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ABSTRACT A high percentage of information that propagates through a social network is sourced from
different exogenous sources. E.g., individuals may form their opinions about products based on their own
experience or reading a product review, and then share that with their social network. This sharing then
diffuses through the network, evolving as a combination of both network and external effects. Besides,
different individuals (nodes in a social network) have different degrees of exposition to their external
sources, as well. Modeling this influence of external sources is important in order to understand the diffusion
process and predict future content sharing patterns. Recognizing this fusion of intrinsic (network) effect and
exogenous (external) effect, this paper develops a novel fuzzy relative willingness (FRW) model. Leveraging
a fuzzy set approach provides a way to handle the uncertainties arising within the human concept of
willingness. We demonstrate that FRW is able to accurately identify both top-k most content producers
and diffusion effect based on external influence. We also demonstrate that the fuzzy set theory provides
a compelling framework to model uncertainties pertaining to the influence as well as the susceptibility of
individuals for both network and exogenous effects.

INDEX TERMS social networks, information diffusion, exogenous factors

I. INTRODUCTION

Quantifying how much a person is willing to accept infor-
mation from external sources is an interesting problem in the
context of information diffusion. Information that propagates
in the network can be twofold because of its source. The first
kind of information is acquired from one of the user’s neigh-
bors in the social network (internal influence), and the other
one is brought into the network from outside (exogenous
influence). The external source can be anything, starting from
legacy books through a more dynamic online news portal, in-
person discussion to television, from family relationships to
virtual networks like blogs. Each individual has a different
degree of exposition to these external sources. In this context,
one question arises: ‘is understanding persons’ willingness to
adopt from external a valuable factor for predicting the future

content sharing pattern in the whole network?’

Information diffusion has been forefront of the research for
quite sometime [1, 2, 3, 4] with the objective of finding the
influential nodes [3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
17]. Most of the previous work, with very few exceptions [4,
18], only considered peer-influence in information diffusion.
However, recently Li et al. [19] show that about 50% to 70%
of the information cascade is due to the exogenous factors.
Therefore, it is essential to understand whether a person is
willing to share information from exogenous sources or not
in order to explain the information diffusion process better.

The present study is an attempt in the direction of quan-
tifying willingness to adopt from exogenous sources. We
define a new problem of identifying nodes’ willingness in the
context of information propagation. The concept of ‘willing’
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FIGURE 1. The example of how Fuzzy Relative Willingness (FRW) quantifies

susceptibility to external factors and the associated initiation of information

diffusion in the social network.

is rather perceived than certain. One can be less willing or
more willing, hence, binary classification of whether a person
is willing or not would not be suitable in such a scenario. The
uncertainties involved within the concept of willingness itself
needs to be taken care off. Fuzzy sets being a well known
mathematical tool for managing uncertainties involved with
the imprecise concepts is a natural choice for characterizing
the willingness of a node. In this paper, we use a fuzzy
set to express the uncertainties and propose a fuzzy relative
willingness (FRW) measure, which characterizes the relative
willingness of a node to adopt from exogenous factors. In
order to validate, extensive simulations have been performed
on synthetic data set to check the membership against the
prior configurations. We perform basic comparisons with few
baseline algorithms, which show that the proposed model
better explains the prior configurations than the baseline
algorithms. FRW is further used in a newly re-framed per-
spective on target set selection (seed selection), i.e., in the
top-k content producer problem. Comparative results on two
real-world networks show that selecting top-k nodes based
on proposed FRW measure outperforms other baseline al-
gorithms in predicting the number of externally influenced
future content shares. In summary, the contribution of the
paper is as follows:

1) We define a new problem of quantifying willingness to
adopt and propagate from exogenous influence.

2) We use a simple methodology to express willingness
in the framework of a fuzzy set and propose a fuzzy
relative willingness (FRW) measure to quantify will-
ingness to adopt.

3) Finally, we use the FRW measure in a newly defined
ranking problem, which maximizes the number of ex-
ternally influenced future content shares in the net-
work. The problem is referred to as the top-k content
producer problem.

The rest of the paper is organized as follows. Related
literature is discussed in Section II. The proposed problem
of quantifying adoption willingness, its mathematical foun-
dations, an algorithm, and complexity analysis are described

in Section III. Section IV reports various experiments, cor-
responding results and discussions, whereas the final conclu-
sions can be found in Section V.

