
FUZZY QUERIES AND
RELATIONAL DATABASES

P. BOSC & O. PIVERT

IRISA-LLI-ENSSAT

Keywords : imprecise queries, fuzzy sets, possibility theory,
query languages.

Abstract .

In this paper, the interest of fuzzy sets and possibility theory
in the context of databases is presented. It is shown that these

" notions provide an homogeneous framework for both the
representation of imprecise/uncertain information and vague
queries. A special emphasis is put on flexible queries
addressed to regular databases. When comparing various
attempts made in this contexL the fuzzy set approach turns
out to generalize the other solutions. Finally, the principal
features of a fuzzy querying language extending SQL are
outlined.

INTRODUCTION

If the database domain has tremendously evolved in the last
decade, an implicit hypothesis has been maintained nearly
all the way long : data are assumed to be precisely known and
queries are intended to retrieve elements which qualify for a
given crisp condition. This paper investigates some of the
issues tied to the relaxation of this hypo~esis, since it will
turn out to be very restrictive for handling new applications
and needs.

After a brief overview of the main aspects concerned by
imprecision in database management systems, we will focus
on the expression of flexible queries (interpreted in the
framework of the fuzzy set theory) addressed to regular
databases (where data are accurately known). The objective of
such queries is to support preferences and to provide users
with results which are ranked according to their adequation
with respect to the query.

Then, we present different attempts which have been made
without fuzzy sets. Basically, the idea is to extend usual
Boolean queries in adding preferences and three main
approaches have been suggested. In the first one, a query
involves two distinct components : one intended for the
selection of tuples, another to order them according to
preferences. In the second approach, preferences are implicit
and hidden behind a similarity operator relaxing the strict
equality. A last approach advocates the use of criteria whose
results are values of the unit interval (or linguistic values). It
is possible to show that these approaches are very specific
with respect to a fuzzy set based approach.

In the next section, we give the outline of a query language
supporting fuzzy queries in the context of a relational data
model. This query language is an extension of SQL which is
a standard for database querying. The "where" clause of the
multi-relation select block may involve both Boolean and
fuzzy predicates combined by several kinds of connectors,
thereby achieving a large number of semantic effects.

Permission to copy without fee all or part of this material is granted provided that
the copies are not made or dislributed for dtrect commercial advantage, the ACM
copyright notice and the title of the publication and its dam appear, and notice is
given that copying is by permission of the Association for Computing Machinery.
To copy otherwise, or to republish, requires a fee and/or specific permission.

0 1994 ACM 089791-647-6/94/0003 $3.50

Partitions issued from a "group by" c~/n be selected by means
of fuzzy conditions bearing on the results delivered byse t
functions, but also using fuzzy quantifiers.

STORAGE OF IMPRECISE DATA

In this section, we consider the representation of imprecise
information in the context of the relational model. We are
mainly interested in the case where we do not have a
complete information on the value of the attributes in the
tuples of a relation, because we believe this to be the most
common situation.

If we use a classic DBMS, we are limited because we do not
know how to represent disjunctive information, i.e. cases
where the effective value of an attribute is one of those
specified in a set. Practically, therefore, we have a choice
between three solutions : i) to choose a precise arbitrary
value from the information available ; it) to use a null value ;
iii) to choose a specific representation (intervals, for
example) which then supposes that we have adapted tools at
query language level. None of these solutions is satisfactory
and it seems more appropriate to allow for such information
(in fuzzy databases) to be taken into account by the system
itself.

We illustrate the ability to represent ill-known values by
means of possibility distr ibutions (denoted rt in the
following) in some characteristic situations relative to John's
salary. Of course, we must be able to express the usual
situations, knowing the precise value (case a) ($1764), the
"unapplicable" null value (case b) (John does not work), and
the "unknown" null value (case c) (John works, but the value
of his salary is unknown). We can even represent total
ignorance where anything is possible (case d) (John may not
be working and, even if he is, his salary is unknown). The
possible values of his salary are found in the domain S (e.g.
the interva4,[.$500,.$80000]) to which a particular element
denoted {e} is attached to express the non-applicability of
the attribute to the element under consideration. The
distributions relevant to these different cases are given
hereafter : a) r~(1764) = 1; Vx e S - { 1764) g(x) = 0; b) g(e) =
1; Vx e S - {e) /r,(x) = 0; c) n(e) = 0; Vx ~ S - {e) 7r.(x) = 2; d)
Vx ¢ S rex) = 2.

