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Abstract—An energy management system (EMS) determines
the dispatching of generation units based on an optimizer that
requires the forecasting of both renewable resources and loads.
The forecasting system discussed in this paper includes a repre-
sentation of the uncertainties associated with renewable resources
and loads. The proposed modeling generates fuzzy prediction
interval models that incorporate an uncertainty representation
of future predictions. The model is demonstrated using solar
and wind generation and local load data from a real microgrid
in Huatacondo, Chile, for one-day ahead forecasts to obtain
the expected values together with fuzzy prediction intervals to
represent future measurement bounds with a certain coverage
probability. The proposed prediction interval models would help
to enable the development of robust microgrid EMS.

Index Terms—Energy management system (EMS), forecasting,
fuzzy modeling, microgrid, prediction intervals, renewable.

I. INTRODUCTION

THE INTEGRATION of intermittent energy sources such
as wind and solar energy in power systems brings sig-

nificant new challenges to the operation and planning of these
systems. Traditional dispatch models can no longer guaran-
tee a reliable operation of the system due to high levels of
uncertainty associated with intermittent power sources, and
new dispatch techniques need to be developed [1], [2]; this
issue takes even more relevance in the operation of microgrids.
The presence of energy storage systems (ESSs) can help
reduce the effects of uncertainty, facilitating the integration
of variable sources if a properly designed energy management
system (EMS) is in place; however, the performance of such
an EMS will depend on the accuracy of the employed forecast-
ing system and the manner in which uncertainty is accounted
for in the EMS.

Manuscript received January 2, 2014; revised May 20, 2014,
August 20, 2014, and November 12, 2014; accepted November 16, 2014. Date
of publication December 19, 2014; date of current version February 16, 2015.
This work was supported in part by the Millennium Institute Complex
Engineering Systems under Grant ICM: P-05-004-F and Grant
CONICYT: FBO16; in part by National Fund for Science and Technology
under Project 1140775; and in part by CONICYT/FONDAP/15110019. Paper
no. TSG-00005-2014.

D. Sáez, F. Ávila, and L. Marín are with the Department of
Electrical Engineering, University of Chile, Santiago 6513027, Chile (e-mail:
dsaez@ing.uchile.cl).

D. Olivares is with the Department of Electrical Engineering, Pontificia
Universidad Católica de Chile, Santiago 7820436, Chile.

C. Cañizares is with the Department of Electrical and Computer
Engineering, University of Waterloo, Waterloo, ON N2L-3G1, Canada.

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TSG.2014.2377178

The aforementioned issues become even more challenging
in the context of stand-alone microgrids, where the limited
number of generators and significant levels of intermittent
source penetration require a highly coordinated operation of
the controllable assets. Thus, in stand-alone microgrids, load,
and wind and solar power profiles are less smooth, and present
more high-frequency changes than those observed in bulk
power systems, due to limited geographical area covered by
these grids. As a result, the demand-supply balance is typically
more critical.

To address the high levels of uncertainty associated with
the intermittency of resources, new dispatch schemes that use
stochastic formulations of the dispatch problem are an alter-
native to achieve the desired levels of reliability [1], [3], [4].
These formulations require forecasting systems that provide
not only the expected future resources but also a measure of
their variability, such as prediction intervals or representative
scenarios. Consequently, conventional forecasting methodolo-
gies are not completely suitable for microgrid applications,
making the development of new techniques necessary.

To solve the load forecasting problem, computational intel-
ligence techniques, such as neural networks [5], [6], have been
widely used. Palma-Behnke et al. [7] discussed a neural net-
work for two-days ahead electric consumption forecasting for
an EMS. Additionally, other techniques, such as wavelet analy-
sis, have also been used as a complementary tool, for example,
to characterize different load profiles [8]. Evolutionary algo-
rithms are also used for determining the inputs (e.g., type
of day, temperature) to load-predictive models [9], and a
new bi-level strategy for short-term load forecasting is pre-
sented in [10], and demonstrated using real data from a
university campus in Canada. However, these load forecasting
methods do not explicitly consider the modeling of forecast
uncertainty.

