Applied Mathematical Sciences, Vol. 5, 2011, no. 67, 3335 - 3346

Fuzzy Parameterized Interval-Valued Fuzzy Soft Set

Shawkat Alkhazaleh

School of Mathematical Sciences, Faculty of Science and Technology Universiti Kebangsaan Malaysia 43600 UKM Bangi, Selangor DE, Malaysia

Abdul Razak Salleh

School of Mathematical Sciences, Faculty of Science and Technology Universiti Kebangsaan Malaysia 43600 UKM Bangi, Selangor DE, Malaysia

Nasruddin Hassan

School of Mathematical Sciences, Faculty of Science and Technology Universiti Kebangsaan Malaysia 43600 UKM Bangi, Selangor DE, Malaysia shmk79@gmail.com

Abstract

In this work, we introduce the concept of fuzzy parameterized intervalvalued fuzzy soft set theory (*fpivfss*) and study their operations. We then define *fpivfss*-aggregation operator to form *fpivfss*-decision making method that allows constructing more efficient decision processes. Finally, some numerical examples are employed to substantiate the conceptual arguments.

Keywords: *fpivfs*-aggregation operator, *fpivfs*-decision making; *fpivfs*-sets, fuzzy parameterized soft sets, fuzzy soft set; interval-valued fuzzy set; interval-valued fuzzy soft set; soft set.

1 Introduction

There are some mathematical tools for dealing with uncertainties; two of them are fuzzy set theory, developed by Zadeh [11], and soft set theory, introduced

by Molodtsov [9]. In [12] Zadeh introduced and used interval-valued fuzzy set. After that many authors study the mathematical tools and their applications.

For soft set theory, Maji et al. [7] defined operations of soft sets to make a detailed theoretical study on the soft sets. Also Maji et al. [6] defined a fuzzy soft set and they gave the application of fuzzy soft set in decision making problem in [8]. By using these definitions, the applications of soft set theory have been studied increasingly. Cagman and Enginoglu [1] studied the soft decision making and Cagman et al [2] also gave an application of soft set theory in decision making. Chen et al. [3], discussed the parameterization reduction of soft sets and its applications. An adjustable approach to fuzzy soft set based on decision making is given by Feng et al. [4]. Cagman et al. [2] defined the concept of fuzzy parameterized fuzzy soft set (*fpfs*-set). The purpose of this paper is to combine the interval-valued fuzzy soft sets and fpfs-set, from which we can obtain a new soft set model: fuzzy parameterized interval-valued fuzzy soft set theory. In this paper, we define fpivfs-sets in which the approximate functions are defined from fuzzy parameters set to the interval-valued fuzzy subsets of the universal set. We also define their operations and soft aggregation operator to form *fpivfs*-decision making method that allows constructing more efficient decision processes. We finally present examples which show that the methods can be successfully applied to many problems that contain uncertainties.

2 Preliminary

Molodtsov [9] defined soft set in the following way. Let U be a universe set and E a set of parameters. Let P(U) denote the power set of U and $A \subseteq E$.

Definition 2.1 [9]. A pair (F, E) is called a soft set over U, where F is a mapping given by $F : E \to P(U)$. In other words, a soft set over U is a parameterized family of subsets of the universe U.

Definition 2.2 [6]. Let U be an initial universal set and let E be a set of parameters. Let I^U denote the power set of all fuzzy subsets of U. Let $A \subseteq E$. A pair (F, E) is called a fuzzy soft set over U where F is a mapping given by

$$F: A \to I^U$$

Definition 2.3 [12]. An interval-valued fuzzy set \tilde{X} on a universe U is a mapping such that

$$\tilde{\mathbf{X}}: U \to Int\left([0,1]\right),$$

where Int ([0, 1]) stands for the set of all closed subintervals of [0, 1], the set of all interval-valued fuzzy sets on U is denoted by $\tilde{P}(U)$.