Possibility distributions also allows to represent imprecise or
uncertain information, including variations in the possible
values (some are more possible than others). Some examples
arc:

a) the exact salary is unknown but in the interval [$1000,
$2000] : usual inmrval; b) the exact salary is unknown but is
around $1500 : the possibility decreases as the considered
value moves away from $1500; c) it is known only that the
salary is high : distribution corresponding to the restriction
of salary by the fuzzy set "high'; d) it is certain to a degree ct
that the salary is around $ 1 5 0 0 : the distribution x(x) is
max(I.taround $1500(x), l - a) for all x ;e e and 7t(e) = 0 (Carousal
$1500 is the characteristic function for the set around S1500).

These different situations involve a single-valued attribute
and it is clear that if one limits oneself to characteristic
functions with a trapezoid form, the inner representation of
such values amounts to five values at the most (example d).
Equally, one can represent values relative to a multi-valued

170

attribute. It is clear, then, that its storage requires more space,
since we must consider a'priori a fuzzy set over the powerset
of the universe.

HANDLING IMPRECISE DATA AND VAGUE C'RrI'ERIA

Introduction to vague criteria

When querying a database, one sometimes does not wish to
define precise limits of acceptance or rejection for a
condition due to a feeling of graduality. This also occurs
when one wishes to express preferences and thus to
distinguish between the elements in a finer way than a
Boolean rdter would. This attitude has the effect, among
others, f'wstly of being able to provide a reply where a classic
request would have produced an empty response, and
secondly of returning to the user the n best replies rather than
a long list of undifferentiated replies. As a result, such an
approach seems adapted to avoid the need for the user to
formulate a succession of requests. Here, vague criteria are
assumed to be represented by fuzzy sets. A vague predicate
can be made up of several types of elements : atomic
predicates, modifiers, connectors and quantifiers. An atomic
predicate is an application from a set of domains D 1 D n to
[0,1]; it often corresponds to an adjective such as "tall ' ,
"young', "important', etc. A modifier is an application from
[0,1] to [0,1] corresponding to an adverb such as "very",
"really', "more or less ' , "rather', etc. A connector is an
application from [0,1] n to [0,1], such as for example ~ e
conjunction and the disjunction (weighted where necessary),
and the mean operators [13]. A quantifier is an application
from [0,1] or the real line to [0,1]. It is used in clauses like
"most of the employees which satisfy A satisfy also B" or "a
dozen departments satisfy B' . Several interpretations of
quantifiers have been suggested [10, 14, 16].

Matching vague criteria against imprecise data

We now move on to the general case of filtering
imprecise/uncertain data by a vague criterion which will be
illustrated by the extension of relational selection. The result
is a pair of fuzzy sets tH and tN where each tuple of a relation
R is linked to the degree of possibility (resp. necessity or
certainty) that it satisfies the criterion (denoted F hereafter).
It should be noted that a relation is not obtained and that the
usual principle of compositionality is not preserved. Because
of complementation, we have :

tI-l(R; F) = 1 - tN(R; F) and iN(R; F) = 1- tH(R; F)

We can approach compound predicates by conjunction and
disjunction using formulae :

tl=I(R; F I or F2) = tH(R; FI) u tH(R; F2);
iN(R; F I or F2) = iN(R; Fi) u N(R; F2);
tH(R; Fl and F2) = tH(R; Fl) r~ tH(R; F2);
tN(R; F l and F2) = tN(R; Fl) n tNR(R, F2).

