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Abstract

In this work, we introduce the concept of fuzzy parameterized interval-
valued fuzzy soft set theory (fpivfss) and study their operations. We
then define fpivfss-aggregation operator to form fpivfss-decision mak-
ing method that allows constructing more efficient decision processes.
Finally, some numerical examples are employed to substantiate the con-
ceptual arguments.
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1 Introduction

There are some mathematical tools for dealing with uncertainties; two of them
are fuzzy set theory, developed by Zadeh [11], and soft set theory, introduced
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by Molodtsov [9]. In [12] Zadeh introduced and used interval-valued fuzzy set.
After that many authors study the mathematical tools and their applications.

For soft set theory, Maji et al. [7] defined operations of soft sets to make a
detailed theoretical study on the soft sets. Also Maji et al. [6] defined a fuzzy
soft set and they gave the application of fuzzy soft set in decision making prob-
lem in [8]. By using these definitions, the applications of soft set theory have
been studied increasingly. Cagman and Enginoglu [1] studied the soft decision
making and Cagman et al [2] also gave an application of soft set theory in deci-
sion making. Chen et al. [3], discussed the parameterization reduction of soft
sets and its applications. An adjustable approach to fuzzy soft set based on de-
cision making is given by Feng et al. [4]. Cagman et al. [2] defined the concept
of fuzzy parameterized fuzzy soft set (fpfs-set). The purpose of this paper is
to combine the interval-valued fuzzy soft sets and fpfs-set, from which we can
obtain a new soft set model: fuzzy parameterized interval-valued fuzzy soft set
theory. In this paper, we define fpivfs-sets in which the approximate functions
are defined from fuzzy parameters set to the interval-valued fuzzy subsets of
the universal set. We also define their operations and soft aggregation operator
to form fpivfs-decision making method that allows constructing more efficient
decision processes. We finally present examples which show that the methods
can be successfully applied to many problems that contain uncertainties.

2 Preliminary

Molodtsov [9] defined soft set in the following way. Let U be a universe set
and E a set of parameters. Let P (U) denote the power set of U and A ⊆ E.

Definition 2.1 [9]. A pair (F, E) is called a soft set over U, where F is
a mapping given by F : E → P (U). In other words, a soft set over U is a
parameterized family of subsets of the universe U .

Definition 2.2 [6]. Let U be an initial universal set and let E be a set of
parameters. Let IU denote the power set of all fuzzy subsets of U. Let A ⊆ E.
A pair (F, E) is called a fuzzy soft set over U where F is a mapping given by

F : A → IU .

Definition 2.3 [12]. An interval-valued fuzzy set X̃ on a universe U is a
mapping such that

X̃ : U → Int ([0, 1]) ,

where Int ([0, 1]) stands for the set of all closed subintervals of [0, 1], the set of
all interval-valued fuzzy sets on U is denoted by P̃ (U).
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Suppose that X̃ ∈ P̃ (U) , ∀x ∈ U, μx (x) = [μ−
x (x) , μ+

x (x)] is called the
degree of membership of an element x to X̃ where μ−

x (x) and μ+
x (x) are the

lower and upper degrees of membership of x to X̃ respectively such that

0 ≤ μ−
x (x) ≤ μ+

x (x) ≤ 1.

The complement, intersection and union of the interval-valued fuzzy sets
are defined in [5] as follows: Let X̃, Ỹ ∈ P̃ (U) then

1. the complement of X̃ is denoted by X̃c where

μX̃c (x) = 1 − μX̃ (x) =
[
1 − μ+

X̃
(x) , 1 − μ−

X̃
(x)

]
;

2. the intersection of X̃ and Ỹ is denoted by X̃ ∩ Ỹ where

μX̃∩ Ỹ (x) = inf [μX̃ (x) , μỸ (x)]

=
[
inf

(
μ−

X̃
(x) , μ−

Ỹ
(x)

)
, inf

(
μ+

X̃
(x) , μ+

Ỹ
(x)

)]
;

3. the union of X̃ and Ỹ is denoted by X̃ ∪ Ỹ where

μX̃∪ Ỹ (x) = sup [μX̃ (x) , μỸ (x)]

=
[
sup

(
μ−

X̃
(x) , μ−

Ỹ
(x)

)
, sup

(
μ+

X̃
(x) , μ+

Ỹ
(x)

)]
.