Suppose that $\tilde{X} \in \tilde{P}(U)$, $\forall x \in U, \mu_x(x) = [\mu_x^-(x), \mu_x^+(x)]$ is called the degree of membership of an element x to \tilde{X} where $\mu_x^-(x)$ and $\mu_x^+(x)$ are the lower and upper degrees of membership of x to \tilde{X} respectively such that

$$0 \le \mu_x^-(x) \le \mu_x^+(x) \le 1.$$

The complement, intersection and union of the interval-valued fuzzy sets are defined in [5] as follows: Let $\tilde{X}, \tilde{Y} \in \tilde{P}(U)$ then

1. the complement of \tilde{X} is denoted by \tilde{X}^c where

$$\mu_{\tilde{X}^{c}}(x) = 1 - \mu_{\tilde{X}}(x) = \left[1 - \mu_{\tilde{X}}^{+}(x), 1 - \mu_{\tilde{X}}^{-}(x)\right];$$

2. the intersection of \tilde{X} and \tilde{Y} is denoted by $\tilde{X} \cap \tilde{Y}$ where

$$\mu_{\tilde{X}\cap \tilde{Y}}\left(x\right) = \inf\left[\mu_{\tilde{X}}\left(x\right), \mu_{\tilde{Y}}\left(x\right)\right]$$

$$=\left[\inf\left(\mu_{\tilde{X}}^{-}\left(x\right),\mu_{\tilde{Y}}^{-}\left(x\right)\right),\inf\left(\mu_{\tilde{X}}^{+}\left(x\right),\mu_{\tilde{Y}}^{+}\left(x\right)\right)\right];$$

3. the union of \tilde{X} and \tilde{Y} is denoted by $\tilde{X} \cup \tilde{Y}$ where

$$\mu_{\tilde{X}\cup\tilde{Y}}\left(x\right) = \sup\left[\mu_{\tilde{X}}\left(x\right), \mu_{\tilde{Y}}\left(x\right)\right]$$

$$= \left[\sup \left(\mu_{\tilde{X}}^{-}(x) , \mu_{\tilde{Y}}^{-}(x) \right), \sup \left(\mu_{\tilde{X}}^{+}(x) , \mu_{\tilde{Y}}^{+}(x) \right) \right]$$

Definition 2.4 [2]. Let U be an initial universe, E the set of all parameters and X a fuzzy set over E with membership function

$$\mu_X: E \to [0,1],$$

and let γ_X be a fuzzy set over U for all $x \in E$. Then an fpfs-set Γ_X over U is a set defined by a function $\gamma_X(x)$ representing a mapping $\gamma_X : E \to F(U)$ such that

$$\gamma_X(x) = \emptyset$$
 if $\mu_X(x) = 0$.

Here, γ_X is called a fuzzy approximate function of the fpfs-set Γ_X , and the value $\gamma_X(x)$ is a set called x-element of the fpfs-set for all $x \in E$. Thus, an fpfs-set Γ_X over U can be represented by the set of ordered pairs

$$\Gamma_{X} = \{(\mu_{X}(x) / x, \gamma_{X}(x)) : x \in E, \ \gamma_{X}(x) \in F(U), \mu_{X}(x) \in [0, 1]\}.$$

It must be noted that the set of all fpfs-sets over U will be denoted by FPFS(U).

Definition 2.5 [8]. Let $\Gamma_X \in FPFS(U)$. Then fpfs-aggregation operator, denoted by $FPFS_{agg}$, is defined by

$$FPFS_{agg} : F(E) \times FPFS(U) \to F(U),$$
$$FPFS_{agg}(X, \Gamma_X) = \Gamma_X^*$$

where

$$\Gamma_X^* = \left\{ \mu_{\Gamma_X^*} \left(u \right) / u : u \in U \right\}$$

which is a fuzzy set over U. The value Γ_X^* is called an aggregate fuzzy set of Γ_X . Here, the membership degree $\mu_{\Gamma_X^*}(u)$ of u is defined as follows:

$$\mu_{\Gamma_X^*}\left(u\right) = \frac{1}{|E|} \sum_{x \in E} \mu_X\left(x\right) \mu_{\gamma X(x)}\left(u\right),$$

where |E| is the cardinality of E.

Definition 2.6 [12]. Let U be an initial universe and E be a set of parameters. $\tilde{P}(U)$ denotes the set of all interval-valued fuzzy sets of U. Let $A \subseteq E$. A pair (\tilde{F}, A) is an interval-valued fuzzy soft set over U, where \tilde{F} is a mapping given by $\tilde{F} : A \to \tilde{P}(U)$.