In the following, we limit ourselves to the case of an atomic
predicate in order to explain the basis of the calculation of
degrees of possibility and necessity. Considering a relation
R(A 1 An), we take A4(t) to be the possibility distribution
representing the value of attribute A i in the tuple t and the
fuzzy set F representing a criterion applicable to A i. We
have :

l'ttH(R; F) (t) = H(F I Ai(t)) = supu ~ dom(Ai) rain (btF~u)' ~Ai(U))

lXtN(R~ F) (t) = N(F I Ai(t)) = I - H(F I Ai(t))
= min(infu ~ don~Ai) max(far, u), 1 - nAi(U)),l - ~e)).

The degree of possibility is 1 if the cores of the fuzzy sets
representing the datum and the cri terion, have an

intersection which is not empty. Similarly, the degree of
possibility is strictly positive ff their supports overlap. One
can observe four situations : i) the general case (imprecise
data - vagtie criterion), ii) the data is imprecise and the
predicates are boolean, i i i) the data is precise and the
predicates are vague; in the particular case where the
condition has the form X = a, the necessity degree is null
except if the data is represented by To(a) = l , ~(x~a) = 0,
iv) both data and criterion are precise (the regular case). In
the last two cases, we notice that the degrees of possibility
and necessity become equal since there is no uncertainty on
the result of the query.

The particular ease mentioned above where the condition is :
"attribute = value" can be extended to the two more general
cases : i) "attribute 0 value" or ii) "attribute 1 e attribute 2"
where e is any comparison operator. The former is typically a
predicate involved in a relational selection and the latter a
joining predicate. These cases will not he detailed here for
the sake of conciseness.

We have presented the basis for the evaluation of a vague
condition applying to imprecise data and it is then possible
to define an extended relational algebra (see [9]), where the
usual operations (selection, projection, join, Cartesian
product) are generalized.

FI.F.XIBLE QUERYING OF REGULAR DATABASES

In this section, we focus on an approach of great interest,
since it concerns existing bases (without modification) and
provides discriminated answers. The introduction of
preferences over the elements which satisfy a constraint has
been the object of a limited number of proposals which can
be divided into two categories : i) those using fuzzy
predicates and ii) those based on an ad'hoc extension of the
querying capabilities offered by certain relational systems.
The principles of these two approaches are successively
described hereafter. Moreover, we show how the allowed
queries of type ii) can be expressed in a fuzzy set framework.

Flexible querying with fuzzy sets

In the context of regular databases, the p r inc ip l e of
composition is maintained, i.e. if we combine a set of
relations, we still get a relation. From an algebraic point of
view, we can consider that the relational operations
(selection, projection and joins) and set operations are
extended to fuzzy relations. One of the first to advocate the
use of fuzzy sets for querying conventional databases was
V. Tahani [12]. His idea consisted of allowing the expression
of imprecise conditions inside queries seen as fuzzy sets. V.
Tahani suggested the extension of the SEQUEL base block
in order to support the imprecise comparison between an
attribute value and a constant or between two attribute
values (joins). These elementary predicates 'can be combined
using the connectors AND and OR working as intersection
and union of fuzzy sets (rain/max). In so far that each tuple
receives a degree of membership with respect to the query,
discriminated answers are produced "naturally'. Beyond the
straightforward extension of usual predicates and connectors,
one of the interests of the fuzzy sets is to allow for
sophisticated operations on predicates, especially using
fuzzy connectors. We describe in the last part of the paper
how various fuzzy querying features have been integrated in
the unified framework of an extended SQL language in order
to provide users with a wide range of imprecise queries [1].

About the expression of the other approaches in the fuzzy
sets framework

In the next subsections, we will show how the queries allowed
in ad'hoc extensions of relational systems can be expressed in
terms of fuzzy sets. Basically, any such query involves two

171

aspects : a selection part (S) and an ordering part (O) and can
be seen as : "select the tuples satisfying S, then rank them
according to O ' . In the framework of fuzzy sets, we will have
one component for S (S') valued over {0,1 } (generally S
itself) and one for O (O') expressing the ordering behaviour
of the system as a membership degree over [0,1]. I t is of
course of importance that the.effect of O' is exactly the same
as that of the initial mechanism expressed by O. One major
problem is then to find out an appropriate fuzzy set
expression in each case. In the following subsections, we will
point out this expression for various kinds of systems.

