed V2 should satisfy 

the condition:

 

A. Piegat, M. Pluciński

fixed costs of the company.
Hence, the company profit

profit ‘about 5 500 000’ defined by the triangular fuzzy number

as ‘about 1’ defined by the triangular fuzzy number

1.2, 1.4). How many kilograms

An oil rafinery produces regular and super gaso- bank of the river and has to get to any place of the concrete
quay on the northern bank between points B

1 km. The remaining northern bank of the river is

km/h. The ferry has to reach the opposite bank within time
1 hour. The distance to the bank is 1 km. We must

V2y =
d

T
=

1

1
= 1

As the ferry (apart from its own move) is floated by the water

and the course angle of the ferry is defined as:

, Fig. 7. Taking into
account all known values, we get new interval dependencies

. (38)



504 Bull.  Pol.  Ac.:  Tech.  65(4)  2017

A. Piegat and M. Pluciński

From the point of view of this paper, formula (47) is the 

most interesting. Figure 8 presents two separate granules of its 

possible solutions. A positive value of tgβ means the movement 

of the ferry in the direction of the river current, while a negative 

value means movement in the opposite direction.

4.1. Case 1. Let us assume that two triangular fuzzy numbers 

XA = (1, 2, 3) and XB = (¡3, 0, 1) have to be divided (Fig. 9). 

How to calculate the quotient Z = XA/XB?

Is it possible to divide (about 2)/(about 0)? It is possible, but 

after excluding the value xB = 0. For this purpose, FN (about 
0) has to be decomposed into two components: XB = XB¡[XB+, 

where XB¡ is the triangle fuzzy number (¡3, 0¡, 0¡) and XB+ is 

the triangle fuzzy number (0+, 0+, 1) (Fig. 10).

The quotient XA/XB can be presented in the form:

 

interval arithmetic, allows for the taking into account of s

the northern bank between points B , is defined as:

Is it possible to divide: (about 2)/(about 0)? Of course

XA/XB = (XA/XB−)∪ (XA/XB+)

Taking into account (49), we get the formula for the division

. (48)

From equation (10) and Fig. 9, horizontal MFs of sets XA, 

XB¡, XB+ can be found:

interval arithmetic, allows for the taking into account of s

the northern bank between points B , is defined as:

Is it possible to divide: (about 2)/(about 0)? Of course

µ ,αXA,αXB− ,αXB+ ∈ [0,1] .

Taking into account (49), we get the formula for the division

interval arithmetic, allows for the taking into account of s

the northern bank between points B , is defined as:

Is it possible to divide: (about 2)/(about 0)? Of course

xA = (1+ µ)+ 2(1− µ)αXA ,

x 3 0 3 µ 0 3

Taking into account (49), we get the formula for the division

interval arithmetic, allows for the taking into account of s

the northern bank between points B , is defined as:

Is it possible to divide: (about 2)/(about 0)? Of course

= 0++(1− 0+)(1− µ)αXB+ ,

α α α 0 1

Taking into account (49), we get the formula for the division

interval arithmetic, allows for the taking into account of s

the northern bank between points B , is defined as:

Is it possible to divide: (about 2)/(about 0)? Of course

0 + 3)(1

Taking into account (49), we get the formula for the division

interval arithmetic, allows for the taking into account of s

the northern bank between points B , is defined as:

Is it possible to divide: (about 2)/(about 0)? Of course

,

Taking into account (49), we get the formula for the division

interval arithmetic, allows for the taking into account of s

the northern bank between points B , is defined as:

Is it possible to divide: (about 2)/(about 0)? Of course

3 1− µ)αXB−

Taking into account (49), we get the formula for the division

interval arithmetic, allows for the taking into account of s

the northern bank between points B , is defined as:

Is it possible to divide: (about 2)/(about 0)? Of course

0 + 3)µ +(0−

1 0 1

Taking into account (49), we get the formula for the division

interval arithmetic, allows for the taking into account of s

the northern bank between points B , is defined as:

Is it possible to divide: (about 2)/(about 0)? Of course

=−3+(0−

0 1 0

Taking into account (49), we get the formula for the division

interval arithmetic, allows for the taking into account of s

the northern bank between points B , is defined as:

Is it possible to divide: (about 2)/(about 0)? Of course

xB−

xB+

µ α

Taking into account (49), we get the formula for the division

interval arithmetic, allows for the taking into account of s

the northern bank between points B , is defined as:

Is it possible to divide: (about 2)/(about 0)? Of course

A :

:

:

Taking into account (49), we get the formula for the division

interval arithmetic, allows for the taking into account of s

the northern bank between points B , is defined as:

Is it possible to divide: (about 2)/(about 0)? Of course

XA :

XB− :

XB+ :

Taking into account (49), we get the formula for the division

 (49)

Taking into account (49), we get the formula for the division:

 

interval arithmetic, allows for the taking into account of s

the northern bank between points B , is defined as:

Is it possible to divide: (about 2)/(about 0)? Of course

Taking into account (49), we get the formula for the division

∪
(1+ µ)+ 2(1− µ)αXA

0++(1− 0+)(1− µ)αXB+
,

µ ,αXA,αXB− ,αXB+ ∈ [0,1] .

interval arithmetic, allows for the taking into account of s

the northern bank between points B , is defined as:

Is it possible to divide: (about 2)/(about 0)? Of course

Taking into account (49), we get the formula for the division

∪
0

µ

interval arithmetic, allows for the taking into account of s

the northern bank between points B , is defined as:

Is it possible to divide: (about 2)/(about 0)? Of course

Taking into account (49), we get the formula for the division

=
(1+ µ)+ 2(1− µ)αXA

−3+(0−+ 3)µ +(0−+ 3)(1− µ)αXB−

1 µ 2 1 µ α

interval arithmetic, allows for the taking into account of s

the northern bank between points B , is defined as:

Is it possible to divide: (about 2)/(about 0)? Of course

Taking into account (49), we get the formula for the division

XA/XB : xA/xB = xA/xB− ∪ xA/xB+

1 µ 2 1

interval arithmetic, allows for the taking into account of s

the northern bank between points B , is defined as:

Is it possible to divide: (about 2)/(about 0)? Of course

Taking into account (49), we get the formula for the division

xB = x

 (50)

According to (50), the true value of the quotient xA/xB is 

located in the granule xA/xB¡ or xA/xB+. Both quotients are 

monotonic, so their extrema can be found on boundaries of 

possible solutions sets. Table 1 and 2 present values of quotients 

in corners of solution sets for μ = 0.
Solution granules xA/xB¡ and xA/xB+ are functions existing 

in 4D-space because xA/xB¡ = f(μ, αxA, αxB¡) and xA/xB+ =  

= f2(μ, αxA, αxB+). Hence, they cannot be fully visualized. How-

ever, the granules can be visualized partly in the 3D-space 

which corresponds to various levels of μ-cuts, e.g. μ = 0, 

Fig. 8. Two granules representing subsets of possible solutions; the 
upper granule corresponds to the acute course angle of the ferry 
(β < 90°) and the lower corresponds to the obtuse angle (β > 90°)

Fig. 9. Fuzzy numbers XA (about 2) and XB (about 0)

Fig. 10. Decomposition of the fuzzy number XB into two components 
XB¡ and XB+

Table 1 

Values of xA/xB¡ in corners of the solution space, level μ = 0

αXA 0 0 1 1

αXB¡ 0 1 0 1

xA 1 1 3 3

xB¡ ¡3 0¡ ¡3 0¡

xA/xB¡ ¡1/3 ¡1 ¡1 ¡1
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μ = 0.5, etc. Figure 11 shows 2 granules of the quotient xA/xB 

in the 3D-space.

Granules of the quotient z = xA/xB can be presented also in 

a more simplified way, in the 2D-space: Z£XA (Fig. 12).

As Fig. 12 shows, the result of the division of two fuzzy 

numbers: XA determined by triple (1, 2, 3) and XB that contains 

zero (¡3, 0, 1) is not one, single and compact granule. The re-

sult consists of two distinctly separated granules. The smallest 

separation occurs for the cut-level μ = 0. With increasing 
μ-value, the separation of granules Z¡ and Z+ increases. The 

separation approaches infinity for μ = 1.
In the considered example of the division XA/XB, zero oc-

curs explicitly in the denominator of the number XB. However, 

in many calculation tasks, zero does not occur in denominators 
openly but in a more or less secret way. Then we cannot be 

aware of its occurrence. It will be shown in next examples.