3 Fuzzy parameterized interval-valued fuzzy soft set

In this section, we shall define fuzzy parameterized interval-valued fuzzy soft sets (*fpivfs*-sets) and their operations with examples.

Definition 3.1 Let U be an initial universe, E the set of all parameters and X a fuzzy set over E with membership function: $\mu_X : E \to [0,1]$ and let η_X be an interval-valued fuzzy set over U for all $x \in E$. Then a fuzzy parameterized interval-valued fuzzy soft set (fpivfs-set) Ψ_X over U is a set defined by a function η_X representing a mapping

$$\eta_X: E \to Int(U)$$

such that $\eta_X(x) = \emptyset$ if $\mu_X(x) = 0$.

Here, $\eta_X = \lfloor \eta_X^-, \eta_X^+ \rfloor$ is called an interval-valued fuzzy approximate function of the *fpivfs*-set Ψ_X , and the value $\eta_X(x)$ is a set called an *x*-element of the *fpivfs*-set for all $x \in E$. Thus a *fpivfs*-set Ψ_X over U can be represented by the set of ordered pairs Fuzzy parameterized interval-valued fuzzy soft set

$$\Psi_{X} = \{ (x/\mu_{X}(x), \eta_{X}(x)) : x \in E, \eta_{X}(x) \in Int(U), \mu_{X}(x) \in [0, 1] \}.$$

It must be noted that the set of all *fpivfs*-sets over U will be denoted by FPIVFSS(U).

Example 3.2 Let $U = \{u_1, u_2, u_3, u_4\}$ be a set of universe, $E = \{x_1, x_2, x_3, x_4\}$ be a set of qualities and let $\mu : E \to [0, 1]$. Suppose $X = \{\frac{x_1}{0.3}, \frac{x_2}{0.1}, \frac{x_3}{0.4}, \frac{x_4}{1}\}$ and $\eta_X(x)$ is defined as follows:

$$\eta_X (x_1) = \left\{ \frac{u_1}{[0.3, 0.6]}, \frac{u_2}{[0.7, 0.8]}, \frac{u_3}{[0.5, 0.8]}, \frac{u_4}{[0.2, 0.5]} \right\},$$

$$\eta_X (x_2) = \left\{ \frac{u_1}{[0, 0.7]}, \frac{u_2}{[0.2, 0.3]}, \frac{u_3}{[0.3, 0.5]}, \frac{u_4}{[0.1, 0.3]} \right\},$$

$$\eta_X (x_3) = \left\{ \frac{u_1}{[0.1, 0.4]}, \frac{u_2}{[0.4, 0.6]}, \frac{u_3}{[0.3, 0.8]}, \frac{u_4}{[0.4, 0.5]} \right\},$$

$$\eta_X (x_4) = \left\{ \frac{u_1}{[0.5, 0.7]}, \frac{u_2}{[0.1, 0.4]}, \frac{u_3}{[0, 0.4]}, \frac{u_4}{[0.8, 0.9]} \right\}.$$

Then the fpivfs-set Ψ_X is given by

$$\Psi_X = \left\{ \left(\frac{x_1}{0.3}, \left\{ \frac{u_1}{[0.3, 0.6]}, \frac{u_2}{[0.7, 0.8]}, \frac{u_3}{[0.5, 0.8]}, \frac{u_4}{[0.2, 0.5]} \right\} \right), \\ \left(\frac{x_2}{0.1}, \left\{ \frac{u_1}{[0, 0.7]}, \frac{u_2}{[0.2, 0.3]}, \frac{u_3}{[0.3, 0.5]}, \frac{u_4}{[0.1, 0.3]} \right\} \right), \\ \left(\frac{x_3}{0.4}, \left\{ \frac{u_1}{[0.1, 0.4]}, \frac{u_2}{[0.4, 0.6]}, \frac{u_3}{[0.3, 0.8]}, \frac{u_4}{[0.4, 0.5]} \right\} \right), \\ \left(\frac{x_4}{1}, \left\{ \frac{u_1}{[0.5, 0.7]}, \frac{u_2}{[0.1, 0.4]}, \frac{u_3}{[0, 0.4]}, \frac{u_4}{[0.8, 0.9]} \right\} \right) \right\}.$$

