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Abstract
When a robot is used to grind or finish a curved surface ,as marine propeller surface, both contact

force and feed movement must controlled at the similar time in order that the grinding tool would machine
the work-piece, with required force, at the right position in right posture. A compliant wrist system is
advanced, in this paper, to conform the shape of the machining propeller by altering its posture along with
the surface. Grinding force is controlled under a simple new Fuzzy-PID controller with five input variables
which assembled and compared with an antecedently used PID controller. The aim of defining the rules
and its optimization are to achieve a controller that provides grinding with higher quality. Both the
controllers PID and Fuzzy-PID have been optimized together with the parameters of the Two-Phase Hybrid
Stepping Motor The Fuzzy-PID controller policy at a steady value in the normal direction of the mentioned
machining point by multi-point machining, while the grinding tool moving along the curved surface of the
propeller. It means that the model of the compliant wrist system and the surroundings could be used in
force controlling when robots grind marine propeller surface by a grinding tool with multi-point machining.
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1. Introduction
Grinding is a chip-removing process fundamental used to remove burrs and metal from

machined parts in order to accomplish the desired surface finish. In many cases, manual
grinding means monotonous and hard work in a noisy environment. The workers required to use
protective equipment. So this leads to automation of the grinding process. Robotic grinding, in
early industrial applications, was resolved using a grinding machine attached to the end effector
of robot through a damper and spring arrangement. The requested contact force between the
grinding tool and the workpiece was achieved by programming the robot's position to be slightly
under the workpiece surface. It was difficult to control the depth of cut and accomplish optimal
grinding conditions because of alterations in the grinding tool and workpiece geometry wear
would cause alterations in the contact forces. Also, the workpiece geometry was required to be
measured regularly, which was quite boring.Therefore, there was a require for an intelligent
robot control system and more flexible taking care of the requirements from the grinding process
[1]. In the process of grinding and finishing, grinding force needs to be actively controlled both in
direction and in value all the time along with feed movement controlling, thus the process
requires to be controlled by the policy of compliant controlling. When the force controlled robot
is applied to grinding operation, the position control style is selected to control the grinding tool
path in the feed direction exactly. In the press direction, which is perpendicular to the feed
direction, the compliance control style or force control style is selected to get the appropriate
contact force. It is essential to maintain a suitable amount of contact force is two cases for the
grinding operation [2]. The first is surface grinding or deburring the machined parts in which a
grinding tool traces the workpiece profile. The second is bead grinding or deburring the forged
or cast parts, in which the perfect profile must be accomplished after grinding. Either compliance
control or force control can be chosen. The difference in grinding between using compliance
control and force control is as explained in the coming section. In the force control style, the
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grinding tool follows the surface of workpiece by maintaining the contact force constant. So it is
possible to follow an unknown curved surface. The grinding process can be finished easily
without taking into account the position errors like for example in setting the workpiece that is
the problem when using a position controlled robot. This style therefore is most successfully for
grinding a surface usually made or in small deburring of machined parts. In the compliance
control style, the requested profile of the workpiece surface after grinding process performs as
the reference position; also the contact force is accomplished by contraction or expansion of
virtual spring. So it is possible to produce a target profile after grinding. Then, it must be
compensate the large error of workpiece position that can’t be corrected by virtual spring. This
style is appropriate for grinding to get a target profile as an example of large deburring of
casting. Force control is used to preserve a constant force on the part during the marine
propeller grinding process in order to provide equally grinding on the whole surface.

Passive compliance is an additional tool or a device attached to the robot end-effector
to provide a flexibility for it and has a number of advantages including: Passive compliance is
useful for the self-correction of positioning errors in assembly, normally reduce the high forces
or moments produced in wedging or jamming, passive compliance protect the assembled
surfaces from damage, such as a galling or scraping; it is useful also for adaptation to the
impermanent state control and force control. In a robotic grinding procedure, it is essential to
perform the workpiece given geometry, so it is commonly required that the robot performs a
given path while preserving the contact between the grinding tool and the workpiece. Any
divergences from the programmed path arise from an increase of the contact force or yet in the
loss of contact. This contact force is demanded to be maintained within a given value to assure
that the tool can perform the material removal [3]. From control is attained, the velocity or force
may be not continuous and the control becomes uncertain. In this condition, a passive
compliance which attached to the robot end-effector near the contact point will absorbed the
kinetic energy and could avoid the possible high forces or moments, therefore, the lack of
continuity is accommodated and preformance of the complete system is smoothed [4]. Also,
when the robot is equipped with passive compliance, a high gain of the force control can be
chosen. So, for the system that contains passive compliance, the permitted force control gain is
higher than that without it, which is desirable for improving performance and sensitiveness of
force control.