4.2. Case 2. Let us consider the case of a division in which 3 

fuzzy intervals A, B, C take part:

 

A. Piegat, M. Pluciński

a more simplified way, in the 2D-space:

separation approaches infinity for

in many calculation tasks, zero does not occur in denominato

take part:

A

B−C
=

[1,2,3]

[2,3,4]− [3,4,5]
= Z . (51)

None of intervals contains zero. However, though not di-

rectly, the denominator B ¡ C does. Horizontal MFs of A, B 

and C will be formulated (52) to calculate the division result.

 

A. Piegat, M. Pluciński

a more simplified way, in the 2D-space:

separation approaches infinity for

in many calculation tasks, zero does not occur in denominato

take part:

A : xA = (1+ µ)+ 2(1− µ)αXA ,

B : x 2 µ 2 1 µ α

A. Piegat, M. Pluciński

a more simplified way, in the 2D-space:

separation approaches infinity for

in many calculation tasks, zero does not occur in denominato

take part:

µ ,αXA,αXB,αXC ∈ [0,1]

A. Piegat, M. Pluciński

a more simplified way, in the 2D-space:

separation approaches infinity for

in many calculation tasks, zero does not occur in denominato

take part:

C : xC = (3+ µ)+ 2(1− µ)αXC ,

µ α α α 0 1

A. Piegat, M. Pluciński

a more simplified way, in the 2D-space:

separation approaches infinity for

in many calculation tasks, zero does not occur in denominato

take part:

B : xB = (2+ µ)+ 2(1− µ)αXB ,
 (52)

After using horizontal MFs in (51) we obtain

 

A. Piegat, M. Pluciński

a more simplified way, in the 2D-space:

separation approaches infinity for

in many calculation tasks, zero does not occur in denominato

take part:

µ ,αXA,αXB,αXC ∈ [0,1] .

A. Piegat, M. Pluciński

a more simplified way, in the 2D-space:

separation approaches infinity for

in many calculation tasks, zero does not occur in denominato

take part:

A

B−C
= Z :

x
gr
A

x
gr
B − x

gr
C

= zgr ,

zgr =
(1+ µ)+ 2(1− µ)αXA

−1+ 2(1− µ)(αXB−αXC)
,

0 1

 (53)

Fig. 12. Granules of the quotient z = xA/xB, formula (50), in the 

2D-space for cut-level μ = 0 and μ = 0.5

Fig. 11. Visualization of two granules of the quotient a = xA/xB, for-

mula (50), in 3D-space for the cut μ = 0

Table 2 

Values of xA/xB+ in corners of the solution space, level μ = 0

αXA 0 0 1 1

αXB+ 0 1 0 1

xA 1 1 3 3

xB+ 0+ 1 0+ 1

xA/xB+ +1 1 +1 3
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For the cut-level μ = 0 formula (53) takes form:

 

Fig. 13. Simplified 2D-visualization of two separate soluti

0 formula (53) takes form:

Z : zgr =
1+ 2αXA

−1+ 2(αXB−αXC)
,

αXA,αXB,αXC ∈ [0,1] , αXB −αXC �= 0.5 .

visualized. However, in a simplified way, it can be shown in

0. It can be easily checked with use

taking part in the division (56)

take part in the division operation, therefore these values

 (54)

As can be seen from (54), the division result zgr = f (αXA, 

αXB, αXC) exists in the 4D-space and cannot be fully visualized. 

However, in a simplified way, it can be shown in 2D-space 

(Fig. 13).

4.3. Case 3. Let us consider a more complicated division case, 

where two fuzzy intervals containing zero appear in the denom-

inator. Fuzzy intervals are shown in Fig. 14.

 

Fig. 13. Simplified 2D-visualization of two separate soluti

0 formula (53) takes form:

visualized. However, in a simplified way, it can be shown in

0. It can be easily checked with use

A

BC
=

[1,2,3]

[−2,0,1][−1,0,3]
, xB �= 0, xC �= 0

taking part in the division (56)

take part in the division operation, therefore these values

 (56)

Since zero-values of uncertain variables xB and xC cannot 

take part in the division operation, these values have to be re-

moved from the intervals (Fig. 15).