Definition 2.4 [2]. Let U be an initial universe, E the set of all parameters
and X a fuzzy set over E with membership function

μX : E → [0, 1] ,

and let γX be a fuzzy set over U for all x ∈ E. Then an fpfs-set ΓX over U
is a set defined by a function γX(x) representing a mapping γX : E → F (U)
such that

γX (x) = ∅ if μX (x) = 0.

Here, γX is called a fuzzy approximate function of the fpfs-set ΓX , and the
value γX (x) is a set called x-element of the fpfs-set for all x ∈ E. Thus, an
fpfs-set ΓX over U can be represented by the set of ordered pairs

ΓX = {(μX (x) /x, γX (x)) : x ∈ E, γX (x) ∈ F (U) , μX (x) ∈ [0, 1]} .
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It must be noted that the set of all fpfs-sets over U will be denoted by
FPFS (U) .

Definition 2.5 [8]. Let ΓX ∈ FPFS (U) . Then fpfs-aggregation operator,
denoted by FPFSagg, is defined by

FPFSagg : F (E) × FPFS (U) → F (U) ,

FPFSagg (X, ΓX) = Γ∗
X

where
Γ∗

X =
{
μΓ∗

X
(u) /u : u ∈ U

}
which is a fuzzy set over U . The value Γ∗

X is called an aggregate fuzzy set of
ΓX . Here, the membership degree μΓ∗

X
(u) of u is defined as follows:

μΓ∗
X

(u) =
1

|E|
∑
x∈E

μX (x)μγX(x) (u) ,

where |E| is the cardinality of E.

Definition 2.6 [12]. Let U be an initial universe and E be a set of param-
eters. P̃ (U) denotes the set of all interval-valued fuzzy sets of U . Let A ⊆ E.

A pair
(
F̃ , A

)
is an interval-valued fuzzy soft set over U , where F̃ is a mapping

given by F̃ : A → P̃ (U).

3 Fuzzy parameterized interval-valued fuzzy

soft set

In this section, we shall define fuzzy parameterized interval-valued fuzzy soft
sets (fpivfs-sets) and their operations with examples.

Definition 3.1 Let U be an initial universe, E the set of all parameters
and X a fuzzy set over E with membership function: μX : E → [0, 1] and
let ηX be an interval-valued fuzzy set over U for all x ∈ E. Then a fuzzy
parameterized interval-valued fuzzy soft set (fpivfs-set) ΨX over U is a set
defined by a function ηX representing a mapping

ηX : E → Int (U)

such that ηX (x) = ∅ if μX (x) = 0.

Here, ηX =
[
η−

X , η+
X

]
is called an interval-valued fuzzy approximate function

of the fpivfs-set ΨX , and the value ηX (x) is a set called an x-element of the
fpivfs-set for all x ∈ E. Thus a fpivfs-set ΨX over U can be represented by
the set of ordered pairs
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ΨX = {(x/μX (x) , ηX (x)) : x ∈ E, ηX (x) ∈ Int (U) , μX (x) ∈ [0, 1]}.
It must be noted that the set of all fpivfs-sets over U will be denoted by
FPIV FSS (U) .