Existing literature on probabilistic and interval forecast-
ing has focused on long-term analysis for investment and
planning purposes, which do not require the forecasts to be
represented as time-series. For instance, McSharry et al. [11]
estimated the expected value of future demand, as well its
prediction density, considering explanatory variables such as
temperature and seasonality. Hyndman and Fan [12] presented
long-term density forecasts for demand using temperature as
an explanatory variable. Hong et al. [13] proposed interval
prediction for long-term demand using similar input variables
based on scenarios. These techniques are not readily applicable
to short-term forecast, which is the main focus of this paper,
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where values in consecutive time steps are strongly coupled
and density forecast is not relevant.

The forecasting of renewable sources in microgrids depends
on the accuracy of the forecast models with respect to weather
conditions (e.g., wind speed and direction, solar radiation,
temperature). For forecasting wind and solar power generation,
there are two main approaches: 1) to forecast the wind speed
or solar radiation and convert it to power using an empiri-
cal formula (see [14], [15]) and 2) is to directly forecasts the
power generation (see [16], [17]).

Most models of both solar and wind resources and power
do not directly represent uncertainty. Hence, as the main
contribution of this paper, fuzzy prediction interval models,
which provide a systematic framework for the representa-
tion of uncertainty and thus are suitable for forecasting
loads and renewable-based energy generation in microgrids
are developed. A somewhat similar approach was recently
reported in [18], where a short-term load forecast with pre-
diction intervals for bulk power systems is presented, based
on fuzzy sets for the model parameters; however, this paper
differs from [18] in that intervals are calculated based on the
covariance of data for various operating points, which are char-
acterized by linear regression models with fixed parameters as
discussed in detail later.

The rest of this paper is organized as follows. Section II pro-
vides details on the potential applications of this paper in the
context of isolated microgrids. In Section III, a brief descrip-
tion of fuzzy modeling and the derivation of fuzzy interval
models and fuzzy prediction intervals are provided, includ-
ing their representation. Section IV presents forecasting results
based on fuzzy prediction interval modeling for wind power,
solar power, and load of an actual microgrid located in Chile.
Section V provides the main conclusion and contributions of
this paper.

II. FORECASTING APPLICATIONS IN MICROGRIDS

The EMS of microgrids dispatches distributed generators
based on a unit commitment, so that certain objectives are
achieved. There are two main approaches for the EMS archi-
tecture: 1) centralized and 2) distributed. Olivares et al. [19]
argued that a centralized EMS is more suitable for remote
microgrids operating in islanded mode, where the goal is to
provide continuous operation of the system under variable gen-
eration and load. A centralized EMS, illustrated in Fig. 1,
determines the dispatching of units (and control commands
for controllable loads) by solving an optimization problem. For
this purpose, the EMS is provided with relevant information
for each generation unit and load in the microgrid (e.g., cost
functions, technical characteristics/limitations, network param-
eters, and modes of operation), as well as information from
forecasting systems (e.g., local load, wind speed, and solar
irradiance), to determine the dispatching of resources accord-
ing to the selected objectives. The estimation of future param-
eter values requires forecasting system with a certain coverage
probability (CP). Uncertainty in forecasting load, wind speed,
and solar irradiance is typically indirectly accounted for by
using a model predictive control (MPC) approach for dispatch

Fig. 1. Centralized EMS for a microgrid.

in the EMS [20]. In this approach, a deterministic multistep
optimization problem is solved iteratively over time using
the most updated/accurate information available at each time
step [21], [22]. However, this approach may not be able to
provide the desired levels of reliability in dispatch opera-
tions, as it does not directly account for uncertainty. Hence,
new approaches using stochastic EMS formulations are needed
to address this issue. These stochastic formulations would
enable a determination of the necessary reserves of the micro-
grid thus avoiding the need to arbitrarily fix these reserves
a-priory.