II. RELATED WORK

The work on diffusion of innovation has been started by soci-
ologist [1, 20] and currently being explored by different field
of studies including computer science for last few decades.
Since the pioneering work of [5, 21] on viral marketing,
different diffusion models [1, 2, 3, 4] and algorithms to find
out the influencing individuals [3, 5, 6, 7, 9, 8, 10, 11, 12,
13, 14, 15, 16, 17] have been developed. It also includes
interacting spreading processes in multilayer social networks
[22, 23]. During these time, the main objective was to use
the information diffusion for viral marketing, diagnosis and
controlling epidemic spread and identifying threats among
others. The overall aim was to maximize the influence, e.g.
[24, 25]. Most of these diffusion models considered only the
effect of peer-influence except a few exceptions. The paper
[26] model information propagation to identify whether a
propagation is peer-driven or authority-driven, whereas [19]
and [27] tried to estimate the magnitude of the external
influence in the network.

[18] modeled information diffusion process incorporat-
ing both the peer and exogenous effects; here the exoge-
nous effects were calculated from a time function called
event profile. However, another important task of identifying
nodes’ willingness to accept new information from exoge-
nous sources or willingness to share external information
in the network is not attempted. Quantifying such attributes
of a person will provide an opportunity to study the afore-
mentioned problems in a different dimension. For example,
in viral marketing, we could reduce our search to the more
willing individuals only; for blocking a threat we could push
the correction measures to the members who wish to accept
the changes rather whose influence is higher.

Quantifying willingness of a node to adopt from exoge-
nous influence, as per our best knowledge, is not attempted
earlier. The best know problem addressed in this direction is
the target set selection which attempt to select nodes based
on the influence in the network. Readers may refer [28] for a
comprehensive related work on target set selection problem.
Different popular algorithms used for this task includes cen-
trality like degree, diffusion degree [11, 29], degree discount
[9] based heuristics methods, Prefix excluding Maximum
Influence Arborescence (PMIA) [30] and Network Discovery
of Influencers using Flows (NDIF) [31] among others. Table
1 list the properties of our proposed FRW based top-k content
producer in comparison with the other comparative methods.

III. FUZZY RELATIVE WILLINGNESS

Considering exogenous factors, we are trying to quantify the
relative willingness of each node to adopt and propagate
a piece of information as compared to other nodes in the
network. For a given social network (e.g., friendship network,
following-follower network) and content stream (e.g., list of
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TABLE 1. Comparison of Our Method to others.

Feature Degree Diffusion Degree NDIF Degree Discount PMIA FRW
Data-Driven ✗ ✗ ✓ ✗ ✗ ✓

Diffusion Model Dependency ✗ ✓ ✗ to some extent ✓ ✗

Accuracy ✗ ✗ ✗ ✗ ✗ ✓

tweets, status, hashtag) shared within the network, we assume
that network actors are externally influenced to share content
if none of their neighbors used the same piece of information
anytime before them. In order to calculate the willingness,
we split the content stream into equal-length time spans. As
we were trying to gather a comparative view of externally
influenced nodes, we calculate the global statistics like mean
and standard deviation of externally influenced social shares
per user per time span. Fuzzy relative willingness score
is then calculated based on how much a node’s externally
influenced social share differs as compared to the global
average. A block diagram of the process is shown in Figure
2.

The Network

Social Stream

Split into equal 

time slots

Get 

Statistics} f W(u)
sort and 

select top k
Fuzzification

FRW

FIGURE 2. Block diagram showing the procedure for quantifying fuzzy relative

willingness (FRW) and top-k content producers in the network

The concept of ‘willing’ is related to human behavior.
Hence, it is imprecise in nature. Uncertainties within it have
been expressed in the concept of fuzzy set theory here. A
fuzzy transformation function is used to transform a node’s
social share count into a fuzzy membership value, which
depicts its position compared to the global average value and
characterizes the willingness. FRW is mathematically defined
in the following sections, along with the necessary introduc-
tion of notation used (Table 2) and complexity analysis.

A. MODEL

Let a social network be represented with a graph G(V,E)
where V is the set of nodes, and E is the set of edges. Also,
let the stream of all the content shared in the network be
P , which is a list of tuples p(h, u, t). Here, h is a content
(tweet) or content token (e.g. hash-tag or keyword) shared
by a node (user) u ∈ V at a time-stamp t. We call h as
a post in the rest of the paper. The problem is to quantify
the relative willingness to adopt FRW(u) of a node u for a
given network G and content stream P .
Definition 1 (Length of Time Slot ts): The stream P has been
split into equal time-length slots. Let the number of these
time slots be Nt ∈ N. Then, the length of a single time slot is
calculated as:

ts =
tmax − tmin

Nt

(1)

TABLE 2. Explanation of the notation used.