This paper presents a helix spring and compliant wrist to be the passive compliance
additional tools. The hybrid movement–force control policy is the best way for a compliant
control system to deal with the coupling of the force control subsystem and the movement
control subsystem. A compliant wrist system is improved, in this paper, to conform the shape of
the propeller machining surface, and the proposed controller will be Fuzzy proportional–
integral–derivative controller or Fuzzy-PID control strategy, it is used to deal with the robots’
position changing. In this method, force control is fulfilled in the normal direction of the
mentioned machining point by multi-point machining during a grinding wheel moving along the
curved surface of the propeller. The conventional proportional–integral– derivative (PID)
controllers stay to be the most prevalently used in the industrial processes in spite of the many
complicated control techniques and theories that have been invented in the last few decades
[5]. In practice, most physical systems have essentially ungovernable characteristics such as
non-linearities and high order. Hence, the type of achieving the parameters of PID controllers
that satisfy the execution requirement has been referred in many studies [6]. The famous
method, Ziegler–Nichols method, supplies a systematic tuning method for the PID parameters
which has good load disturbance reduction but, with a long settling time and large overshoot it
shows disappointing performance. For improving systems’ performance, such as, overshoot,
rise time, and integral of the absolute error, many studies are endeavoring to combine features
on the basis of the experiences of specialists with regard to PID gain scheduling, and the utilize
of fuzzy logic appears to be especially suitable. Lately, fuzzy PID controllers have been
displayed and inspected, and their adequate performance in several plants has been exhibited.
Fuzzy PID controller is often mentioned as a substitute to classical PID controllers for high non
linearity and complex cases. It supplied a favorable option for industrial applications with many
worthwhile features, as it has the ability to on-line adaptation to time varying, nonlinear, and
uncertain systems [7-9]. The PID controller attempts to minimize the error by modifying the
process control input [10]. As a model free control design approach, Fuzzy logic control was
earlier introduced and developed. It has been used with great successful in industry
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applications. In the past decade, common research attempts on fuzzy logic control have been
dedicated to model-based fuzzy control systems that assure stability and the closed-loop fuzzy
control systems performance. Fuzzy logic begins with and construct on user provide human
language and transform these rules into mathematical equivalent. Fuzzy logic has a rare feature
of simplicity and its flexibility to deal in problems with exactness and accuracy with its simulation
results. it can be carried out in software or hardware or by joining of both of them.

2. Grinding Force Controlling Principle
Grinding force is determined as shown in Figure 1, into three component forces, Fn

which is normal grinding force, Ft which is tangential grinding force and a component force
which is acting along the longitudinal feed direction which is neglected, usually, because of its
unimportance.

Figure 1. Main parameters used in grinding policies

The normal grinding force Fn has a affect on the workpiece roughness and the surface
deformation, while the tangential grinding force Ft chiefly influences the consumption of power
and providing the grinding wheel life [11]. As shown in Figure 2, the compacting force Fc is
regulated by two sections: Two-Phase Hybrid Stepping Motor and a Helix spring, compliant
wrist as a passive compliance.

Figure 2. Model of the grinding force servo system

Two-phase hybrid stepping motor is a brushless DC electric motor which divides a full
rotation into a number of equal steps [12]. The position of motor can afterwards be ruled to
move and hold without any feedback sensor at one of these steps, while the motor is cautiously
sized to the application. The Two-phase hybrid stepping motor is famously used in controlling
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appliances with its dispositions of high precision , high torque output, low vibration and noisy,
and low cost [13]. Thus, it is very significant that the control algorithm research applied in
stepping motor.