Definition 3.3 Let Ψ_X and Ψ_Y be two FPIVFSS(U). Then Ψ_X is said to be a fuzzy parameterized interval-valued fuzzy soft subset (fpivfs-subset) of Ψ_Y and we write $\Psi_X \subseteq \Psi_Y$ if

- 1. $\mu_X(x) \leq \mu_Y(x), \forall x \in E;$
- 2. $\eta_X(x) \subseteq \eta_Y(x), \quad \forall x \in E.$

Definition 3.4 Two $FPIVFSS(U) \Psi_X$ and Ψ_Y are said to be equal and we write $\Psi_X = \Psi_Y$ if Ψ_X is a fpivfs-subset of Ψ_Y and Ψ_Y is a fpivfs-subset of Ψ_X . In other words, $\Psi_X = \Psi_Y$ if the following conditions are satisfied:

- 1. $\mu_X(x) = \mu_Y(x), \forall x \in E,$
- 2. $\eta_X(x) = \eta_Y(x), \quad \forall x \in E.$

Definition 3.5 Let $\Psi_X \in FPIVFSS(U)$. If $\eta_X(x) = \emptyset$, $\forall x \in E$, then Ψ_X is called an X-empty fpivfs-set, denoted by Ψ_{\emptyset_X} . If $X = \emptyset$, then the X-empty fpivfs-set (Ψ_{\emptyset_X}) is called an empty fpivfs-set, denoted by Ψ_{\emptyset} .

Definition 3.6 Let $\Psi_X \in FPIVFSS(U)$. If $\eta_X(x) = U$, $\forall x \in E$, then Ψ_X is called an X-universal fpivfs-set, denoted by $\Psi_{\tilde{X}}$. If X = E, then the X-universal fpivfs-set $\Psi_{\tilde{X}}$ is called a universal fpivfs-set, denoted by $\Psi_{\tilde{E}}$.

Proposition 3.7 Let Ψ_X , Ψ_Y and Ψ_Z be any three FPIVFSS(U). Then the following results hold:

1. $\Psi_X \subseteq \Psi_{\tilde{E}}$, 2. $\Psi_{\emptyset_X} \subseteq \Psi_X$, 3. $\Psi_{\emptyset} \subseteq \Psi_X$, 4. $\Psi_X \subseteq \Psi_X$, 5. $\Psi_X \subseteq \Psi_Y$ and $\Psi_Y \subseteq \Psi_Z \Rightarrow \Psi_X \subseteq \Psi_Z$, 6. $(\Psi_X = \Psi_Y \text{ and } \Psi_Y = \Psi_Z) \Leftrightarrow \Psi_X = \Psi_Z$, 7. $(\Psi_X \subset \Psi_Y \text{ and } \Psi_Y \subset \Psi_X) \Leftrightarrow \Psi_X = \Psi_Y$.

Proof: The proof is straightforward.

Definition 3.8 Let $\Psi_X \in FPIVFSS(U)$. Then the complement of Ψ_X , denoted by Ψ_X^c , is defined by $c(\mu_X(x))$ and $\tilde{c}(\eta_X(x))$, $\forall x \in E$, where c is a fuzzy complement and \tilde{c} is an interval-valued fuzzy complement.

Example 3.9 Consider Example 3.2. By using the basic fuzzy complement for $\mu_X(x)$ and interval-valued fuzzy complement for $\eta_X(x)$ we have

$$\begin{split} \Psi_X^c &= \left\{ \left(\frac{x_1}{0.7}, \left\{ \frac{u_1}{[0.4, 0.7]}, \frac{u_2}{[0.2, 0.3]}, \frac{u_3}{[0.2, 0.5]}, \frac{u_4}{[0.5, 0.8]} \right\} \right), \\ &\left(\frac{x_2}{0.9}, \left\{ \frac{u_1}{[0.3, 1]}, \frac{u_2}{[0.7, 0.8]}, \frac{u_3}{[0.5, 0.7]}, \frac{u_4}{[0.7, 0.9]} \right\} \right), \\ &\left(\frac{x_3}{0.6}, \left\{ \frac{u_1}{[0.6, 0.9]}, \frac{u_2}{[0.4, 0.6]}, \frac{u_3}{[0.2, 0.7]}, \frac{u_4}{[0.5, 0.6]} \right\} \right), \\ &\left(\frac{x_4}{0}, \left\{ \frac{u_1}{[0.3, 0.5]}, \frac{u_2}{[0.6, 0.9]}, \frac{u_3}{[0.6, 1]}, \frac{u_4}{[0.1, 0.2]} \right\} \right) \right\}. \end{split}$$

Proposition 3.10 Let $\Psi_X \in FPIVFSS(U)$. Then the following results hold:

 $1. \ (\Psi_X^c)^c = \Psi_X,$

 $\mathcal{2}. \ \Psi^{c}_{\emptyset} = \Psi_{\tilde{E}}.$

Proof: The proof is straightforward.