Used symbol Explanation
G graph
V set of nodes
E set of edges
P stream of content shares
h content of a share, e.g. tweet, hash-tag, keyword
u node (user), u ∈ V
t timestamp of a share
p(h, u, t) single content share
Nt number of time slots
Ej(u) set of externally influenced posts in jth time slot for

a node u
Γ(u) set of u’s neighbors in the graph
m mean number of externally influenced post per user

over all time slots
σ standard deviation of externally influenced post per

user over all time slots
a, b parameters of Fuzzy Relative Willingness
FRW(u) Fuzzy Relative Willingness to adopt of node u

where tmax and tmin is the time-stamp of the very last and
the very first post in P respectively.
Definition 2 (Externally Influenced Post): A user’s post is said
to be externally influenced if it is observed that none of his
neighbors shared the same post earlier within the same time
slot. Thus, a set Ej(u) of externally influenced posts p for a
node u ∈ V in time slot j is defined as:

Ej(u) ={p(h, u, tu) ∈ P|∄q(h, v, tv) ∈ P ∀v ∈ Γ(u),

(tv < tu); tmin + (j − 1)ts < tu, tv ≤ tmin + jts}
(2)

Here 0 < j ≤ Nt is the index of the time slot the
observed post p ∈ P belongs to. Γ(u) represents the set of
u’s neighbors. We restrict our search for a known neighbor
to a particular time slot. This provides a sense of memory
window to each node as well as it reduces the running time
of the algorithm. Further, we considered only the short-term
influence not long-term influence. The assumption of using a
particular time slot in the definition is inline with this.
Definition 3 (m): m is the mean number of externally influ-
enced post per user over all time slots. That is,

m =

∑Nt

j=1

∑

u∈V |Ej(u)|

|V | ∗Nt

(3)

Definition 4 (σ): σ is the standard deviation of externally
influenced post per user over all time slots. That is,

σ =

√

∑Nt

j=1

∑

u∈V ||Ej(u)| −m|2

|V | ∗Nt

(4)
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FIGURE 3. Examples of MS large fuzzy transformation function for distinct

parameters.

Definition 5 (Fuzzy Relative Willingness): Fuzzy Relative
Willingness FRW(u) of a node u is calculated with the
following MS Large fuzzy transformation function [32].

FRW(u) =

{

1− b×σ
x(u)−a×m+b×σ when x(u) > a×m

0 otherwise
(5)

Here, x(u) =
∑Nt

j=1
|Ej(u)|

Nt
is the mean number of exter-

nally influenced posts for a particular user u; a and b are
user-defined parameters of FRW. The choice of the MS Large
transformation function is motivated by the fact that it allows
us to assign the users who are more likely to adopt and
have many posts with larger x(u) (membership) values. In
addition, we wanted a slow growth as the post increases to a
certain extent. Figure 3 show the plots of MS Large function
for different values of m and σ as a reference. However,
one may choose another fuzzy function depending upon the
properties they wish to express.

1) Properties of the parameters a and b

The parameter a controls the minimum number of posts,
after which a person is labeled as a willing person via an
FRW membership value > 0. If a = 0, then all the nodes
having one or more externally influenced posts are assigned
with a positive FRW membership, whereas, for a = 1, only
the nodes with more than the mean number of externally
influenced posts are assigned with an FRW membership.

The parameter b is the scaling factor of the standard
deviation used in the FRW. The value b = 0 will assign each
node (qualified based on a) with a membership value of 1.

In other words, the selection of coefficients depends on the
definition of anomalies. It is highly likely that no anomaly
is present when the concentration is less than the mean,
implying that a is 1. The tolerance between ’anomaly’ and
’background’ is around the mean plus one standard deviation,
implying that b is also 1.