The robust optimization approach combines the worst-case
analysis with a min–max formulation to obtain optimal solu-
tions that are robust against variations in the parameter values
with respect to a nominal value (optimal worst-case scenario).
A particular formulation of the robust energy management
problem, similar to the formulation presented in [3] is as
follows:

min
ukt

max
pkt

∑

kt

F
(
ykt, zkt, ukt, pkt

)
(1)

s.t. zkt+1 = w
(
ykt, zkt, ukt, pkt

)
∀kt (2)

gkt

(
ykt, zkt, ukt, pkt

)
= 0 ∀kt (3)

hkt

(
ykt, zkt, ukt, pkt

)
≤ 0 ∀kt (4)∥∥ukt+1 − ukt

∥∥ ≤ △umax
kt

∀kt (5)

pkt = p̂kt + skt �p̂kt − skt �p̂kt ∀kt (6)
∑

kt

(
skt + skt

)
≤ Ŵ (7)

where zkt ∈ Rw is a vector of discrete time-dependent vari-
ables, such as the state-of-charge of storage systems; p̂kt ∈ Rl

is the vector of parameters representing the best available
estimation at step kt = 1 of for example, system demand,
intermittent generation, and fuel prices, for all of the time
steps in the multistage horizon; and �p̂kt ∈ Rl is the vector
of maximum variations of parameter realization pkt ∈ Rl with
respect to the estimated p̂kt ∈ Rl. Vector ukt ∈ Rn represents
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the control variables, and vector ykt ∈ Rn represents time-
independent variables, such as voltages, phase angles, and
frequency. Vectors skt, skt ∈ {0, 1} are binary variables that
control the direction of variation of pkt with respect to the
predicted p̂kt , and finally the parameter Ŵ, called the bud-
get of uncertainty, is the limit on the number of timesteps
in the prediction that are allowed to deviate from the fore-
casted value. Nonlinear functions w : R → RW , g : R → Rg,
h : R → Rh correspond to, for example, power-flow equations
and ESS balance equations. The set of inequality constraints
guarantees that control variables do not change by more
than a maximum acceptable amount between two consecutive
time steps.

The value of the parameter △p̂kt is usually estimated as a
percentage of p̂kt and adjusted depending on the accuracy of
the forecasting method and forecasting horizon.

In the past, fuzzy models have been used in the forecast-
ing of power outputs from nondispatchable units, due to their
suitability as approximators of nonlinear dynamic processes.
In this paper, a forecasting method using a new type of fuzzy
prediction interval models is derived based on [23] and [24],
which not only provides the forecasted output but also their
prediction intervals, which can be readily used to obtain the
parameter △p̂kt in the robust energy management problem
formulation.

III. FUZZY PREDICTION INTERVAL MODELING

A. Takagi and Sugeno Fuzzy Modeling

Takagi and Sugeno (T&S) [25] described a type of fuzzy
model that is suitable for approximating a large class of
nonlinear systems. The premises are based on fuzzy sets, and
the consequences are linear models that represent different
operating points of the system. The T&S fuzzy models can
be represented by the following expression:

p̂t = f TS (
x

p

t−1, pt−1, ut−1
)

(8)

p̂t =

m∑

j=1

βj

(
x

p

t−1

)
pt j

(pt−1, ut−1) (9)

where t is time, x
p

t−1 is the vector of premises; pt−1 is the past
output vector; ut−1 is the past control vector; βj is the degree
of activation for rule Rj; and pt j is the output of the local
model for rule j (Rj). In matrix form, the T&S model is
represented as

p̂t = �Tθ (10)

�T
j = βj

(
x

p

t−1

) [
1 pt−1ut−1

]
(11)

�T =
[
�T

1 , . . . , �T
m

]
(12)

ptj (pt−1, ut−1) =
[
1 pt−1ut−1

]
θj = ψTθj (13)

θT = [θ1, . . . , θm] (14)

where �T is the fuzzy matrix regression and θ is the param-
eter matrix. The set of data samples can be written as
follows:

pi = ψT (mi) θ + ei (15)

where mi are the measurement input variables for
i = 1, . . . , N, and ei are the forecasting errors.

In this paper, the method in [26] was considered, which
minimizes the number of rules making a partition of the space
of output variables universe that is projected into the input
space finding the optimal fuzzy sets and rules. This partition
is based on a fuzzy clustering method, and allows obtaining the
premise parameters. The consequence parameters are obtained
using the T&S method based on least squares, as described
in [27].

B. Fuzzy Interval Modeling

Interval modeling is a method by which one can approxi-
mate function families that are given by a finite set of input
and output measurements. The interval defines a band that
contains the measurement values with a certain CP.

