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Fuzzy Relational Classifier
Trained by Fuzzy Clustering

Magne Setnes,Student Member, IEEE, and Robert Babǔska

Abstract—A novel approach to nonlinear classification is pre-
sented. In the training phase of the classifier, the training data
is first clustered in an unsupervised way by fuzzyccc-means or a
similar algorithm. The class labels are not used in this step. Then,
a fuzzy relation between the clusters and the class identifiers is
computed. This approach allows the number of prototypes to be
independent of the number of actual classes. For the classification
of unseen patterns, the membership degrees of the feature vector
in the clusters are first computed by using the distance measure
of the clustering algorithm. Then, the output fuzzy set is obtained
by relational composition. This fuzzy set contains the membership
degrees of the pattern in the given classes. A crisp decision is
obtained by defuzzification, which gives either a single class or a
“reject” decision, when a unique class cannot be selected based on
the available information. The principle of the proposed method
is demonstrated on an artificial data set and the applicability
of the method is shown on the identification of live-stock from
recorded sound sequences. The obtained results are compared
with two other classifiers.

Index Terms—Classification, fuzzy clustering, fuzzy relations,
pattern recognition, recognition of sound sequences.

I. INTRODUCTION

T HE objective of pattern recognition is the identification
of structures in data similar to known structures. In the

statistical approach to numerical pattern recognition [1] the
known structures are based on mathematical models, and the
usefulness of such methods depends on the availability of
sufficiently accurate models of the objects generating the data.

Methods based on clustering and techniques recently devel-
oped in the field of computational intelligence such as neural
networks, fuzzy logic and genetic algorithms are becoming
increasingly popular in the pattern recognition community
[2]–[5]. Such methods offer an attractive alternative to sta-
tistical approaches as they do not requirea priori assumptions
of statistical models. They are able to learn the mapping of
functions and systems, and can perform classification from
labeled training data as well as explore structures and classes
in unlabeled data.

This article presents a new approach to pattern classification
which uses a fuzzy logic relation to establish the corre-
spondence between structures in the feature space and the
class identifiers (labels). This approach can effectively deal
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with classes that cannot be described by a single construct
in the feature space. This is especially useful for problems
where one does nota priori know which features should be
selected in order to yield well-separated classes. By using the
fuzzy logic relation, one avoids the problem of labeling the
prototypes which can be particularly difficult when classes are
characterized by partially shared structures or when the train-
ing data contains classification errors (typical for subjective
classification). This partial sharing of structures among several
classes is naturally captured by the fuzzy relation. Moreover,
class labels may be fuzzy distributions as well. The fuzzy
relation-based classification scheme represents a transparent
alternative to conventional black-box techniques like artificial
neural networks for complex nonlinear classification problems.
The transparency of the relational classifier allows for the
analysis of both the trained classifier and of the classification
result for unseen patterns.

In the training of the classifier, two steps are distinguished:

1) exploratory data analysis (unsupervised fuzzy cluster-
ing);

2) construction of a logical relation between the structures
found in the previous step and the class labels.

In the exploratory step, the available data objects are clustered
in groups by the fuzzy-means (FCM) or a similar algorithm.
Clustering results in a fuzzy partition matrix, which specifies
for each training sample a-tuple of membership degrees in
the obtained clusters. In the second step, a fuzzy relation
is computed, using the memberships obtained in the first
step and the target membership of the pattern in the classes
(which may be crisp or fuzzy). This relation is built by means
of the -composition (a fuzzy implication) and conjunctive
aggregation. It specifies the logical relationship between the
cluster membership and the class membership.

To classify new patterns, the membership of each pattern in
the clusters (fuzzy prototypes) is computed from its distance to
the cluster centers, giving a fuzzy set of prototype membership.
Then, relational composition of this fuzzy set with the fuzzy
relation is applied to compute an output fuzzy set. This set
gives a fuzzy classification in terms of membership degrees
of the pattern in the given classes. When a crisp decision is
required, defuzzification has to be applied to this fuzzy set.
Typically, the maximum defuzzification method is used.