Fig. 14. Fuzzy intervals A, B, C taking part in the division (56)

Fig. 15. Removing zero-values and partition of fuzzy intervals B and 
C occurring in the denominator of the division (56)

Fig. 13. Simplified 2D-visualization of two separate solution granules 
of division A/(B ¡ C) on the cut-level μ = 0, formula (54); values 

z 2 [¡1/3, 1] are impossible

As Fig. 13 shows, solution values z 2 [¡1/3, 1] are impos-

sible for the cut-level μ = 0. It can be easily checked by use of 
formula (54). If the value z = 0 is possible, equation (55) should 
also have a solution.

 

Fig. 13. Simplified 2D-visualization of two separate soluti

0 formula (53) takes form:

visualized. However, in a simplified way, it can be shown in

0. It can be easily checked with use

1+ 2αXA

−1+ 2(αXB−αXC)
= 0 , αXB −αXC �= 0.5

taking part in the division (56)

take part in the division operation, therefore these values

 (55)

However, since αXA 2 [0, 1], the division result z = 0 is impos-

sible. A similar situation concerns other μ-levels.

0¡ is a very small, negative value approaching 0. Similarly 

0+ is a very small positive value approaching 0. Symbolically, 

the division operation can be decomposed into 4 components:

 

Fig. 13. Simplified 2D-visualization of two separate soluti

0 formula (53) takes form:

visualized. However, in a simplified way, it can be shown in

0. It can be easily checked with use

taking part in the division (56)

take part in the division operation, therefore these values

A

BC
= Z =

A

B1C1

∪
A

B1C2

∪
A

B2C1

∪
A

B2C2

= Z1 ∪Z2 ∪Z3 ∪Z4 .

Fig. 13. Simplified 2D-visualization of two separate soluti

0 formula (53) takes form:

visualized. However, in a simplified way, it can be shown in

0. It can be easily checked with use

taking part in the division (56)

take part in the division operation, therefore these values

Z =
B (57)

Particular component functions presented in Fig. 14 are de-

scribed with the following horizontal MFs:

 

Fig. 13. Simplified 2D-visualization of two separate soluti

0 formula (53) takes form:

visualized. However, in a simplified way, it can be shown in

0. It can be easily checked with use

taking part in the division (56)

take part in the division operation, therefore these values

A : xA = (1+ µ)+2(1− µ)αXA, µ ,αXA ∈ [0,1] ,

Fig. 13. Simplified 2D-visualization of two separate soluti

0 formula (53) takes form:

visualized. However, in a simplified way, it can be shown in

0. It can be easily checked with use

taking part in the division (56)

take part in the division operation, therefore these values

B : xB = (1− µ)(−2+ 3αXB), µ ,αXB ∈ [0,1] ,

Fig. 13. Simplified 2D-visualization of two separate soluti

0 formula (53) takes form:

visualized. However, in a simplified way, it can be shown in

0. It can be easily checked with use

taking part in the division (56)

take part in the division operation, therefore these values

C : xC = (1− µ)(−1+ 4αXC), µ ,αXC ∈ [0,1] .

 (58)
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Decomposed functions presented in Fig. 15 can be described 

by the following horizontal MFs:

 

Fig. 13. Simplified 2D-visualization of two separate soluti

0 formula (53) takes form:

visualized. However, in a simplified way, it can be shown in

0. It can be easily checked with use

taking part in the division (56)

take part in the division operation, therefore these values

B1 : xB = (1− µ)(−2+ 3αXB), αXB ∈ [0,
2

3
) ,

B2 : xB = (1− µ)(−2+ 3αXB), αXB ∈ (
2

3
,1] ,

C1 : xC = (1− µ)(−1+ 4αXC), αXC ∈ [0,
1

4
) ,

C2 : xC = (1− µ)(−1+ 4αXC), αXC ∈ (
1

4
,1] .

 (59)

Now, particular component division results Z1, Z2, Z3 and Z4 

have to be found according to the general formula (56).
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Z1 =
A

B1C1

:

z
gr
1 =

(1+ µ)+ 2(1− µ)αXA

[(1− µ)(−2+ 3αXB)][(1− µ)(−1+ 4αXC)]
,

αXA ∈ [0,1], αXB ∈ [0,
2

3
), αXC ∈ [0,

1

4
)

fied way for particular levels of membership
0, formula (60) takes form:

mula (61) allows for simplified visualization of the granule

granule can be visualized in a simplified way. For the level

0 formula (64) takes the form:

be simplified:

 (60)