Škrjanc [23] presented an analytical derivation of fuzzy
intervals, which results in lower and upper fuzzy models with
a defined CP. Thus, the expected covariance of the residuals
between the observed data and the local model output is given
as follows:

�p̂j = cov
(
pj − p̂j

)
= σ̂ 2

j I + σ̂ 2
j ψT

j

(
ψjψ

T
j

)−1
ψj (16)

where pj is the output of the local model j and the variance
of the local noise signal is E{ej eT

j } = σ̂ 2
j I. For a set of data

samples, the lower and upper bounds of the local linear models
j are defined, respectively, as

fj (mi) = ψT
i,jθj − α�p̂i,j (17)

f j (mi) = ψT
i,jθj + α�p̂i,j (18)

where

�p̂i,j = σ̂j

(
1 + ψT

i,j

(
ψjψ

T
j

)−1
ψi,j

)1/2

(19)

for i = 1, . . . , N. Here, α and α are the parameters of the
fuzzy intervals that should be tuned. Note that narrower bands
imply a greater number of data points outside the bands.
Using (17)–(19) and applying the T&S framework, the lower
and upper bounds for the output are represented by

p̂t = f TS (
x

p

t−1, pt−1, ut−1
)
− αtI

TS (
x

p

t−1, pt−1, ut−1
)

(20)

p̂t = f TS (
x

p

t−1, pt−1, ut−1
)
+ αt ITS (

x
p

t−1, pt−1, ut−1
)

(21)

with the fuzzy interval given by

ITS (
x

p

t−1, pt−1, ut−1
)

=

m∑

j=1

βj

(
x

p

t−1

)
�p̂tj (22)

where αt and αt are time-variant parameters related to the
interval width and are tuned using experimental data to obtain
a certain CP. The parameters of fuzzy interval models cor-
respond to the fuzzy regression matrix �T

j obtained from
the fuzzy model identification (premise parameters) and the
variance of the local noise signal σ̂ 2

j .
The CP is defined as

CP =

∑M
i=1 δi

M
(23)
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where M is the number of the data set and δi are binary vari-
ables that indicate whether the sample data mi belong to the
interval, i.e., p̂t ≤ mi ≤ p̂t.

C. Fuzzy Prediction Intervals

This paper proposes the use of fuzzy prediction interval
models for forecasting the output of future steps ahead. In
this case, (8) and (9) can be reformulated as follows:

p̂kt = f TS
(

x
p

kt−1, pkt−1, ukt−1

)
∀kt = t, . . . , t + K (24)

p̂kt =

m∑

j=1

βj

(
x

p

kt−1

)
pkt

j

(
pkt−1, ukt−1

)

∀kt = t, . . . , t + K. (25)

The prediction of the lower and upper prediction intervals
at future steps ahead is considered as a function of the output
until the previous step, real, and/or forecasted depending on
the number of steps ahead, as follows:

p̂kt = f TS
(

x
p

kt−1, pkt−1, ukt−1

)
− αkt I

TS
(

x
p

kt−1, pkt−1, ukt−1

)

(26)

p̂kt = f TS
(

x
p

kt−1, pkt−1, ukt−1

)
+ αkt I

TS
(

x
p

kt−1, pkt−1, ukt−1

)

∀kt = t, . . . , t + K

(27)

where the vector αkt is chosen to be the same for both the
upper and lower intervals. The tuning of the vector αkt is
obtained using the experimental data and (23) to calculate a
certain CP. First, an initial value of αkt is chosen, and with this
value, the interval forecast is performed for the required steps
ahead. Next, with these results, the CP is calculated using (23).
If this is less than expected, the value of αkt is increased, and
the procedure is repeated until the required CP is achieved.

IV. CASE STUDY

A. Huatacondo Microgrid

In this paper, the load and the wind and solar energy
resources of a small, isolated microgrid, in the village
of Huatacondo (20◦ 55′ 36.37′′ S 69◦ 3′ 8.71′′ W) in
the Atacama Desert, Chile, were considered. The micro-
grid is composed of two photovoltaic systems (PS

max =

24 kW); a wind turbine (Pw
max = 5 kW); the existing

diesel generator unit in the village which is typical of iso-
lated grids, an ESS composed of a lead-acid battery bank
connected to the grid through a bidirectional inverter; a
water pump; and loads (Lmax = 28 kW). Fig. 2 illustrates
the various components of this microgrid, which features
an EMS that minimizes the operational costs while sup-
plying the demanded load, considering a one-day ahead
forecasting of the wind and solar resources and the electrical
load [20].