The rest of this paper is organized in three sections. First,
the training of the classifier is explained in Section II. The
classification of new patterns is described in Section III. A
simple example is presented throughout these two sections
in order to illustrate the individual steps. Section IV reports
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Fig. 1. Training of the relational classifier.

a practical application to the identification of livestock from
sound signals. The results obtained with the proposed scheme
are compared to the neuro-fuzzy classifier NEFCLASS [4],
and to a multireference minimum-distance classifier [6].

II. TRAINING OF THE CLASSIFIER

The training of the classifier proceeds in two main steps.
First, exploratory data analysis by means of unsupervised
fuzzy clustering is performed in the feature space. Then, a
fuzzy relation is built from the obtained fuzzy partition of the
feature space and the target vectors (labels) of the training data
objects. These two steps are illustrated in Fig. 1 and described
in detail below.

A. Exploratory Data Analysis

The aim of the exploratory data analysis is to discover the
substructures in the feature space of the available training
data. This is done in an unsupervised manner, i.e., class
labels are not used. Using this approach, the number of
prototype structures is independent of the number of classes.
This results in a partition of the feature space that more closely
represent the natural structures in the data. These substructures
can be discovered by means of unsupervised cluster analysis
[6]. In the proposed approach, fuzzy clustering is applied.
Most natural phenomena do not lend themselves to crisp
classification and the membership of the data samples into the
subclasses is often a matter of degree, rather than a yes-or-no
decision. Uncertainty and inaccuracy of the features (caused,
for instance, by data acquisition) is another reason for using
fuzzy rather than crisp clustering. Iterative optimization algo-
rithms such as the fuzzy-means scheme and its modifications
can be applied to obtain the subgroups. A number of cluster
validity measures developed for the-means algorithm can be
used in order to assess the goodness of the obtained partition
and to estimate the number of subgroups in the data.

Note that other clustering methods than the-means can be
used as well. Examples are the Gustafson–Kessel algorithm
[7] or the maximum likelihood clustering method [8], which
employ an adaptive distance measure to fit the actual shape and
orientation of the cluster to the data. Since the extension of
the presented methods to these algorithms is straightforward,
in this article, we restrict ourselves to the fuzzy-means
algorithm, which is given in the Appendix.

Let be the set of training data objects
to be classified. Each object is represented by a-dimensional

feature vector . A set of
feature vectors in the training data set is represented as a

feature matrix:

...
...

...
...

(1)

At the exploratory analysis step, the training data setis
partitioned into fuzzy subsets (clusters). The membership
of the data samples in the clusters is described by the fuzzy
partition matrix and each cluster is characterized by its
center . Prior to clustering, the user must define several
parameters: the number of clusters, the fuzziness exponent

, the termination tolerance and the norm-inducing matrix.
These choices are described in the Appendix.

An illustrative example is used throughout the paper to
highlight the individual steps. We begin with the exploratory
data analysis.

Example II.1: Fig. 2(a) shows four groups of synthetic
data. Each group consist of 50 samples normally distributed
around a group center with variance according to Table I.
The number of classes is 3, and the samples are labeled as
belonging to class 1, 2, or 3.

The FCM algorithm was applied to the data several times
with values of and between the estimated lower and upper
bounds and , respectively. The
resulting partitions were evaluated with the Xie–Beni index
(16). Fig. 2(b) shows some of the results. The Xie–Beni index
detects the correct number of clusters, and has a distinctive
minimum at .

B. Computing the Fuzzy Relation

The aim of this step is to compute a fuzzy relation, which
will encode the logical relationship between thecluster mem-
bershipand theclass membership. This relation is computed
from the information in the fuzzy partition matrix and in the
target vectors containing membership of the pattern in the
classes. The th target vectoris denoted by

(2)

where and IN is the number of classes. For
the training data, where the classification is exactly known,

. The target vector is then a fuzzy singleton
set, i.e., a vector of all zeros except for a one at the place
of the known class index. If the data consist of four classes
( ), and training data object belongs to class 3, the
target vector is represented as .

The cluster memberships are directly available in the fuzzy
partition matrix. After clustering, for each training sample,
the vector of cluster membership degrees is contained in
the th column of . We denote this vector by:

(3)
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(a) (b)

Fig. 2. Data belonging to three classes forming (a) four groups in the pattern space and (b) cluster validity measure.

TABLE I
SYNTHETIC DATA WITH THREE CLASSES IN FOUR GROUPS

The binary fuzzy relation, , is a mapping
. It can be represented as a matrix

...
...