The division result z1
gr = f1(μ, αXA, αXB, αXC) is an informa-

tion granule existing in a 5D-space and hence it cannot be pre-

cisely visualized. However, it can be presented in a simplified 

way for particular levels of membership μ. For the level μ = 0, 
formula (60) takes form:
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fied way for particular levels of membership
0, formula (60) takes form:

Z1 : z
gr
1 =

1+ 2αXA

[−2+ 3αXB][−1+ 4αXC]
,

αXA ∈ [0,1], αXB ∈ [0,
2

3
), αXC ∈ [0,

1

4
) .

mula (61) allows for simplified visualization of the granule

granule can be visualized in a simplified way. For the level

0 formula (64) takes the form:

be simplified:

 (61)

It should be noticed that in the considered domain of RDM 

variables αXA, αXB, αXC, the nominator and the denominator 

of formula (61) do not change their sign, i.e.: 1 + 2αXA > 0, 
¡2 + 3αXB < 0, ¡1 + 4αXC < 0. So, all possible division re-

sults contained in the granule Z1 are positive. Analysis of for-

mula (61) allows for simplified visualization of the granule of 

possible solutions z1
gr, which is shown in Fig. 16.

Next, the component solution Z2 of the division will be de-

termined:
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fied way for particular levels of membership
0, formula (60) takes form:

mula (61) allows for simplified visualization of the granule

Z2 =
A

B1C2
:

z
gr
2 =

(1+ µ)+2(1− µ)αXA

[(1− µ)(−2+ 3αXB)][(1− µ)(−1+ 4αXC)]
,

αXA ∈ [0,1], αXB ∈ [0,
2

3
), αXC ∈ (

1

4
,1] .

granule can be visualized in a simplified way. For the level

0 formula (64) takes the form:

be simplified:

 (62)

Component Z2 of the division is an information granule in 

the 5D-space. As before, for particular membership levels this 

granule can be visualized in a simplified way. For the level 

μ = 0, the granule is given by (63).
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fied way for particular levels of membership
0, formula (60) takes form:

mula (61) allows for simplified visualization of the granule

granule can be visualized in a simplified way. For the level

Z2 : z
gr
2 =

1+ 2αXA

[−2+ 3αXB][−1+ 4αXC]
,

αXA ∈ [0,1], αXB ∈ [0,
2

3
), αXC ∈ (

1

4
,1]

0 formula (64) takes the form:

be simplified:

 (63)

The granule Z2 is visualized in Fig. 16. It can be noticed that 

granules Z1 and Z2 differ.

The component result Z3 of the division is also an informa-

tion granule in the 5D-space. For various μ-levels this result 

can be shown in the form:
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fied way for particular levels of membership
0, formula (60) takes form:

mula (61) allows for simplified visualization of the granule

granule can be visualized in a simplified way. For the level

Z3 =
A

B2C1

:

z
gr
3 =

(1+ µ)+2(1− µ)αXA

[(1− µ)(−2+ 3αXB)][(1− µ)(−1+ 4αXC)]
,

αXA ∈ [0,1], αXB ∈ (
2

3
,1], αXC ∈ [0,

1

4
) .

0 formula (64) takes the form:

be simplified:

 (64)

In particular, for the level μ = 0 formula (64) takes the form:
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fied way for particular levels of membership
0, formula (60) takes form:

mula (61) allows for simplified visualization of the granule

granule can be visualized in a simplified way. For the level

0 formula (64) takes the form:

Z3 : z
gr
3 =

1+ 2αXA

[−2+ 3αXB][−1+ 4αXC]
,

αXA ∈ [0,1], αXB ∈ (
2

3
,1], αXC ∈ [0,

1

4
) .

be simplified:

 (65)

This granule is visualized in Fig. 16. As can be seen, it is 

different from other granules.
Fig. 16. Simplified visualization of 5D result granules Z1 ¡ Z4 of the 

division Z = A/(BC)  in a 3D subspace for the cut level μ = 0
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The last component result Z4 of the division is also an infor-

mation granule existing in the 5D-space. For particular μ-levels 

it has the form:

 

A. Piegat, M. Pluciński

fied way for particular levels of membership
0, formula (60) takes form:

mula (61) allows for simplified visualization of the granule

granule can be visualized in a simplified way. For the level

0 formula (64) takes the form:

Z4 =
A

B2C2

:

z
gr
4 =

(1+ µ)+ 2(1− µ)αXA

[(1− µ)(−2+ 3αXB)][(1− µ)(−1+ 4αXC)]
,

αXA ∈ [0,1], αXB ∈ (
2

3
,1], αXC ∈ (

1

4
,1] .

be simplified:

 (66)

In particular, for the level μ = 0 the component granule can 
be simplified:
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fied way for particular levels of membership
0, formula (60) takes form:

mula (61) allows for simplified visualization of the granule

granule can be visualized in a simplified way. For the level

0 formula (64) takes the form:

be simplified:

Z4 : z
gr
4 =

1+ 2αXA

[−2+ 3αXB][−1+ 4αXC]
,

αXA ∈ [0,1], αXB ∈ (
2

3
,1], αXC ∈ (

1

4
,1] .

 (67)

This component granule is shown in Fig. 16 and it can be 

seen that it differs from other component granules. For other 

fractional μ-levels, distances between component granules are 

different from granule distances for the level μ = 0. For the 
level μ = 1, the division result is undetermined. Because in 
the real system only one value of each variable αXA, αXB, αXC 

is true, therefore also one division result z = xA/(xBxC) exists. 

This result is a single point that can lie only in one of the four 

component granules Z1 ¡ Z4.

4.4. Case 4. Now, let us examine the division case with a de-

nominator in which the second-order polynomial occurs, (68). 

Value of the variable xB is uncertain and is expressed by the 

fuzzy value XB given by triple (2, 3, 5). Fuzzy values A and XB 

are shown in Fig. 17.
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fied way for particular levels of membership
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granule can be visualized in a simplified way. For the level

0 formula (64) takes the form:

be simplified:

Z =
A

B
=

(1,2,4)

X2
B − 10XB+ 21

, XB = (2,3,5) (68)

The denominator in formula (68) has two roots: xB = 3 and 
xB = 7. The fuzzy value XB contains the root xB = 3. The divi-
sion result is indeterminate for this value, so MF of XB should 

be decomposed into two parts as shown in Fig. 18.

Formula (69) presents horizontal MFs of fuzzy values A, 

XB1 and XB2.
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granule can be visualized in a simplified way. For the level

0 formula (64) takes the form:

be simplified:

A : xA = (1+ µ)+ 3(1− µ)αXA, µ ,αXA ∈ [0,1] ,

XB1 : xB1 = (2+ µ)+ 3(1− µ)αXB, αXB ∈ [0,
1

3
) ,

XB2 : xB2 = (2+ µ)+ 3(1− µ)αXB, αXB ∈ (
1

3
,1]

 (69)

After inserting horizontal MFs into formula (68) we have:

 

Fig. 16. Simplified visualization of 5D result granules

Z1 : z
gr
1 =

(1+ µ)+ 3(1− µ)αXA

D
,

µ ,αXA ∈ [0,1], αXB ∈ [0,
1

3
) ,

Z2 : z
gr
2 =

(1+ µ)+ 3(1− µ)αXA

D
,

µ ,αXA ∈ [0,1], αXB ∈ (
1

3
,1] ,

However, they can be visualized in a simplified way in 2D-

0 formula (70) takes the form:

some additional knowledge, e.g. that the division result is

Solving linear equation systems is a frequent task
in practical problems [26, 27, 28]. Frequently, coefficient

coefficients determined by triangle MFs.

MFs of particular coefficients can be expressed in the form

 (70)

where:

D = [(2 + μ) + 3(1 ¡ μ)αxA]
2 ¡ 10[(2 + μ) + 3(1 ¡ μ)αxB] + 21.

As can be seen from formula (70), the division result 

consists of two granules Z1 and Z2 which exist in 4D-space 

z = f (μ, αXA, αXB), hence they cannot be precisely visual-

ized. However, they can be visualized in a simplified way in 

2D-space for particularly chosen membership levels μ. For the 

level μ = 0 formula (70) takes the form:

 

Fig. 16. Simplified visualization of 5D result granules However, they can be visualized in a simplified way in 2D-

0 formula (70) takes the form:

Z1 : z
gr
1 =

1+ 3αXA

9α2
XB − 18αXB + 5

,

µ ,αXA ∈ [0,1], αXB ∈ [0,
1

3
) ,

Z2 : z
gr
2 =

(1+ µ)+ 3(1− µ)αXA

9α2
XB − 18αXB + 5

,

µ ,αXA ∈ [0,1], αXB ∈ (
1

3
,1] .

some additional knowledge, e.g. that the division result is

Solving linear equation systems is a frequent task
in practical problems [26, 27, 28]. Frequently, coefficient

coefficients determined by triangle MFs.