Stepper motors are fast and executable in much performance hardware. The utilize of
stepper motors has increased few years later as a result of:

a) Its better reliability due to the mechanical brushes elimination,
b) Higher torque-to-inertia ratio due to a lighter rotor,
c) Its better heat dissipation due to that the windings are situated on the stator not on

the rotor, and
d) Inexpensive.
Originally, stepper motors were designed to be employed in open-loop. Their intrinsic

stepping capability allows for perfect positioning without feedback, then closed-loop control of
stepper motors has been employed to achieve more rapid response times and higher resolution
capabilities. The stepper motor can also be operated at higher speeds, by taking into
consideration nonlinear effects [14]. The stepper motor presses the helix spring when it works,
and supplies the compressive force Fc for the force controlling system. By two perpendicular
angle sensors, the two angles α and β could be detected, and by a force sensor, the
compressive force Fc is detected.

The displacement of the linear stepper motor, founded on the data from sensors, is
changed to compress the spiral spring to modify the grinding force Fn. The grinding force
controlling diagram is shown in Figure 3. It is based according to the strategy of hybrid
movement-force control, in which Fn is the surroundings target force, Fm symbolizes the
modifying force to change the adapting of force controlling if needed.

Figure 3. Block diagram of the force controlling system according to the strategy of hybrid
movement-force control

The hardware system force controlling is designed, generally, by:

l0 = (l1 +l2)/2 (1)

Fn = kf (l2  l1) /2 (2)

Ft = μ Fn (3)

μ = tan θ (4)

Where:
l0 is the accurate displacement of the stepper motor when the grinding force at its
desired value Fn,
l1 is the stepper motor greatest displacement ,
l2 is the smallest displacement to compress the spiral spring,
Kf is the elastic modulus of the spiral spring in Fig.1.
Ft Tangential force and specific value per unit width, and
μ Grinding force ratio
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3. The Model of the Two-phase Hybrid Stepping Motor
The transfer function G(s) of the open-loop system of the two-phase Hybrid Stepping

Motor is as follows:

G(s) =A(s) / B1(s)+B2(s) (5)

Where:

A(s) = Kpv +KIv / s +KDv s) (KPi s+ KIi )ke NKH (6)

B1(s) = JLs^4 +(JR+βL+JKPi KH ) s^3 (7)

B2(s) = βKIi KH s+(JKIi KH + βR+βKPi KH )s^2 (8)

The subdivided driving is assumed for the Hybrid Stepping Motor in order to reach to
the actual system performance parameter and to decrease the intricacy of the system transfer
function. In simulation, the parameters of the two-phase Hybrid Stepping Motor selected are as
follows:

Inductance L= 4.5mH, Resistance R = 1.3Ω, Inertia Constant J = 270 kg ∙ m ,
Coefficient of Viscous Friction B = 0 N ∙ m ∙ s/rad, β = 1,

Kpv = 550, KIv = 0, KDv = 115,

ke = 0.25 N ∙ m/A, N = 180, KH = 10, KIi = 550, KPi = 6.

Transfer function will be:

G(s) = 270000 s^2+28350000 s+135000000 / s^4+19799 s^3+650000 s^2+7500s

4. Conventional PID Strategy for Grinding Force Servo Unit
The most conventional PID controller or linear PID controller is described as follows:

Where KP is the proportional constant gain, KI is the integral constant gain and KD is the
derivative constant gain according to manual expertise. The signal e(t) is the error signal
between the reference and the process output c(t) it is explained as:

e(t) = r(t) − c(t)

Table 1. shows the effect of Kp, Ki and Kd to the controlled system
parameter Rise time Overshoot Turning time Error
Kp decrease Increase Small change decrease
Ti decrease Increase increase eliminte
Td Small change Decrease decrease Small change

The Simulink figure of PID controller is shown in Figure 4 and the PID controller internal
structure is explained in Figure 5, the input parameters for the PID controller are Kp, Ki, Kd, e
and ec, the output for the controller is u.
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Figure 4. Simulink figure of PID controller

Figure 5. The structure for PID controller

5. Fuzzy Controller Strategy for Grinding Force Servo Unit
Fuzzy logic is widely used in processes where system dynamics is either very complex

or show a extremely nonlinear character. The fuzzy controller operation can be described as
shown in Figure 6:

Figure 6. The structure for Fuzzy controller

In this paper, Fuzzy subsets of all inputs and outputs are total explained as
{NB,NM,NS,Z,PS,PM,PB}. Elements of every subset refer to: negative large Nb, negative
middle Nm, negative small Ns, zero Z, positive small Ps, positive middle Pm and positive large
Pb.