The forecasting results are based on fuzzy prediction inter-
val modeling for the wind power, solar power, and load, which
are required by the EMS. Given the particular application con-
sidered in this paper, i.e., microgrids for remote communities,

Fig. 2. Schematics of a renewable-based microgrid.

the simplicity of the forecasting method is a desirable trait.
For this reason, a forecasting system that is able to provide
reasonable predictions based only on a reduced set of vari-
ables that are easy and inexpensive to acquire, such as the
power output is used here. Other explanatory variables such as
wind speed and temperatures may help improve the forecast,
but are expensive and difficult to obtain in remote commu-
nities such as Huatacondo; furthermore, the impact of some
of these variable are in some way “embedded” in the power
output information. It is also worth mentioning that for the
particular remote community used in this paper, the load is
much more dependent on factors such as TV-schedules, break-
fast, lunch, and dinner times, and school schedules than on
short-term environmental factors [28]. Hence, only solar and
wind generation output powers and load demand at previous
selected time-steps are considered as inputs to the forecasting
system.

The results presented were obtained for a forecast horizon of
24 h and a sampling time of 15 min, which results in 96 steps
in one-day. Note that the periods of time used for training and
validation of the models differ for wind, solar, and load pow-
ers, given that no reliable data was available from all of them
for the exact same period of time, due to technical problems
with the data acquisition systems at Huatacondo.

B. Forecasting of Wind Power

For fuzzy modeling of the wind power, training data were
obtained from July 27 to August 28, 2010, and validation data
were obtained from August 29 to September 26, 2010. The
wind power ( p = PW ) model was derived based on the mea-
surements of the previous day, with a sampling time of 15 min
as follows:

p̂t = P̂w
t = f TS (

Pw
t−1, Pw

t−2, . . . , Pw
t−96

)
. (28)
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Fig. 3. One-day wind power forecasting for a given day.

Then, using the identification procedure explained in
Section III, results in the following:

Rj if Pw
t−1 is A1

j and Pw
t−2 is A2

j and . . . and Pw
t−96 is A96

j

then P̂w
tj = θ0j + θ1jP

w
t−1 + θ2jP

w
t−2 + · · · + θ96jP

w
t−96 (29)

P̂w
t =

m∑

j=1

βj

(
x

p

t−1

)
P̂w

tj (30)

where Rj is the j rule, A1
j , . . . , A96

j are the fuzzy sets defined
based on the clustering technique mentioned in Section III.
Finally, using (22), the fuzzy prediction interval model for
wind power is given by the following expression:

Rj if Pw
t−1 is A1

j and Pw
t−2 is A2

j and . . . Pw
t−96 is A96

j

then △P̂
w

tj (31)

△P̂w
t =

m∑

j=1

βj

(
x

p

t−1

)
△P̂

w

tj . (32)

Fig. 3 shows the wind power forecast using one spe-
cific known day starting at midnight. Additionally, this figure
presents the root mean square error (RMSE) for 1 to 96-step
ahead forecast for a set of six days, showing that the peaks
of the RMSE occur when the power suddenly increases or
decreases.

Fig. 4 presents the fuzzy prediction intervals for different
coverage probabilities (associated with the parameter α) for
one-day ahead forecasting, considering the same day used in
the forecast shown in Fig. 3. Note that, in general, the nar-
rower bands cover fewer data points, while the wider bands can
cover almost all of the data. For higher levels of wind power
generation, wider intervals imply more uncertainty (see Fig. 4,
steps 57–90). The interval with a 90% of CP is significantly
wider than the other intervals because of the measures that are
close to zero, which add more uncertainty to the entire model.