MFs of particular coefficients can be expressed in the form

 (71)

Component granules Z1 and Z2 of the division result are 

shown in Fig. 19.
Fig. 17. Membership functions of fuzzy values A and XB occurring in 

the division (68)

Fig. 18. Decomposition of membership function of fuzzy value XB into 
two parts, xB  6= 3, αXB  6= 1/3
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The true, crisp result of the division (70) lies in one of two 

granules: Z1 or Z2. In a real proble,m we sometimes have some 

additional knowledge, e.g. that the division result is negative. 
Then the true result can be located only in Z2, which means 

decreasing the uncertainty.

4.5. Case 5. Solving linear equation systems is a frequent task 
in practical problems [26–28]. Coefficients occurring in the 

equations are often uncertain. A typical example is an econom-

ical plan model for the next period as e.g. balance model of Le-

ontief for state economy [29]. Solving a linear equation system 

requires division by the system determinant D which also is 

uncertain and can contain negative numbers, zero and positive 

numbers. Such situation results in multi-granular solutions. Let 

us consider equation system (72) with uncertain coefficients 

determined by triangle MFs.

 

Fig. 16. Simplified visualization of 5D result granules However, they can be visualized in a simplified way in 2D-

0 formula (70) takes the form:

some additional knowledge, e.g. that the division result is

Solving linear equation systems is a frequent task
in practical problems [26, 27, 28]. Frequently, coefficient

coefficients determined by triangle MFs.

A1x1 +B1x2 =C1

A2x1 +B2x2 =C2

MFs of particular coefficients can be expressed in the form

 (72)

MFs of particular coefficients can be expressed in the form 

of triples: A1 = (1, 2, 4), B1 = (3, 5, 6), C1 = (15, 16, 17), 
A2 = (2, 3, 5), B2 = (7, 8, 9), C2 = (21, 24, 25), Fig. 20.

Horizontal MFs of uncertain coefficients can be determined 

as:
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Fig. 20. Membership functions of uncertain coefficients

Horizontal MFs of uncertain coefficients can be determined

A1 : xA1 = (1+ µ)+ 3αA1(1− µ) ,

B1 : xB1 = (3+ 2µ)+ 3αB1(1− µ) ,

C1 : xC1 = (15+ µ)+ 2αC1(1− µ) ,

A2 : xA2 = (2+ µ)+ 3αA2(1− µ) ,

B2 : xB2 = (7+ µ)+ 2αB2(1− µ) ,

C2 : xC2 = (21+ 3µ)+ 4αC2(1− µ) ,

µ ,αA1,αB1,αC1,αA2,αB2,αC2 ∈ [0,1] .

To check whether solutions
ter of multi-granules it is sufficient to examine them for the

0. For this level solutions (74) take the

. To check whether solutions

 (73)

The determinant D of the equation system (72) has the form 

D = xA1xB2 ¡ xA2xB1 and solutions z1
gr and z2

gr can be formulated 

as:

 

A. Piegat, M. Pluciński

Fig. 20. Membership functions of uncertain coefficients

Horizontal MFs of uncertain coefficients can be determined

x
gr
1 =

xB2xC1 − xB1xC2

xA1xB2 − xA2xB1

,

x
gr
2 =

xA1xC2 − xA2xC1

xA1xB2 − xA2xB1

.

To check whether solutions gr gr

ter of multi-granules it is sufficient to examine them for the
0. For this level solutions (74) take the

. To check whether solutions

 (74)

To check whether solutions z1
gr and z2

gr really have character 

of multi-granules it is sufficient to examine them for the mem-

bership level μ = 0. For this level solutions (74) take the form:
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To check whether solutions
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0. For this level solutions (74) take the

x
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Horizontal MFs of uncertain coefficients can be determined

To check whether solutions
ter of multi-granules it is sufficient to examine them for the

0. For this level solutions (74) take the

1)− (3+ 3αB1)(21+ 4αC2)

2)− (2+ 3αA2)(3+ 3αB1)
,

2 3α 15 2α

. To check whether solutions

 (75)