Definition 3.11 The union of two $FPIVFSS(U) \Psi_X$ and Ψ_Y , denoted by $\Psi_X \cup \Psi_Y$, is defined by

$$\mu_{X\cup Y}(x) = s\left(\mu_X(x), \mu_Y(x)\right)$$

and

$$\eta_{X\tilde{\cup}Y}(x) = \eta_X(x)\tilde{\cup}\eta_Y(x)$$

where s is an s-norm and $\tilde{\cup}$ is an interval-valued fuzzy union.

Example 3.12 Consider Ψ_X as in Example 3.2. and let Ψ_Y be another FPIVFSS(U) defined as follows:

$$\begin{split} \Psi_Y &= \left\{ \left(\frac{x_1}{0.4}, \left\{ \frac{u_1}{[0.3, 0.6]}, \frac{u_2}{[0.5, 0.7]}, \frac{u_3}{[0.4, 0.5]}, \frac{u_4}{[0.1, 0.3]} \right\} \right), \\ &\left(\frac{x_2}{0.7}, \left\{ \frac{u_1}{[0.3, 0.5]}, \frac{u_2}{[0, 0.2]}, \frac{u_3}{[0.5, 0.6]}, \frac{u_4}{[0.4, 0.6]} \right\} \right), \\ &\left(\frac{x_3}{0.5}, \left\{ \frac{u_1}{[0.4, 0.6]}, \frac{u_2}{[0.2, 0.4]}, \frac{u_3}{[0.1, 0.3]}, \frac{u_4}{[0.5, 0.6]} \right\} \right), \\ &\left(\frac{x_4}{0.2}, \left\{ \frac{u_1}{[0.5, 0.6]}, \frac{u_2}{[0.3, 0.5]}, \frac{u_3}{[0.3, 0.4]}, \frac{u_4}{[0.2, 0.3]} \right\} \right) \right\}. \end{split}$$

By using the basic fuzzy union (maximum) and the interval-valued fuzzy union we have

$$\Psi_X \cup \Psi_Y = \left\{ \left(\frac{x_1}{0.4}, \left\{ \frac{u_1}{[0.3, 0.6]}, \frac{u_2}{[0.7, 0.8]}, \frac{u_3}{[0.5, 0.8]}, \frac{u_4}{[0.2, 0.5]} \right\} \right), \\ \left(\frac{x_2}{0.7}, \left\{ \frac{u_1}{[0.3, 0.7]}, \frac{u_2}{[0.2, 0.3]}, \frac{u_3}{[0.5, 0.6]}, \frac{u_4}{[0.4, 0.6]} \right\} \right), \\ \left(\frac{x_3}{0.5}, \left\{ \frac{u_1}{[0.4, 0.6]}, \frac{u_2}{[0.4, 0.6]}, \frac{u_3}{[0.3, 0.8]}, \frac{u_4}{[0.5, 0.6]} \right\} \right), \\ \left(\frac{x_4}{1}, \left\{ \frac{u_1}{[0.5, 0.7]}, \frac{u_2}{[0.3, 0.5]}, \frac{u_3}{[0.5, 0.6]}, \frac{u_4}{[0.8, 0.9]} \right\} \right) \right\}.$$

Proposition 3.13 Let Ψ_X , Ψ_Y and Ψ_Z be any three FPIVFSS(U). Then the following results hold:

- 1. $\Psi_X \cup \Psi_X = \Psi_X$,
- 2. $\Psi_{\emptyset_X} \cup \Psi_X = \Psi_X$,
- 3. $\Psi_{\emptyset} \cup \Psi_X = \Psi_X$,

- 4. $\Psi_X \cup \Psi_{\tilde{E}} = \Psi_{\tilde{E}},$
- 5. $\Psi_X \cup \Psi_Y = \Psi_Y \cup \Psi_X$.