...
...

(4)

The relation is obtained by aggregating the partial relations
, computed for the training samples. Each is obtained

by the -composition operator [9]. We choose this operator to
be the Łukasiewicz implication:

(5)

As this is a generalization of the classical implication [10],
the aggregation of the relations is computed by means of
a fuzzy conjunction operator

(6)

implemented element-wise by the minimum function:

(7)

Other types of residuated fuzzy implications could be chosen
as well, but empirical results have shown that the above

method performs well. Some authors also use-norms (such
as minimum or product) instead of implications [9]. This is, in
principle possible, but the interpretation of the trained relation
is not based on logic anymore (it is rather a kind of correlation
matrix). In the crisp case (when using nonfuzzy clustering),
the fuzzy implication reduces to classical implication, which
is another advantage.

Example II-2: Consider the data from Example II-1. A
fuzzy partition is obtained by FCM with and .
Fig. 2(a) shows the cluster centers , and . Using
the approach described above, a fuzzy relation is calculated
that relates the cluster membership,
to the class membership . The relation
is given by the following 4 3 matrix:

(8)

From the relation it is seen that there is strong evidence for,
e.g., correspondence between membership in clusters 1 and 2,
and class label 1.

III. CLASSIFICATION OF NEW PATTERNS

The classification of new patterns proceeds in three steps.
First, the cluster membershipis computed from the distance
to the cluster centers. Then, the fuzzy relational composition is
applied to compute the vector of class memberships. Finally,
defuzzification is applied to obtain a crisp decision. These steps
are illustrated in Fig. 3, and described in more detail below.

A. Calculation of Cluster Membership

For a new feature vector, the vector of cluster membership
degrees, , is computed by measuring the
similarity of the feature vector to each of the cluster
prototypes :

(9)
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Fig. 3. Classification of new data.

The similarity is computed using the distance offrom

(10)

where the distance measure is the same distance
measure as used by the FCM algorithm (see Appendix). Note
that the membership degrees in (10) are computed relative to
each other, and the sum of the membership degrees equals 1.

B. Relational Composition

Given the cluster membership, the class membership
vector can be computed by fuzzy relational composition

(11)

where is the sup- composition operator [11]. The-norm
corresponds to the implication used in the-composition. For
the Łukasiewicz implication, the Łukasiewicz-norm is used,
which is given by , where .
In our case, the involved domains are discrete and hence the
supremum is replaced by maximum, yielding

(12)

C. Defuzzification

The fuzzy set containing the class membership degrees is
eventually defuzzified, using the maximum method

(13)

where is the class index. If multiple satisfy (13), the
classification is seen as undecidable (reject decision). The
value of the maximum membership degree

(14)

gives an indication as to whether the decision cannot be made
because of a conflict or because of insufficient information
in the training data set. Low values of indicate that a
conflict occurred in the training data set [note that the inter-
section of the partial relations (5) is the minimum operator].
Overall high values of the fuzzy set of class memberships

, on the other hand, indicate that insufficient evidence for
the classification is available from the training data set (all
outcomes are possible to a high degree). Existence of multiple
maxima in the output fuzzy set leads to a reject decision,
indicating a possible logical conflict in the training data (due to
for instance noise in the features, misclassifications of training
samples or inappropriate feature selection) or alternatively
absence of information in a particular region of the feature
space (no or very few samples available in the training set for
the particular feature values).

Example III-1: Consider the relation from Example II-2
and the pattern to be classified. This
pattern is marked with an “” in Fig. 2(a) and belongs to
class 1. By (10), the cluster memberships are computed:

. The composition of
the cluster membershipswith the relation (8), given by (12),
yields the class membership vector

(15)

Defuzzification by (13) assigns the class index 1 to this data
object. Note that applying a multireference minimum distance
classifier, based on the cluster centers, would misclassify this
data object as belonging to class 2. This is because the object
has the highest membership in the fuzzy partitioning cluster

, which is a reference for class 2 in this case.

IV. A PPLICATION TO THE RECOGNITION

OF LIVESTOCK FROM SOUND SEQUENCES

Increasing level of automation in agriculture offers a wide
variety of interesting applications for pattern recognition and
classification. This section deals with the identification of
animals on the basis of sounds. The data used in this section
consists of a training set of 68 sound sequences recorded from
four different cows with known labels, and a data set of 31
sequences with “unknown” labels. The training data contains
26, 13, 6, and 23 sequences from cows 1–4, respectively. The
length of the sound sequences varies between 12515–42 054
samples, taken at the sampling rate of 11 025 Hz.