Example 3.2 Let U = {u1, u2, u3, u4} be a set of universe, E = {x1, x2, x3, x4}
be a set of qualities and let μ : E → [0, 1] . Suppose X =

{
x1

0.3
, x2

0.1
, x3

0.4
, x4

1

}
and

ηX (x) is defined as follows:

ηX (x1) =
{

u1

[0.3, 0.6]
, u2

[0.7, 0.8]
, u3

[0.5, 0.8]
, u4

[0.2, 0.5]

}
,

ηX (x2) =
{

u1

[0, 0.7]
, u2

[0.2, 0.3]
, u3

[0.3, 0.5]
, u4

[0.1, 0.3]

}
,

ηX (x3) =
{

u1

[0.1, 0.4]
, u2

[0.4, 0.6]
, u3

[0.3, 0.8]
, u4

[0.4, 0.5]

}
,

ηX (x4) =
{

u1

[0.5, 0.7]
, u2

[0.1, 0.4]
, u3

[0, 0.4]
, u4

[0.8, 0.9]

}
.

Then the fpivfs-set ΨX is given by

ΨX =
{(

x1

0.3
,
{

u1

[0.3, 0.6]
, u2

[0.7, 0.8]
, u3

[0.5, 0.8]
, u4

[0.2, 0.5]

})
,

(
x2

0.1
,
{

u1

[0, 0.7]
, u2

[0.2, 0.3]
, u3

[0.3, 0.5]
, u4

[0.1, 0.3]

})
,

(
x3

0.4
,
{

u1

[0.1, 0.4]
, u2

[0.4, 0.6]
, u3

[0.3, 0.8]
, u4

[0.4, 0.5]

})
,

(
x4

1
,
{

u1

[0.5, 0.7]
, u2

[0.1, 0.4]
, u3

[0, 0.4]
, u4

[0.8, 0.9]

})}
.

Definition 3.3 Let ΨX and ΨY be two FPIVFSS(U). Then ΨX is said to
be a fuzzy parameterized interval-valued fuzzy soft subset (fpivfs-subset) of ΨY

and we write ΨX ⊆ ΨY if

1. μX (x) ≤ μ Y (x) , ∀ x ∈ E;

2. ηX (x) ⊆ ηY (x) , ∀ x ∈ E.

Definition 3.4 Two FPIVFSS(U) ΨX and ΨY are said to be equal and we
write ΨX = ΨY if ΨX is a fpivfs-subset of ΨY and ΨY is a fpivfs-subset of ΨX.
In other words, ΨX = ΨY if the following conditions are satisfied:

1. μX (x) = μ Y (x) , ∀ x ∈ E,

2. ηX (x) = ηY (x) , ∀ x ∈ E.
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Definition 3.5 Let ΨX ∈ FPIV FSS (U). If ηX (x) = ∅, ∀x ∈ E, then
ΨX is called an X-empty fpivfs-set, denoted by Ψ∅X

. If X = ∅, then the X-
empty fpivfs-set (Ψ∅X

) is called an empty fpivfs-set,denoted by Ψ∅ .

Definition 3.6 Let ΨX ∈ FPIV FSS (U). If ηX (x) = U, ∀x ∈ E, then
ΨX is called an X-universal fpivfs-set, denoted by ΨX̃. If X = E, then the
X-universal fpivfs-set ΨX̃ is called a universal fpivfs-set, denoted by ΨẼ.

Proposition 3.7 Let ΨX , ΨY and ΨZ be any three FPIVFSS(U). Then the
following results hold:

1. ΨX ⊆ ΨẼ ,

2. Ψ∅X
⊆ ΨX ,

3. Ψ∅ ⊆ ΨX ,

4. ΨX ⊆ ΨX ,

5. ΨX ⊆ ΨY and ΨY ⊆ ΨZ ⇒ ΨX ⊆ ΨZ ,

6. (ΨX = ΨY and ΨY = ΨZ) ⇔ ΨX = ΨZ ,

7. (ΨX ⊆ ΨY and ΨY ⊆ ΨX) ⇔ ΨX = ΨY .

Proof: The proof is straightforward.