Complementary ordering criterion

In the PREFERENCES system [7], a query is composed of a
principal condition C and a complementary part P that is
relative to the description of preferences; both of which are
based on boolean expressions. The meaning of this type of
query is : "find the tuples which satisfy C and rank them
according to their satisfaction of P." This system allows for
the combination of preference clauses (P) by means of two
constructors : nesting and juxtaposi t ion. Following on from
R c, subset of the tuples of a relation R satisfying condition
C, the nesting (resp. juxtaposition) of preference clauses e l
, Pa leads to the sets : S t the subset of Re 'sat isfying Pl and
not P2 (resp. one single clause); S 2 the subset of R C satisfying
PÂ and P2 but not P3 (resp. exactly two clauses); ... ; Sn the
subset of R c satisfying Pl and ... and Pn- The user receives as
an initial response the set Si, not empty and with the highest
index, and he can go back to the previous sets. One of the
significant advantages of this system is the avoidance of
successive formulations in reaching a desired set of responses.
However, it must be noticed that the discrimination capacity
remains lim.ited, since it directly depends on the number of
preference predicates given by the user. It is possible to show
that the ordering produced by the initial condition nest(P l,
. . . . Pn) (resp. juxt(P l Pn)) can be equivalently expressed
in the fuzzy framework as : AGi(P 1 Pn) (resp. AG2(P 1
Pa)) defined as : gAGi(P! pu)(x) ='Y~i ~'Pi (x) / t3 , J, tAG2(Pi
pa)(x) = ~ ~Pi(X) / n, where ~t'pi(x) = mini ~ i p.pj(X) and ~tpi(x)
= 1 if Pi(x) is true, 0 otherwise.

Another attempt based on a complemerRary criterion has
been suggested by Chang with the system called DEDUCE2
[4]. However, we have shown that the composit ion of
predicates, which is based on ranks issued from sorts, was not
reaUy meaningful in this approach [2].

Distance to an ideal object

A second idea rel ies upon questions which include
conditions resting on the notion of similarity (.~) rather than
strict equality. Here we use conditions of the type "X = v"
where "v" represents an ideal value, but where other values
are nevertheless acceptable (for instance salary = $2000
means that $2000 is excellent but values around (the interval
[1950-2050] for instance) can also be accepted). The
evaluation of such a condition on an element t is aimed at
defining a distance d(t) and obeys the following principle :
if X(t) is somewhat similar to the value "v' , then the value for
d(t) is the fixed distance between X(t) and v, otherwise d(t) is
infinite. In the presence of connectors such as conjunction
and disjunction, an overall distance must then be calculated,
thus allowing the elements concerned to be ordered. Several
systems based on an operator of explicit (ARES [~], VAGUE
[8]) or implici t (the "nearest neighbor" technique [5])
s imilar i ty, have been suggested and we point out the
corresponding expression of their ordering semantics in the
context of fuzzy sets.

In ARES, elementary distances are attached to a given
domain and are given by means of a relation expressing the
distance between any two values. In a given query (which

involves both boolean (Bi) and predica tes involving
similari ty (Si) that can only be ANDed), the user chooses a
threshold (ti) for each predicate involv/ng a similarity. The
global distance is defined as the sum of the elementary
distances tied to the similarity predicates involved in the
query. I t is poss ible to show that the initial s imilar i ty
condi t ion "S 1 a n d ,.. a n d S a" and the expression in the
framework o f fuzzy sets AG3(S I Sn) lead to the same
rgnki .g if AG 3 is def'med as : IJ.AG3(S! Se) (x) = (,V-. i ~St(X) *
ti) / (g i t/) with p.$1(x) = (t i - d is ts t (x)) / t i if dist$1 < t/, 0
otherwise. Here, the ordering mechanism is obtained through
a weighted mean.