A. Feature Selection

Fig. 4(a) shows as example of a cow sound sequence.
Two main approaches in the classification of sounds can be
considered theenvelopeand thefrequency spectrum[12]. The
latter is more informative and more likely to give good results
for the recognition of individual cows. The envelope approach
is often used for the classification of differenttypesof sounds,
e.g., different musical instruments.

For each sound sequence, the power spectrum densities
(PSD) are calculated for frequencies1500 Hz, using the
MATLAB PSD routine with 128 points and a nonoverlapping
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(a) (b)

Fig. 4. (a) The data set consists of recorded sound sequences. (b) Logarithms of the PSD estimates (�1500 Hz) are used as feature vectors.

TABLE II
STATISTICAL EVALUATION

Fig. 5. The Xie–Beni validity index for different values ofc andm.

Hanning window [13]. Each sound sequence is now repre-
sented by an vector of PSD estimates. As features
we take the logarithm of the PSD estimates, illustrated in
Fig. 4(b). From the training data we get the pattern matrix

, where
is the feature vector of sample. The data is clustered by the
FCM algorithm for a range of values forand ( ,

). The Xie–Beni index is applied to the resulting
partitions, and from Fig. 5 we see that a first distinctive local
minimum is located at . From this analysis, the partition
obtained with and is selected.

B. Statistical Evaluation

For the purpose of evaluating the approach, the training
data set was split at random into a new training data set
consisting of about half of the training samples available for
each cow (total of 35 samples) and a test set containing the

other half of the training samples (total of 33 samples). This
was done 50 times, and each time a fuzzy relational classi-
fier (FRC) and a multireference minimum distance classifier
(MMDC) was trained and evaluated. The MMDC uses the
obtained cluster centers as references with labels calculated
from the training data using weighted votes [6]. Results from
maximum likelihood classification, with costs 2 and 1 for
error and reject, respectively, are presented in Table II. The
results achieved with FRC are overall better than the results
of MMDC.

The costs reported in Table II, are calculated as Cost
number of errors number of reject, where

is the cost assigned to a misclassification, andis the cost of
a reject. In this application, the costs are selected as
and . The costs are calculated for both training and
evaluation data. It can be concluded that the best FRC is
far better than the best MMDC. It is also interesting to note
that the FRC always learns the given training set (zero error)
without overtraining. This is due to the fuzzy relation which
enables the FRC to learn the correct classifications of samples
that are geometrically closer to another group (cluster) than
the majority of the samples from their own class.

C. Classification

For the classification of the 31 unknown samples, three
classifiers where trained with all the available training data:
the NEFCLASS neuro-fuzzy classifier [4], the MMDC and
the FRC. NEFCLASS was trained with seven rules and three
fuzzy sets in the domain of each feature. For the two other
classifiers, the settings were as above. The results are given
in Table III. Note that the FRC outperforms both the MMDC
and NEFCLASS.
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TABLE III
CLASSIFICATION RESULTS

V. CONCLUSION

A new approach to nonlinear pattern classification has been
presented. The classifier is constructed in two steps. In the first
step, exploration of structures in the feature space is performed
by a fuzzy clustering algorithm. This step is unsupervised
which means that the class labels are not used. The resulting
partition may consist of more clusters than the actual number
of classes in the data. This allows for the existence of multiple
and partially shared structures in the feature space. In the
second step, a fuzzy relation is built that encodes the logical
relationship between the cluster membership and the class
membership (class labels). This is done by-composition
using the Łukasiewicz fuzzy implication.

The trained classifier is determined by the cluster centers in
the feature space, the fuzzy relation, and a distance measure.
For unseen data, a fuzzy set of cluster memberships is cal-
culated by using the distance to the cluster centers. A fuzzy
set of class membership is obtained by relational composition
with the trained relation. The membership values give an
indication about the quality of the decision. In general, if
all membership degrees are close to zero, conflicts occurred
in the training data. If all membership degrees are close to
one, on the other hand, this indicate insufficient evidence for
classification. The same reasoning holds for the relation itself,
and the result of training can be evaluated without the use
of data by inspecting the obtained fuzzy relation. Applying
a fuzzy relation for classification will in general decrease
the number of misclassifications. However, if no reasonable
clusters can be found in the data, the number of unclassified
patterns (reject decisions) will increase.