Proof: The proof is straightforward.

Definition 3.14 The intersection of two $FPIVFSS(U) \Psi_X$ and Ψ_Y , denoted by $\Psi_X \cap \Psi_Y$, is defined by

$$\mu_{X \cap Y}\left(x\right) = t\left(\mu_X\left(x\right), \mu_Y\left(x\right)\right)$$

and

$$\eta_{X \cap Y}(x) = \eta_X(x) \cap \eta_Y(x)$$

where t is a t-norm and $\tilde{\cap}$ is an interval-valued fuzzy intersection.

Example 3.15 Consider example 3.12 again. By using the basic fuzzy intersection (minimum) and the interval-valued fuzzy intersection we have

$$\Psi_X \cap \Psi_Y = \left\{ \left(\frac{x_1}{0.3}, \left\{ \frac{u_1}{[0.3, 0.6]}, \frac{u_2}{[0.5, 0.7]}, \frac{u_3}{[0.4, 0.5]}, \frac{u_4}{[0.1, 0.3]} \right\} \right), \\ \left(\frac{x_2}{0.1}, \left\{ \frac{u_1}{[0, 0.6]}, \frac{u_2}{[0, 0.2]}, \frac{u_3}{[0.3, 0.5]}, \frac{u_4}{[0.1, 0.3]} \right\} \right), \\ \left(\frac{x_3}{0.4}, \left\{ \frac{u_1}{[0.1, 0.4]}, \frac{u_2}{[0.2, 0.4]}, \frac{u_3}{[0.1, 0.3]}, \frac{u_4}{[0.4, 0.5]} \right\} \right), \\ \left(\frac{x_4}{0.2}, \left\{ \frac{u_1}{[0.5, 0.6]}, \frac{u_2}{[0.1, 0.4]}, \frac{u_3}{[0, 0.4]}, \frac{u_4}{[0.2, 0.3]} \right\} \right) \right\}.$$

Proposition 3.16 Let Ψ_X , Ψ_Y and Ψ_Z be any three FPIVFSS(U). Then the following results hold:

- 1. $\Psi_X \cap \Psi_X = \Psi_X$,
- 2. $\Psi_{\emptyset_X} \cap, \Psi_X = \Psi_X,$
- 3. $\Psi_{\emptyset} \cap \Psi_X = \Psi_X$,
- 4. $\Psi_X \cap \Psi_{\tilde{E}} = \Psi_{\tilde{E}},$
- 5. $\Psi_X \cap \Psi_Y = \Psi_Y \cap \Psi_X$.

Proof: The proof is straightforward.

Proposition 3.17 Let Ψ_X , Ψ_Y be any two FPIVFSS(U). Then De Morgan's law is valid:

1. $(\Psi_X \cup \Psi_Y)^c = \Psi_X^c \cap \Psi_Y^c$,

2.
$$(\Psi_X \cap \Psi_Y)^c = \Psi_X^c \cup \Psi_Y^c$$
.

Proof: 1. For all
$$x \in E$$
,

$$\mu_{(X \cup Y)^c}(x) = c \left(\mu_{(X \cup Y)}(x)\right)$$

$$= c \left(s \left(\mu_X(x), \mu_Y(x)\right)\right)$$

$$= t \left(c \left(\mu_X(x)\right), c \left(\mu_Y(x)\right)\right)$$

$$= t \left(\mu_{X^c}(x), \mu_{Y^c}(x)\right)$$

$$= \mu_{X^c \cap Y^c}(x)$$

and

$$\eta_{(X\tilde{\cup} Y)^{\tilde{c}}}(x) = \tilde{c} \left(\eta_{(X\tilde{\cup}Y)}(x) \right)$$

$$= \tilde{c} \left(\eta_X(x) \tilde{\cup} \eta_Y(x) \right)$$

$$= \tilde{c} \left(\eta_X(x) \right) \tilde{\cap} \tilde{c} \left(\eta_Y(x) \right)$$

$$= 1 - \left(\eta_X(x) \right) \tilde{\cap} 1 - \left(\eta_Y(x) \right)$$

$$= \eta_{X^{\tilde{c}}}(x) \tilde{\cap} \eta_{Y^{\tilde{c}}}(x)$$

$$= \eta_{X^{\tilde{c}}\tilde{\cap} Y^{\tilde{c}}}(x) .$$

Likewise, the proof of 2 can be made similarly.