I . VAGUE, we have three main differences with respect to
ARES : the disjunction of predicates is allowed, similarity
predicates can be explicitly weighted and the global distance
mechanism for a conjunction is based on the euclidian
distance. In the framework of fuzzy sets, the disjonction in
V A G U E can be expressed by a min imum and the
conjunction by a quadratic mean.

In the approach known as nearest neighbors,, a query involves
a set of values which characterize an ideal tuple M. Each
concerned tuple is then compared with M by means of a
global function which gathers the results of local distance
functions applied to some atU, ibutes. One of the most used
global functions is the Lp-norm defined as : (gi disti(x)P) lip
with dish(x) = Ix i - Mil / (max i - mini) where x i and M i stand
for the values of the ith attribute of the current tuple and the
model which can vary between min i and max i. As opposed to
ARES and VAGUE, no element is discarded. In this context,
the counterpart of the query : "PI and ... and Pn" is written :
AG4(P1 Pn) where AG4 is defined by its characteristic
function : ~I.AG4(p! Pu)(x) = ~i ~Pi (X) /n with gPi(X)= 1 -
(distpi(x))P.

Cr t t e r ta with preferences and weighting

In the f ramework of information retrieval, the flexible
retrieval system called MULTOS [11] has been proposed. Its
principle consists in replacing a uraditional criterion with a
set of criteria to which an explicit preference (value between
0 and l , or linguistic term) is attached. Thus, if we are
interested in the year of publication, we might write : {year
[1978, 1982] p r e f e r r e d , year E [1983. 1988] a c c e p t e d } .
Furthermore, one can weight each set of criteria (e.g. the
subject matter is more important (high) than the price of the
document (m e d i u m) which in turn is more important than
the year of publication (low)). The connectors, conjunction
and disjunction, allow the combination of several criteria.
We have shown that the expression of the ordering behaviour
of MULTOS in the framework of fuzzy sets is based on a
weighted averaging operation.

This brief overview of non fuzzy set based approaches aiming
at discriminated answers shows that in any case : i) queries are
expressible in the context of fuzzy sets, ii) the ordering
mechanism is basically a mean, which is not surprising since
means are intended to express compromises between several
criteria, iii) the allowed queries have a very special typology
and iv) each system proposes only one (or two) aggregation
mechanism(s) and it is then clear that fuzzy sets provide a
much more general framework where the user can choose the
appropriate aggregation mechanism.

OVERVmW OF SQLf

In t roduct ion : a look at SQL

In this section, we present an overview of an extension of a
database query language, namely SQL. SQL has 0ae property
that a same need can be expressed through several queries,

172

which gives, rise to an equivalence phenomenon. Our two
main objectives were to introduce fuzzy predicates into the
language wherever possible and so that the equivalences
remain valid. First, we recall the principal features of SQL
and then we present the extensions.

An SQL query is made of one or several base blocks and is
founded on the tuple relational ealcuius. The fundamental
construct is the base block that specifies the structure of the
resulting relation by m e a n F of the select clause, the
concerned relation(s) of the database in the from clause and
the condition to satisfy in the where clause. When several
relations are involved, one can consider that they are mixed
into a single relation (using a Cartesian product) to which
the condition applies. This construct has thus at least the
power of selection, projection and join operations of the
relational algebra.

Rather than putting all relations into a single block, a user
can often express his query by means of several nested blocks
(also called subquedes). The connection between two blocks
can be achieved by several operators : i) set membership
([NOT] IN), ii) set existence ([NO'll EXISTS), iii) existential
or universal quant if icat ion (ANY, ALL), iv) scalar
comparison if the inner block results in a single value using
aggregates (MIN, SUM). if we consider a base consisting of
the relations EMPLOYEE (hum, name, salary, job, age, city,
depart), DEPART (nd, manager, budget, location), the query
"find the number and name of the employees who work in a
department located in their own city" can be expressed :

a) single block : select hum, name f r o m EMPLOYEE,
DEPART where depart = nd and city = location
b) nesting (i) : select num, name from EMPLOYEE E where
depart IN (select nd from DEPART where location = E.city)
c) nesting (ii) : select num., name from EMPLOYEE E where
EXISTS (select * f rom DEPART where nd = E.depart and
location = E.city).