C. Forecasting of Solar Power

For fuzzy modeling of the solar power, training data
corresponds to November 1, 2012, to January 16, 2013,

Fig. 4. Fuzzy intervals for one-day wind power forecasting for different CP
levels, for a given day and for various values of α.

and the validation set consists of data from January 17 to
January 31, 2013. The following solar power model (p = PS)
is assumed with a sampling time of 15 min:

p̂t = P̂s
t = f TS (

Ps
t−1, . . . , Ps

t−96

)
. (33)

Thus, using the identification procedure described in
Section III-A, the resulting fuzzy model for the solar power
is given by

Rj if Ps
t−1 is A1

j and . . . and Ps
t−96 is A96

j

then P̂s
tj = θ0j + θ1jP

s
t−1 + · · · + θ96j Ps

t−96 (34)

P̂
s

t =

m∑

j=1

βj

(
x

p

t−1

)
P̂s

tj (35)

where m = 2 is the number of the fuzzy rules.
The fuzzy prediction interval model is given by the

following expression:

Rj if Ps
t−1 is A1

j and . . . and Ps
t−96 is A96

j

then △P̂
s

tj (36)

△P̂s
t =

m∑

j=1

βj

(
x

p

t−1

)
△P̂

s

tj. (37)

Fig. 5 shows solar power forecast results for a given day.
This forecast starts at midnight; therefore, null values exist at
the beginning and end, and the maximum occurs near noon;
this behavior is captured by the fuzzy model. In addition, the
RMSE is shown for steps 1–96 forecast, considering 15 days.
Similar to the wind power graph, the peaks of the RMSE
also indicate when the sun power increases and decreases,
representing dawn and dusk, respectively.

Fig. 6 shows the fuzzy intervals for different CP levels, from
10% to 90% for a one-day forecast. Observe that the intervals
are narrower than for wind power, for each CP, since a regular
pattern of the sunlight is observed at this location.
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Fig. 5. One-day solar power forecasting for a given day.

Fig. 6. Solar power fuzzy intervals for different CP levels for a one-day
forecast, for a given day and for various values of α.

D. Load Forecasting

For fuzzy modeling of the load, training data were obtained
from November 1, 2012, to January 16, 2013, and the valida-
tion set consists of data from January 17 to January 31, 2013.
Thus, the structure of fuzzy model for the load, with a
sampling time of 15 min is given by

p̂t = P̂
L

t = f TS (
PL

t−1, . . . , PL
t−96

)
. (38)

Then, the predictive fuzzy model and the corresponding
fuzzy prediction interval models are developed. Using the
identification procedure described in Section III-A, the result-
ing fuzzy model for the load is given by four rules with the
following form:

Rj if PL
t−1 is A1

j and . . . and PL
t−96 is A96

j

then P̂L
tj = θ0j + θ1jP

L
t−1 + . . . + θ96j PL

t−96 (39)

P̂L
t =

m∑

j=1

βj

(
x

p

t−1

)
P̂L

tj (40)

Fig. 7. Load forecasting for one-day ahead forecasting for a given day.

where m = 4 is the number of the fuzzy rules. Hence, the
fuzzy prediction interval model for the load is given by the
following expression:

Rj if PL
t−1 is A1

j and . . . and PL
t−96 is A96

j

then △P̂
L

tj (41)

△P̂
L

t =

m∑

j=1

βj

(
x

p

t−1

)
△P̂

L

tj. (42)

Fig. 7 shows the load forecasting from 1 to 96-steps ahead,
starting at midnight using the historical data from the pre-
vious day at selected time instants, defined by the inputs of
the model. A high variability of the load is observed for this
small village (Huatacondo), confirming that load forecasting is
an important challenge for microgrids. Additionally, this figure
shows the RMSE for 1–96-steps ahead forecasts using a set of
15 days, and the peaks along the prediction steps are a result
of the uncertain demand. Observe that high frequency vari-
ations are captured with less accuracy for longer look-ahead
windows. However, given the MPC approach used by most
EMSs, as explained in Section II, this is not an issue.

Fig. 8 shows the fuzzy intervals for different coverage prob-
abilities for one-day ahead forecasting. In contrast with the
intervals for solar and wind power, the load intervals have
almost the same width throughout the entire forecast period,
which means that uncertainty remains relatively constant
during the entire day.

E. Discussion

A common characteristic of most EMS architectures is the
use of an MPC type of control; thus, at each time step when the
EMS calculations are triggered, a new forecast is performed
by the forecasting system in order to use the most updated
information. Hence, the EMS will use predictions for one-step
ahead to 96-steps ahead for a 24-h horizon in its calculations.
Therefore, the EMS will face different levels of uncertainty
for predictions at different steps ahead produced by only one
run of the forecasting system, with higher levels of uncertainty
for the final hours of the horizon, as expected.
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Fig. 8. One-day ahead fuzzy intervals for the load at different CP levels, for
a given day and for various values of α.