Let us notice that the nominator and denominator of z1
gr in 

(75) are not independent. They are coupled by RDM-variables 

αB1 and αB2. Similar coupling occurs in z2
gr by RDM-variables 

αA1 and αA2. To check whether solutions z1
gr and z2

gr have the 

form of multi-granules or not, the denominator D of the equa-

tion system (75) for the level μ = 0 should be examined.
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Fig. 20. Membership functions of uncertain coefficients

Horizontal MFs of uncertain coefficients can be determined

To check whether solutions
ter of multi-granules it is sufficient to examine them for the

0. For this level solutions (74) take the

. To check whether solutions

D = (1+ 3αA1)(7+ 2αB2)− (2+ 3αA2)(3+ 3αB1) ,

αA1,αB1,αA2,αB2,∈ [0,1]
 (76)

Fig. 19. Two component granules Z1 and Z2 of the division result 
determined by formula (71), xB  6= 3, αXB  6= 1/3, z 2/ [¡0.25, 0.2]

Fig. 20. Membership functions of uncertain coefficients A1, B1, C1, A2, 
B2, C2 occurring in the equation system (72)
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Because the denominator D is a monotonic function of 

RDM-variables, its extremes lie in corners of its domain 

αA1£αB1£αA2£αB2. To detect these extremes, the denominator 

value for all combinations of RDM variables αA1, αB1, αA2, αB2 

for values 0 and 1 must be calculated. Results of this examina-

tion are given in (77).

 
minD = D(αA1 = 0, αB1 = 1αA2 = 1, αB2 = 0) = ¡23

maxD = D(αA1 = 1, αB1 = 0αA2 = 0, αB2 = 1) = 30
 (77)

It can be seen that D 2 [¡23, 30]. Occurrence of zero in 

the interval of the denominator D means that the solution 

of the equation system is two-granular: x1
gr = xg

1,
r
1 [ xg

1,
r
2 and 

x2
gr = xg

2,
r
1 [ xg

2,
r
2.

 

x
gr
1,1 = f1,1(αA1,αB1,αC1,αA2,αB2,αC2) ,

for D(αA1,αB1,αA2,αB2) ∈ [−23,0)

x
gr
1,2 = f1,2(αA1,αB1,αC1,αA2,αB2,αC2) ,

for D(αA1,αB1,αA2,αB2) ∈ (0,30]
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The 3D-projection from the 7D-space of the two-granular 

solution z1
gr is shown in Fig. 21. Projection of the solution x2

gr 

is of similar character (Fig. 22).

In Figs. 21 and 22 one can distinctly see the separation of 

component-solution granules. One can also see that component 

granules xg
1,

r
1 and xg

1,
r
2 are different functions.

When the solution of the equation system (72) is presented 

in a too low-dimensional or inappropriate space (as in Fig. 23), 

the separation of solution granules is not visible. However, such 

inappropriate presentation can be found in many papers con-

cerning uncertain equation systems, e.g in [26].

5. Conclusions

Solving problems described by uncertain mathematical models 

which explicitly or sometimes implicitly (like fuzzy equation 
systems) contain the division operation can provide multi-gran-

ular, not compact solutions consisting of two or more com-

ponent granules which are distinctly separated. Sometimes, 

the granule separation is considerable, as has been shown in 

examples. The multi-granularity hinders problem solving, es-

pecially when the multi-granular solution of one sub-model 

has to be introduced in the next submodel in which division 

Fig. 21. Visualization of 2-granularity of x1
gr = xg

1,
r
1 [ xg

1,
r
2 as the function 

of the denominator D and the numerator N of the solution (75)

Fig. 22. Visualization of x2
gr = xg

2,
r
1 [ xg

2,
r
2 as the function of the denom-

inator D and the numerator N of the solution (75)

Fig. 23. Visualization of the set of possible solutions (75) for αA1, 
αB1, αC1, αA2, αB2, αC2 2 [0, 1] in the space X1£X2; no separation is 

visible
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also occurs. Fuzzy RDM arithmetic allows for detecting the 

multi-granularity and allows for taking into account possible 
couplings (correlations) existing between particular problem 

variables, as in the case of fuzzy system equations where such 

couplings exists between the numerator and the denominator 

of system solutions. Being aware of the multi-granularity of 

the solutions is very important for correct and precise solving 

of uncertain problems.
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