It must be noticed that queries b) and c) are such that the
condition appearing in-the subquery refers to the current
(and is evaluated for each) topic of the outer block.

The last important feature of SQL concerns the operations
allowed on sets of tuples. As a matter of fact, it is,possible to
partition using a group by clause a relation into subsets,
mainly in order to select some subsets using a having clause
made of set-oriented predicates usuaUy calling on aggregate
functions (MIN, AVG : average). The query : "find the
departments in which the mean salary of clerks is over 1400"
would be stated:

select depart from EMPLOYEE where job = "clerk"
group hy depart having AVG(salary) > 1400.

In the next subsections, we wiU review the various constructs
and present ways in which they can be extended to support
fuzzy querying capabilities.

Single block queries In SQLf

The objective is to introduce some fuzziness in the base
block of ,SQL. This can be achieved at two principal levels :
in the predicates and in the way they are combined
(connectors). First of a l l we assume that a fuzzy condition fc
deLivers a fuzzy relation fr (where each tuple has a degree
expressing its membership to the relation) and that the result
of a query must be a usual relation~ more precisely the "best"
elements of ft. So, it becomes necessary to provide the user
with an output regulation mechanism that can be either the
number n of desired responses or t ¢ [0,1] for the t-cut of ft.
In so doing, the new formulation for a simple base block is :
select <n/t> <attr> from <relations> where <fuzzy cond>.
Sometimes, in the forthcoming examples, we omit this
element of a query without loss of generality. Basically, a

"fuzzy condition applying to individual tuples is composed
of Boolean and fuzzy predicates and connectors (and, or,
means, ere). Just like in an ordinary query a predicate can
express a join between two relations, it is possible to connect
two relations by means of a fuzzy predicate, like in :

select ... from IL S where ... mote or less equal (R.A, S.B).

It is possible that several tuples selected by the condition
have the same value on the specified attributes but have
different grades of membership. We shall assume that only the
one with the highest grade is retained. The semantics of a
query is mainly based on the following calculus. Let R be a
relation (possibly fuzzy) defined on a set of domains denoted
X = {X1 Xn}. The result, denoted Res, of the restriction of
R by the predicate P is def'med as :

VxEX, I.tRe~(X) = ~ Q.tR(X), I.l.p(x)).

Using subquerles

The objective is to define the semantics of operators like IN,
etc, when fuzzy relations are involved and to extend them if
necessary. Concerning the connector IN, we want that, if fcl
(resp. fc2) stands for a fuzzy, condition applying to R (resp.
S), it remains valid to use equally :
select R.* from R, S where fcl and fc2 and R.A = S.B or
select * from R where fcl and A IN (select B from S where
fc2).

It is possible to show that the equivalence is obtained if the
IN predicate is defined as :

g in (a, SQ) = supb ¢ g~pport(SQ) (min0t=(a,b), ktsQ(b)))

where SQ denotes the result of the subquery, In fact, it is not
compulsory to retrieve all the attributes of R (specified by *).
In the following examples and formulae, we will assume this
fact only for the convenience of notation. In genera1, the
query select A f rom R where fc results in a set of A values
and we have to define the grade of membership of any a in
dora(A) that is :

g(a) = sup x • support(R) (min(pR(x), ~c(x)) I x.A = a).

According to the example given in introduction, we have to
consider (when it is meaningful) the case of a fuzzy query
involving the EXISTS predicate equivalent to a query
expressed using a single block. Two kinds of interpretations
are a priori possible for the predicate EXISTS (select ...) : a
quantitative one based on the cardinality of the col~idered.
fuzzy, set (resulting from the select) and a quaLitative one
based on the determination of the extent to which at least
one element belongs to this set. This second interpretation
has been retained since it preserves the equivalence between :
select R.* from R, S where fcl and fc2 and R.A = S.B and
select * f rom R where fcl and EXISTS (select * f rom S
where fc2 and B = R.A)

as long as we have for any subquery SQ :

gEXISTS (SQ) = sup x • suppon(SQ) (P-sQ(x)) -

The last nesting mechanism concerns the quantifiers (ALL,
ANY). Here again, the objectives were to allow the use of
these quantifiers together with fuzzy comparisons and to
preserve the equivalences. The semantics of these extended
operators can be found in [1].