Proposition 3.18 Let Ψ_X , Ψ_Y and Ψ_Z be any three FPIVFSS(U). Then the following results hold:

1.
$$\Psi_X \cup (\Psi_Y \cap \Psi_Z) = (\Psi_X \cup \Psi_Y) \cap (\Psi_X \cup \Psi_Z),$$

2. $\Psi_X \cap (\Psi_Y \cup \Psi_Z) = (\Psi_X \cap \Psi_Y) \cup (\Psi_X \cap \Psi_Z).$

Proof: 1. For all $x \in E$,

$$\mu_{X \cup (Y \cap Z)} (x) = s (\mu_X (x), t (\mu_Y (x), \mu_Z (x)))$$

= $t (s (\mu_X (x), \mu_Y (x)), s (\mu_X (x), \mu_Z (x)))$
= $\mu_{(X \cup Y) \cap (X \cup Z)} (x)$

and

$$\eta_{X\tilde{\cup}(Y\tilde{\cap}Z)}(x) = \eta_X(x)\tilde{\cup}(\eta_Y(x)\tilde{\cap}\eta_Z(x))$$
$$= (\eta_X(x)\tilde{\cup}\eta_Y(x))\tilde{\cap}(\eta_X(x)\tilde{\cup}\eta_Z(x))$$
$$= \eta_{(X\tilde{\cup}Y)\tilde{\cap}(X\tilde{\cup}Z)}(x)$$

Likewise, the proof of 2 can be made similarly.

4 *fpivfs*-Aggregation operator

In this section, we define an aggregate interval-valued fuzzy set of an *fpivfs*set. We also define *fpivfs*-aggregation operator that produces an aggregate interval-valued fuzzy set from an *fpivfs*-set and its fuzzy parameter set. Also we give an application of this operator in decision making problem.

Definition 4.1 Let $\Psi_X \in FPIVFSS(U)$. Then a fpivfs-aggregation operator, denoted by $FPIVFS_{agg}$, is defined by

$$FPIVFS_{agg}: F(E) \times FPIVFSS(U) \to Int(U),$$

$$FPIVFS_{agg}(X, \Psi_X) = \Psi_X^*$$

where

$$\Psi_X^* = \left\{ u/\mu_{\Psi_X^*}\left(u\right) : u \in U \right\}$$

which is an interval-valued fuzzy set over U. The value Ψ_X^* is called an aggregate interval-valued fuzzy set of Ψ_X . Here, the membership degree $\mu_{\Psi_X^*}(u)$ of u is defined as follows:

$$\mu_{\Psi_{X}^{*}}(u) = \left[c^{-} = \frac{1}{|E|} \sum_{x \in E} \mu_{X}(x) \mu_{\eta^{-}X(x)}(u), c^{+} = \frac{1}{|E|} \sum_{x \in E} \mu_{X}(x) \mu_{\eta^{+}X(x)}(u)\right],$$

where |E| is the cardinality of E.

In the following example, we present an application for the *fpivfs*-decision making method.

Example 4.2 A company wants to fill a position. There are four candidates who form the set of universe, $U = \{u_1, u_2, u_3, u_4\}$. The hiring committee considers a set of parameters, $E = \{x_1, x_2, x_3, x_4\}$. The parameters x_i (i = 1, 2, 3, 4) stand for "experience", "computer knowledge", "young age", and "good speaking", respectively. After a serious discussion each candidate is evaluated from point of view of the goals and the constraint according to a chosen fuzzy subset $X = \{\frac{x_1}{0.3}, \frac{x_2}{0.1}, \frac{x_3}{0.4}, \frac{x_4}{1}\}$ of E. Finally, the committee constructs the following fpivfs-set over U.