The proposed approach has been applied to the identification
of livestock from recorded sound sequences. For the used
data set, the fuzzy relational classifier is found to outperform
two other methods tested on the same problem: the NEF-
CLASS neuro-fuzzy classifier and a multireference minimum
distance classifier. As opposed to (fuzzy) neural network based
approached, the fuzzy relational classifier is not sensitive
to the order in which the training examples are presented.
Further, the problem of selecting an appropriate number of
training epochs and the risk of overtraining are eliminated.
Also, the obtained classifier is more transparent to the user.
The main difference with regard to the minimum distance
classification is that the classification is not necessarily that
of the nearest reference. Similarly to the minimum distance
classification, the relational classifier is sensitive to the result
of clustering.

APPENDIX

THE FUZZY -MEANS ALGORITHM

In this appendix, the fuzzy-means algorithm is presented
and the choice of its parameters is discussed.

Given the data set , choose the number

of clusters , the weighting

exponent , the termination tolerance

and the norm-inducing matrix .

Initialize the partition matrix randomly.

Repeat for

Step 1: Compute the cluster prototypes (means):

Step 2: Compute the distances:

Step 3: Update the partition matrix:

if for ,

otherwise

if

and

with

until .

The following parameters must be specified.

• The number of clustersis the most important parameter.
Optimally, would equal the (unknown) number of
subgroups present in the data, in which case the chance
is high that the underlying structure of the data will be
detected. The choice of can be verified by assessing
the validity of the obtained partition, by using validity
measures [2], [3], [8], and [14]. In this article, we use the
Xie–Beni index [15] which has proven suitable for other
classification problems [14]

(16)
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The best partition is the partition that minimizes the value
of . Cluster validity analysis is performed by
running the clustering algorithm for different values of
and , and then several times for each of these settings
with a different initialization . The validity measure
is calculated for each run, and the number of clusters
which minimizes the measure is chosen as the “correct”
number of clusters in the data.

• The weighting exponent is of a secondary importance,
even though it has a significant influence on the shape
of the clusters. As approaches one from above, the
partition becomes hard ( ) and are ordinary
means of the clusters. As , the partition becomes
maximally “fuzzy” ( ) and the cluster means are
all equal to the grand mean of the data. Typically,
is used as a default value, but cluster validity analysis can
be applied to search for an alternative value of.

• The termination criterion is usually set to , but
is often sufficient. Without any prior knowledge

about the data distribution and dependencies among the
features, the norm-inducing matrix is chosen as .
Alternatively, adaptive distance clustering can be applied
[7].

• The choice of the initial partition matrix may
influence the result of clustering, as the-means algorithm
is only guaranteed to converge to a local optimum. Thus,
for a given choice of the remaining parameters, clustering
is typically repeated for different and a validity
measure is applied to choose the best partition.

ACKNOWLEDGMENT

The sound data used in Section IV was supplied by the Eu-
ropean Network in Uncertainty Techniques Developments for
Use in Information Technology (ERUDIT) as part of the1996
International Competition for Signal Analysis and Processing
by Intelligent Techniques. The authors would like to thank the
anonymous reviewers for their constructive comments.

REFERENCES

[1] K. Fukunaga, Introduction to Statistical Pattern Recognition.New
York: Academic, 1972.

[2] E. Backer,Computer-Assisted Reasoning in Cluster Analysis.Engle-
wood Cliffs, NJ: Prentice-Hall, 1995.

[3] J. C. Bezdek,Pattern Recognition With Fuzzy Objective Functions.
New York: Plenum, 1981.

[4] D. Nauck and R. Kruse, “Nefclass—A neuro-fuzzy approach for classifi-
cation of data,” inProc. 1995 ACM Symp. Applied Computing,Nashville,
TN, 1995, pp. 461–465.

[5] E. A. Wan, “Neural network classification: A Bayesian interpretation,”
IEEE Trans. Neural Networks,vol. 1, pp. 303–304, 1990.
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