Definition 3.8 Let ΨX ∈ FPIV FSS (U). Then the complement of ΨX,
denoted by Ψc

X, is defined by c (μX (x)) and c̃ (ηX (x)), ∀x ∈ E, where c is a
fuzzy complement and c̃ is an interval-valued fuzzy complement.

Example 3.9 Consider Example 3.2. By using the basic fuzzy complement
for μX (x) and interval-valued fuzzy complement for ηX (x) we have

Ψc
X =

{(
x1

0.7
,
{

u1

[0.4, 0.7]
, u2

[0.2, 0.3]
, u3

[0.2, 0.5]
, u4

[0.5, 0.8]

})
,

(
x2

0.9
,
{

u1

[0.3, 1]
, u2

[0.7, 0.8]
, u3

[0.5, 0.7]
, u4

[0.7, 0.9]

})
,(

x3

0.6
,
{

u1

[0.6, 0.9]
, u2

[0.4, 0.6]
, u3

[0.2,0.7]
, u4

[0.5, 0.6]

})
,(

x4

0
,
{

u1

[0.3, 0.5]
, u2

[0.6, 0.9]
, u3

[0.6, 1]
, u4

[0.1, 0.2]

})}
.

Proposition 3.10 Let ΨX ∈ FPIV FSS (U). Then the following results
hold:

1. (Ψc
X )c = ΨX ,
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2. Ψ c
∅ = ΨẼ.

Proof: The proof is straightforward.

Definition 3.11 The union of two FPIVFSS(U) ΨX and ΨY , denoted by
ΨX ∪ ΨY , is defined by

μX∪Y (x) = s (μX (x) , μ Y (x))

and
ηX∪̃Y (x) = ηX (x) ∪̃ η Y (x)

where s is an s-norm and ∪̃ is an interval-valued fuzzy union.

Example 3.12 Consider ΨX as in Example 3.2. and let ΨY be another
FPIVFSS(U) defined as follows:

ΨY =
{(

x1

0.4
,
{

u1

[0.3, 0.6]
, u2

[0.5, 0.7]
, u3

[0.4, 0.5]
, u4

[0.1, 0.3]

})
,

(
x2

0.7
,
{

u1

[0.3, 0.5]
, u2

[0, 0.2]
, u3

[0.5, 0.6]
, u4

[0.4, 0.6]

})
,

(
x3

0.5
,
{

u1

[0.4, 0.6]
, u2

[0.2,0.4]
, u3

[0.1, 0.3]
, u4

[0.5, 0.6]

})
,

(
x4

0.2
,
{

u1

[0.5, 0.6]
, u2

[0.3, 0.5]
, u3

[0.3, 0.4]
, u4

[0.2, 0.3]

})}
.

By using the basic fuzzy union (maximum) and the interval-valued fuzzy union
we have

ΨX ∪ ΨY =
{(

x1

0.4
,
{

u1

[0.3, 0.6]
, u2

[0.7, 0.8]
, u3

[0.5, 0.8]
, u4

[0.2, 0.5]

})
,

(
x2

0.7
,
{

u1

[0.3, 0.7]
, u2

[0.2, 0.3]
, u3

[0.5, 0.6]
, u4

[0.4, 0.6]

})
,

(
x3

0.5
,
{

u1

[0.4, 0.6]
, u2

[0.4, 0.6]
, u3

[0.3, 0.8]
, u4

[0.5, 0.6]

})
,

(
x4

1
,
{

u1

[0.5, 0.7]
, u2

[0.3, 0.5]
, u3

[0.5, 0.6]
, u4

[0.8, 0.9]

})}
.

Proposition 3.13 Let ΨX , ΨY and ΨZ be any three FPIVFSS(U). Then
the following results hold:

1. ΨX ∪ ΨX = ΨX ,

2. Ψ∅X
∪ ΨX = ΨX ,

3. Ψ∅ ∪ ΨX = ΨX ,
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4. ΨX ∪ ΨẼ = ΨẼ,

5. ΨX ∪ ΨY = ΨY ∪ ΨX .