Par t i t ioning and quantification

We saw in SQL that it is possible to apply conditions to sets
of tuples issued from a given relation. In SQLf, our intention
is to extend this capability in allowing fuzzy conditions for
sets of tuples in a having clause. The fast extension is derived
directly from SQL using aggregates whereas the second relies
on fuzzy quantifiers. These two mechanisms can obviously be
mixed in a same fuzzy query.

173

: : . ~ • , 4 ~ ¸

In SQL, the selection o f a partition is obtained by using a
predicate involving one or several aggregate functions. This
kind o f feature has been slightly adapted in the context of
SQLf according to two directions. The aggregates are still
used but their resuR can be a parameter of a fuzzy predicate.
Moreover, the various condit ions can be linked by fuzzy
connectors. The following example searching for the 10 best
departments with respect to the condition "the mean salary of
clerks is around 1600" illustrates ~ possibility :

select 10 depart f rom EMPLOYEE where job = "clerk"
g roup by depart hav ing AVG(saiary) -- "around 1600"

A second way of qualifying partitions relies on the use of
fuzzy quantifiers and has no counterpart in SQL. These
quantifiers allow the expression of fuzzy constraints on the
sum or the proportion that characterizes the absolut~ or
relative cardinality of a fuzzy set [14, 16]. l e t us recall that
absolute (several, about 5 , . .) and relative (none, a few of,
most of,...) quantifiers can be used. In the context of SQLf,
such quantifiers are used to determine the extent to which the
different partitions of a relation satisfy a proposition. The
general syntax is : se lec t ... f r o m ... w h e r e ... g roup by ...
h a v i n g ... <quantified proposition> ... Two kinds of basic
predicates are possible : i) Qf a r e fc, where Qf is an absolute
quantifier applying to the number of tuples of a partition
that satisfy the fuzzy condition fc, ii) Qf [fcl] a re fc2, where
Qf is a relative quantifier that applies to the proportion of
mples of a given partition that satisfy fc2 with respect to
those that satisfy fc l (all ff fcl is omitted). If we want to
retrieve the 10 best departments with respect to the condition
"most of the young employees are well-paid' , we can write :
select 10 depart f rom EMPLOYEE group by depart hav ing
most-of (age = "young') a re "well-paid' .

Different interpretations are possible, notably : one based on
the crisp cardinality of a fuzzy set [16], and one based on the
use of a specific mean (OWA) [13]. It must be noted that
fuzzy quantified proposi t ions can be used to express a
generalized quotient operator . This point is not detailed
here and any interested reader can refer to [15].

CONCLUSION

This paper is concerned with fuzzy sets and their
cont r ibu t ion to da tabase management systems which
concerns two levels : the representation and storage of
imprecise or uncertain data and its handling through the
introduction of vague criteria inside queries.

We have shown how the values of an imprecise information
could be represented by an appropriate distr ibution of
possibility. W e have also described the principle of selecting
this data by means of conditions which may themselves be
imprecise or vague. In the general case, each element receives
two satisfaction degrees : one expresses the possibility, the
other the certainty that the datum satisfies the criterion.

We devoted the last two sections to a particular case : the
querying of classic (relational) databases with the aid of
vague conditions. The central interest in this type of query is
the introduction of f lexibil i ty into the criterion and the
ordering of answers according to their degree of satisfaction.
In order to meet this need, some solutions based on an ad'hoc
extension of boolean systems have been suggested and are
briefly described in this paper. It is also possible to base the
interpretation of such requests on fuzzy sets and we have
shown that this process encompasses the previous ones and
allows a wide semantic variety to be achieved.