We set the ranges {−6,6} for both e and ec , {−1,1} for both Kd and Ki . and {−3,4} for
Kp as shown in Figure 7, 8, 9, 10, 11.
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Figure 7. Membership error function (e) Figure 8. Membership change error function
(ec) of fuzzy

Figure 9. Membership Ki function of fuzzy
controller

Figure 10. Membership Kp function

Figure 11. membership of Kd function

The surface view of Kp, Ki, and kd will be as shown in Figure 12, 13, 14.



 ISSN: 2302-4046

TELKOMNIKA Vol. 15, No. 1, July 2015 : 87 – 99

94

Figure 12. Surface view of Kp of fuzzy controller

Figure 13. Surface view of Ki of fuzzy controller

Figure 14. Surface view of Kd of fuzzy controller
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Figure 15. Rule bases for Fuzzy control system

Figure 16. Rule bases view for Fuzzy control system

6. Fuzzy-PID Strategy for Grinding Force Servo Unit
In this paper, Fuzzy-PID strategy combines the Fuzzy optimizing strategy with the

conventional PID algorithm. In this strategy, the optimal values for the three characteristic
parameters of a PID controller are obtained by Fuzzy self-optimizing.

The Fuzzy-PID controller principle is shown in Figure 17, in which e refers to the error of
the output from its desired value and ec = de/ dt

Figure 17. The structure of Fuzzy-PID controller

By Fuzzy optimizing, the values of the three characteristic parameters would be: Kp=200,
Ki=14.75, Kd=3.6875.
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In Figure 18, there are two inputs and three outputs for the Fuzzy Logic Controller, the
inputs are (e) and (ec = d/dt), and the outputs are Kp, Ki and Kd.

Figure 18. Fuzzy controller

With the MATLAB SIMULINK, a famous simulation software, and for a conventional PID
controlling system, step response is also shown in Figure 4 with Kp= 200，Ki=14.75,
Kd=3.6875.

Step response of the Fuzzy-PID controlling system is completely different from that of
the conventional PID controlling system.

Remarkably, the Fuzzy-PID controller has improved the force servo system by deducing
the optimized Kp, Ki and Kd.

Figure 19. The fuzzy-pid simulation model in MATLAB

7. Results and Discussion
7.1. PID Controller: Modeling

Figutre 20 shows the Simulink figure of PID controller. When Kp= 2, Ti = 0.5, Td= 1, the
simulation was performed in figure below:

Figure 20. Simulink figure of PID controller
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Figure 21. Step response of the system under PID controller

We note that the Rise time value = 0.23 and the overshoot value = 1.46 also we note that there
is an undershoot value =0.9

7.2. Fuzzy Controller: Modeling

Figure 22. Simulink figure of Fuzzy controller

Figure 23. Step response of the system under PID controller

We note that the Rise time value = 0.17 and the overshoot value = 1.27 also we note that there
is no an undershoot value.
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7.3. Fuzzy PID Controller

Figure 24. Simulink figure of Fuzzy-PID controller

Step response of the Fuzzy-PID controlling system is shown in Figure 25.

Figure 25. Step response of the system under PID controller

This could be close to optimal values for knowledgeable, but could be the optimum ones for any
controlled system hardly.

8. Conclusion
When a grinding wheel grinds propellers as a free-form surface by a robot, the grinding

force, at the mentioned machining point, must be controlled in the normal direction in order that
both grinding force and feed movement could be controlled. Research works are taken for
grinding force controlling in this paper.

(1) To make the grinding wheel conform the curved surface, compliant wrist system is
improved. The wrist could change its attitude in perpendicular two directions to conform the
machining surface according to a helix spring compressive force that driven by a stepper motor.
In this way, the grinding wheel could grind the free-form surfaces of marine propellers.

(2) Whereas the controlling parameters would not be adapted with the attitude of the
wrist altering and the controlling system is not capable of adapting one to the form of the
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machining surface, the grinding force could not be controlled at its aim value and the error is
growing with the feed movement. It means that, the model of the surroundings and the
compliant wrist system could be used in force controlling when robots grind free-form surfaces
of marine propellers with multi-point machining by a grinding wheel.

(3) The simulation results support that a Fuzzy-PID controller has preferable control
performance than the conventional PID controller. Fuzzy is easy for computing and has the
capability to satisfied control characteristics. The modelling, control and simulation of the Two-
Phase Hybrid Stepping Motor have been done using the software package MATLAB/SIMULINK.
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