Proof: The proof is straightforward.

Definition 3.14 The intersection of two FPIVFSS(U) ΨX and ΨY , de-
noted by ΨX ∩ ΨY , is defined by

μX∩Y (x) = t (μX (x) , μY (x))

and
ηX∩̃Y (x) = ηX (x) ∩̃η Y (x)

where t is a t-norm and ∩̃ is an interval-valued fuzzy intersection.

Example 3.15 Consider example 3.12 again. By using the basic fuzzy in-
tersection (minimum) and the interval-valued fuzzy intersection we have

ΨX ∩ ΨY =
{(

x1

0.3
,
{

u1

[0.3, 0.6]
, u2

[0.5, 0.7]
, u3

[0.4, 0.5]
, u4

[0.1, 0.3]

})
,

(
x2

0.1
,
{

u1

[0, 0.6]
, u2

[0, 0.2]
, u3

[0.3, 0.5]
, u4

[0.1, 0.3]

})
,

(
x3

0.4
,
{

u1

[0.1, 0.4]
, u2

[0.2, 0.4]
, u3

[0.1, 0.3]
, u4

[0.4, 0.5]

})
,

(
x4

0.2
,
{

u1

[0.5, 0.6]
, u2

[0.1, 0.4]
, u3

[0, 0.4]
, u4

[0.2, 0.3]

})}
.

Proposition 3.16 Let ΨX , ΨY and ΨZ be any three FPIVFSS(U). Then
the following results hold:

1. ΨX ∩ ΨX = ΨX ,

2. Ψ∅X
∩ , ΨX = ΨX ,

3. Ψ∅ ∩ ΨX = ΨX ,

4. ΨX ∩ ΨẼ = ΨẼ,

5. ΨX ∩ ΨY = ΨY ∩ ΨX .

Proof: The proof is straightforward.

Proposition 3.17 Let ΨX , ΨY be any two FPIVFSS(U). Then De Mor-
gan’s law is valid:

1. (ΨX ∪ ΨY )c = Ψ c
X ∩ Ψ c

Y ,
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2. (ΨX ∩ ΨY )c = Ψc
X ∪ Ψc

Y .

Proof: 1. For all x ∈ E,

μ(X∪ Y )c (x) = c
(
μ(X∪Y ) (x)

)
= c (s (μX (x) , μ Y (x)))

= t (c (μX (x)) , c (μ Y (x)))

= t (μXc (x) , μ Y c (x))

= μXc∩ Y c (x)

and

η(X∪̃ Y )c̃ (x) = c̃
(
η(X∪̃Y ) (x)

)
= c̃ (ηX (x) ∪̃η Y (x))

= c̃ (ηX (x)) ∩̃c̃ (ηY (x))

= 1 − (ηX (x)) ∩̃1 − (ηY (x))

= ηX c̃ (x) ∩̃ηY c̃ (x)

= ηX c̃∩̃ Y c̃ (x) .

Likewise, the proof of 2 can be made similarly.

Proposition 3.18 Let ΨX , ΨY and ΨZ be any three FPIVFSS(U). Then
the following results hold:

1. ΨX ∪ (ΨY ∩ ΨZ) = (ΨX ∪ ΨY ) ∩ (ΨX ∪ ΨZ) ,

2. ΨX ∩ (ΨY ∪ ΨZ) = (ΨX ∩ ΨY ) ∪ (ΨX ∩ ΨZ) .