TABLE I
FORECASTING ERRORS

Table I presents the forecasting errors, in terms of RMSE
and mean absolute error (MAE) for one-step ahead (15 min)
and one-day ahead (24 h) of the wind power, solar power, and
electric load. The prediction errors increase for a larger horizon
prediction, as expected. These results are in accordance with
the prediction errors shown in Figs. 3, 5, and 7.

Figs. 9–11 show one-day ahead forecast of the fuzzy interval
for the wind power, solar power, and electric load, respectively,
with 70% CP, using a rolling horizon strategy, i.e., the forecast
for 96-steps ahead is performed every 15 min. For the wind
and solar power, the forecast intervals closely follow the real
data. In the electric load case, the intervals are longer due
to the small size of the microgrid, implying that each small
change in the demand has a significant impact on the load of
the microgrid.

F. Comparison With Linear Regression Models

An analysis of the suitability of the proposed fuzzy predic-
tion interval model, and comparisons with different approaches
can be made by assessing its performance on a target
application. Thus, the authors are working on examining the
performance of the proposed approach when implemented on
an EMS for isolated microgrids, based on its ability to pro-
vide protection against prediction uncertainty in the microgrid

Fig. 9. One-day ahead wind power fuzzy prediction interval using the rolling
horizon strategy.

Fig. 10. One-day ahead solar power fuzzy prediction interval using the
rolling horizon strategy.

Fig. 11. One-day ahead load fuzzy prediction interval using the rolling
horizon strategy.

dispatch, which can be measured in terms of costs of operation
and load shedding requirements. Nevertheless, a comparison
of the quality of forecasted intervals is presented here based
on linear regression models and their associated prediction
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TABLE II
PREDICTION INTERVALS COMPARISON FOR ELECTRIC LOAD

intervals, for a given CP of the fuzzy models. Due to their
high variability and abundance, load data is used for the
comparison.

Table II shows the results of the load prediction inter-
vals for the linear and fuzzy models, with a 90% CP of the
one-day ahead prediction. The models are compared in terms
of RMSE and MAE, whereas the prediction intervals are com-
pared using the CP defined in (23) for the predicted interval,
and a normalized average width (NAW) of the predicted
interval defined by

NAW =
1

M
[
pmax − pmin

]
M∑

i=1

[
pi − pi

]
(43)

where M is the size of the data set; pmax and pmin are
the maximum and minimum values for the set, respectively;
and pi and pi are the upper and lower bounds of the predic-
tion interval, respectively. Observe that the fuzzy models are
more accurate for one-hour and one-day ahead forecasts in
terms of RMSE and MAE indexes, whereas linear regressions
outperform the fuzzy models for one-step ahead forecasts. In
terms of prediction intervals, fuzzy models provide a higher
CP with narrower intervals for one-day ahead forecasts, and
also slightly better intervals for one-hour ahead forecasts. In
the case of one-step ahead intervals, even though linear regres-
sion models provide a narrower interval, they also yield a
lower CP. These results are to be expected given the ability
of fuzzy models to better represent the dynamics and nonlin-
earities of the variables, which are more apparent in longer
look-ahead forecasts.

V. CONCLUSION

Fuzzy prediction interval models were proposed for micro-
grids EMS, which facilitate robust predictive control problem.
Fuzzy prediction intervals were used to represent the future
uncertainty of both nondispatchable power generation and
electric load. Fuzzy prediction interval models for the wind
power, solar power, and load of a microgrid installed in Chile
were generated with different levels of CP using one-day ahead
forecasting. Wider intervals were obtained for higher levels
of CP, as expected. The solar power interval was the nar-
rowest of the three models generated because solar energy
in the studied location does not vary much throughout the

year. On the other hand, loads showed wider variations, reflect-
ing the significant impact of load uncertainty in microgrids.
The intervals obtained using the proposed method were also
compared with respect to those obtained using linear regres-
sion models, showing a better performance of the proposed
fuzzy models in terms of CP and interval widths, espe-
cially for the case of longer look-ahead forecasts. The worst
case obtained from the fuzzy prediction intervals will allow
determining the necessary reserves for a microgrid.

Future work will focus on the implementation of a robust
EMS using the fuzzy prediction interval models developed
herein.
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