Finally, we have presented an extension to the relational
language SQL, in which fuzzy predicates may be used. One
of the aims was to introduce imprecise capabilities wherever
possible and moreover to adopt an extension so that most of
the usual equivalences in SQL remain valid in SQLf. The

extended language has the same structure as SQL ac t it is
possible to apply imprecise conditions to individual tupler
as well as to sets of tuples issued from partitioning. In this
lat ter case, condi t ions involving fuzzy quantif iers are
allowed and they have no counterpart in SQL.

An important topic related to the support o f additional
capabilities concerns the performances. It seems that a reason
why some methods do not rely on fuzzy sets is some ease in
the implementation that is very close to usual systems and so
no additiona. ~ complexity appears, In the context of a system
intended for supporting the querying capabilities ,~f SQLi,

• specific strategies are necessary. This aspect has not been
examined in the paper but we can mention that, for a subset
of imprecise queries, a method based on the deriva:;on of a
boolean query that is expected to select a small subset
comprising all the desired tuples has been proposed [3].

REFERENCES

[1] Bose P. & Pivert O., About equivalences in SQLf, a
relational language supporting imprecise querying, Proc.

Yokohama, November 1991, pp 309-320.
[2] Bosc P. & Pivert O., Some approaches for relational
da t abases f l ex ib le querying , Journal of I n t e l l i gen t
Information Systems. 1, 1992, pp 323-354.
[3] Bosc P. & Pivert O., On the evaluation of simple fuzzy
relational queries : principles and measures, ~_q,~,,YZ..Lo.gLq..~
~.¢_gfLgh.C..Agl (R. Lowen editor), Kluwer Ac. Pub., 1993.
[4] Chang C.L., Decision support in an imperfect world,
Research regort RJ3421. IBM San JosE, CA, USA, 1982.
[5] Friedman J.H., Baskett F., Shustek L.J., An algorithm for
finding nearest neighbors, IEEE Transactions on Cumputers,
1975, pp 1001-1006.
[6] Ichikawa T. & Hixakawa M., ARES : a relational database
with the capabil i ty of performing flexible interpretation of
queries, IEEE Transactions on Software En~ineerine. 12(5),
1986, pp 624-634.
[7] Lacroix M. & Lavency P., Preferences : putting more
knowledge into queries, Proc. 13th Conference VLDB,
Brighton, GB, September 1987, pp 217-225.
[8] Morro A., VAGUE : a user interface to relat ional
databases that permits vague queries, ACM Transactions on
Office Information Systems. 6(3), 1988, pp 187-214.
[9] Prade H. & Testemale C., Generalizing database relational
a lgebra for the t reatment of incomplete or uncertain
information and vague queries, Information Sciences. 34,
1984, pp 115-143.
[10] Prade H., A two-layer fuzzy pattern matching procedure
for the eva lua t i on of condi t ions invo lv ing vague
quantifiers, J. o f Intelligent and Robotics Svstems. 3, 1990,
pp 93-101.
i l l] Rabit t i F., Retrieval of mult imedia documents by
imprecise query specification, Lecture Notes on Comouter

1990, 4t6.
[12] Tahani V., A conceptual framework for fuzzy query
"processing; a step toward very intelligent database systems,
Inf. Processin~ and Management.13, 1977, pp 289-303.
[13] Yager R.R., On ordered weighted averaging aggregation
operators in multicriteria decisionmaking, IEEE Trans. on
Svstems. Man and Cvbernetics.18, 1988, pp 183-190.
[14] Yager R.R., Connectives and quantifiers in fuzzy sets,
Fuzzy Sets and Svstems. 40, 1991, pp 39-76.
[15] Yager R.R., Fuzzy quotient operators for fuzzy relational
databases, Proc. IFES, Yokohama, November 1991, pp 289-
296.
[16] Zadeh L.A., A computational approach to fuzzy
quantifiers in natural language, Comouter and Mathematics
ly.i.fa..Al~.fi.c, alig.~o 9(I), 1983, pp 149-184.