Proof: 1. For all x ∈ E,

μX∪(Y ∩Z) (x) = s (μX (x) , t (μ Y (x) , μZ (x)))

= t (s (μX (x) , μ Y (x)) , s (μX (x) , μZ (x)))

= μ(X∪ Y )∩ (X∪Z) (x)

and

ηX∪̃(Y ∩̃Z) (x) = ηX (x) ∪̃ (η Y (x) ∩̃ηZ (x))

= (ηX (x) ∪̃η Y (x)) ∩̃ (ηX (x) ∪̃ηZ (x))

= η(X∪̃ Y )∩̃ (X∪̃Z) (x)

Likewise, the proof of 2 can be made similarly.
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4 fpivfs-Aggregation operator

In this section, we define an aggregate interval-valued fuzzy set of an fpivfs-
set. We also define fpivfs-aggregation operator that produces an aggregate
interval-valued fuzzy set from an fpivfs-set and its fuzzy parameter set. Also
we give an application of this operator in decision making problem.

Definition 4.1 Let ΨX ∈ FPIV FSS (U). Then a fpivfs-aggregation oper-
ator, denoted by FPIV FSagg, is defined by

FPIV FSagg : F (E) × FPIV FSS (U) → Int (U) ,

FPIV FSagg (X, ΨX) = Ψ∗
X

where
Ψ∗

X =
{
u/μΨ∗

X
(u) : u ∈ U

}
which is an interval-valued fuzzy set over U . The value Ψ∗

X is called an aggre-
gate interval-valued fuzzy set of ΨX. Here, the membership degree μΨ∗

X
(u) of

u is defined as follows:

μΨ∗
X

(u) =

[
c− =

1

|E|
∑
x∈E

μX (x)μη−X(x) (u) , c+ =
1

|E|
∑
x∈E

μX (x)μη+X(x) (u)

]
,

where |E| is the cardinality of E.

In the following example, we present an application for the fpivfs-decision
making method.

Example 4.2 A company wants to fill a position. There are four candi-
dates who form the set of universe, U = {u1, u2, u3, u4}. The hiring com-
mittee considers a set of parameters, E = {x1, x2, x3, x4}. The parameters
xi (i = 1, 2, 3, 4) stand for ”experience”, ”computer knowledge”, ”young age”,
and ”good speaking”, respectively. After a serious discussion each candidate is
evaluated from point of view of the goals and the constraint according to a cho-
sen fuzzy subset X =

{
x1

0.3
, x2

0.1
, x3

0.4
, x4

1

}
of E. Finally, the committee constructs

the following fpivfs-set over U .

Step 1 Let the constructed fpivfs-set, ΨX, be given as follows:

ΨX =
{(

x1

0.3
,
{

u1

[0.3, 0.6]
, u2

[0.7, 0.8]
, u3

[0.5, 0.8]
, u4

[0.2, 0.5]

})
,

(
x2

0.1
,
{

u1

[0, 0.7]
, u2

[0.2, 0.3]
, u3

[0.3, 0.5]
, u4

[0.1, 0.3]

})
,

(
x3

0.4
,
{

u1

[0.1, 0.4]
, u2

[0.4, 0.6]
, u3

[0.3, 0.8]
, u4

[0.4, 0.5]

})
,
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(
x4

1
,
{

u1

[0.5, 0.7]
, u2

[0.1, 0.4]
, u3

[0, 0.4]
, u4

[0.8, 0.9]

})}
.

Step 2 The aggregate interval-valued fuzzy set can be found as

Ψ∗
X =

{
u1

[0.1575, 0.2775]
,

u2

[0.1225, 0.2275]
,

u3

[0.075, 0.2525]
,

u4

[0.2575, 0.32]

}

Step 3 ∀ui ∈ U , compute the score ri of ui such that

ri =
∑

uj∈U

((
c−i − c−j

)
+

(
c+
i − c+

j

))

Thus, we have

r1 = 0.047, r2 = −0.29, r3 = −0.38, r4 = 0.62.

Step 4 The decision is any one of the elements in S where S = maxui∈U {ri}.
In our example, candidate u4 is the best choice because maxui∈U {ri} = r4.
Hence candidate u4 is selected for the job.
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