Step 1 Let the constructed fpivfs-set, Ψ_X , be given as follows:

$$\Psi_X = \left\{ \left(\frac{x_1}{0.3}, \left\{ \frac{u_1}{[0.3, 0.6]}, \frac{u_2}{[0.7, 0.8]}, \frac{u_3}{[0.5, 0.8]}, \frac{u_4}{[0.2, 0.5]} \right\} \right), \\ \left(\frac{x_2}{0.1}, \left\{ \frac{u_1}{[0, 0.7]}, \frac{u_2}{[0.2, 0.3]}, \frac{u_3}{[0.3, 0.5]}, \frac{u_4}{[0.1, 0.3]} \right\} \right), \\ \left(\frac{x_3}{0.4}, \left\{ \frac{u_1}{[0.1, 0.4]}, \frac{u_2}{[0.4, 0.6]}, \frac{u_3}{[0.3, 0.8]}, \frac{u_4}{[0.4, 0.5]} \right\} \right),$$

$$\left(\frac{x_4}{1}, \left\{\frac{u_1}{[0.5, 0.7]}, \frac{u_2}{[0.1, 0.4]}, \frac{u_3}{[0, 0.4]}, \frac{u_4}{[0.8, 0.9]}\right\}\right)\right\}.$$

Step 2 The aggregate interval-valued fuzzy set can be found as

$$\Psi_X^* = \left\{ \frac{u_1}{[0.1575, \ 0.2775]}, \frac{u_2}{[0.1225, \ 0.2275]}, \frac{u_3}{[0.075, \ 0.2525]}, \frac{u_4}{[0.2575, \ 0.32]} \right\}$$

Step 3 $\forall u_i \in U$, compute the score r_i of u_i such that

$$r_i = \sum_{u_j \in U} \left(\left(c_i^- - c_j^- \right) + \left(c_i^+ - c_j^+ \right) \right)$$

Thus, we have

$$r_1 = 0.047, r_2 = -0.29, r_3 = -0.38, r_4 = 0.62.$$

Step 4 The decision is any one of the elements in S where $S = \max_{u_i \in U} \{r_i\}$. In our example, candidate u_4 is the best choice because $\max_{u_i \in U} \{r_i\} = r_4$. Hence candidate u_4 is selected for the job.

ACKNOWLEDGEMENT

The authors would like to acknowledge the financial support received from Universiti Kebangsaan Malaysia under the research grant UKM-ST-06-FRGS0104-2009.

References

- [1] N. Cagman and S. Enginoglu, Soft matrices and its decision makings, Computers and Mathematics with Applications, **59** (2010), 3308 - 3314.
- [2] N. Cagman F. Citak, and S. Enginoglu, Fuzzy parameterized fuzzy soft set theory and its applications, *Turkish Journal of Fuzzy Systems*, 1 (2010), 21 - 35.
- [3] D. Chen, E.C.C. Tsang, D.S. Yeung and X. Wang, The parameterization reduction of soft sets and its applications, *Computers and Mathematics* with Applications, 49 (2005), 757 - 763.
- [4] F. Feng, Y.B. Jun, X. Liu and L. Li, An adjustable approach to fuzzy soft set based decision making, *Journal of Computational and Applied Mathematics*, 234 (2010), 10 - 20.

- [5] M.B. Gorzalczany, A method of inference in approximate reasoning based on interval valued fuzzy sets, *Fuzzy Sets and Systems*, **21** (1987), 1 - 17.
- [6] P.K. Maji, R. Biswas, A.R. Roy, Fuzzy soft sets, Journal of Fuzzy Mathematics, 9 (2001), 589 - 602.
- [7] P.K. Maji, R. Biswas, A.R. Roy, Soft set theory, Computers and Mathematics with Applications, 45 (2003), 555 - 562.
- [8] P.K. Maji, A.R. Roy, R. Biswas, An application of soft sets in a decision making problem, *Computers and Mathematics with Applications*, 44 (2002), 1077 - 1083.
- [9] D.A. Molodtsov, Soft set theory first results, Computers and Mathematics with Applications, **37** (1999), 19 - 31.
- [10] X. Yang, T.Y. Lin, J. Yang, Y. Li and D. Yu, Combination of intervalvalued fuzzy set and soft set, *Computers and Mathematics with Applications*, 58 (2009), 521 - 527.
- [11] L.A. Zadeh, Fuzzy sets, Information and Control, 8 (1965), 338 353.
- [12] L.A. Zadeh, The concept of a linguistic variable and its application to approximate reasoning I, *Information Sciences*, 8 (1975), 199 249.

Received: February, 2011