The estimation method as well as sensitivity study over
a and b parameters is out of scope in this work. We would

like to redirect the reader to works dealing with this problem
directly, e.g. [32]

B. ALGORITHM

In order to effectively calculate the FRW values, the main
computational challenge is to identify the posts which are
externally influenced. The natural way is to search for the
source in the network recursively. Although the search is
limited to the immediate neighbors, it is time-consuming.
We take a top-down approach to reduce execution time. The
algorithm to calculate FRW of all the nodes in the network
is shown in Algorithm 1. The inputs to the algorithm are the
social graph G(V,E), the list of social posts P , and the time
span ts used for identifying the externally influenced posts.
We sort P according to their time-stamps, and the algorithm
then linearly traverse each post. In each step, it updates two
sets of counters, one is a total number of posts of the user
(PTC), and another is a total number of known posts (KTC)
of the user (i.e., shared by some neighbor beforehand in the
time slot). It then updates the known keywords (KT ) of all
its neighbors as it is being shared with them from the current
post owner.

Algorithm 1 Willingness Calculation
1: Input: G(V,E),P, ts
2: P ← Sort(P) ⊲ sort by timestamp
3: k ← 1, start← tmin, end← start+ ts
4: while start < tmax do
5: events← {p(ht, u, t) ∈ P|start ≤ t < end}
6: Initialize: KT,KTC, PTC with empty dictionaries
7: ⊲ KT : known tags, KTC : KT count, PTC : total post count
8: for all p(h, t, u) ∈ events do

9: if h ∈ KT [u] then

10: KTC[u]← KTC[u] + 1
11: else

12: KT [u]← KT [u] ∪ {h}

13: PTC[u]← PTC[u] + 1
14: for all v ∈ Γ(u) do

15: KT [v]← KT [v] ∪ {h}

16: for all u ∈ V do

17: |Ek(u)| = PTC[u]−KTC[u]

18: k ← k + 1, start← end, end← start + ts

19: Calculate m and σ using Equations 3 and 4
20: for all u ∈ V do

21: Calculate FRW(u) using Equation 5

C. COMPLEXITY

The proposed algorithm runs for each post of the social
stream. In each step, two major activities are performed.
The former is to check whether the content is prior known
by the content owner. The latter is to update all of its
neighbors’ known content list. We manage this list using a
hash set so that a typical search operation can be considered
as O(1). Updating neighbors’ list of known content can be
very dependent on the number of neighbors one possesses.
The average degree can be considered as a good indicator for
typical cases. Finally, we calculate the FRW values for all the
nodes in the network. So the complexity of the algorithm is
O(|P|+ 2×|P|×|E|

|V | + |V |); where |V | is the number of nodes,
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TABLE 3. Synthetic Data set

Properties/Name Net200
Network Type Undirected
Nodes 148
Edges 604
Avg. Degree 8

|E| is the number of edges and |P| is the number of tokens
in the social stream.

IV. EXPERIMENTS AND RESULTS

We conducted various experiments analyze the validity of the
proposed FRW model using both synthetically generated and
real-world data sets. Accuracy is measured by the fraction
of externally influenced nodes identified (or true positive
rate): Ig = |Support(FRW)∩T |

|T | , where T returns the set
of nodes selected as externally influenced nodes prior to
the simulation, and Support(FRW) is the support set of
FRW. zIn addition, experiments are performed to see how
the accuracy is affected by the change of different diffusion
parameters. The simulations were carried out over a syntheti-
cally generated network Net200 (Table 3). LDBC DATAGEN
[33] is used to generate this data, which is based on Facebook
degree distribution.

We evaluate efficacy of FRW to predict the future states
on a real-world data set: a Twitter social graph and hash tag
data (Table 5). FRW is compared with several other baseline
algorithms, where we also considered the effect of cascade
size and the parameter of FRW. All software is written in
Pythin. SOIL [34] simulation package is utilized for the
simulations. All codes will be made publicly available after
review.

Let us first describe the simulation processes and its infor-
mation diffusion parameters.

A. THE DIFFUSION MODEL OF THE SIMULATION

The diffusion models like the independent cascade model
or linear threshold model do not consider the influence of
external factors. Our study focuses on the external factors
and nodes’ willingness. So a more comprehensive model is
required. We use a simple diffusion model inspired by the
tutorial on SOIL [35] for the simulations. In this process,
each node v ∈ V have three parameters expressing external
exposure (Λv), the probability of infection from external
factors (P v

e ) and the probability of infection by the internal
connections (P v

i ). Λv is a Boolean parameter that determines
whether node v is exposed to the external source or not. If
Λv = 1 then v will be influenced to propagate the message
by the external information with a probability of P v

e . A node
v gets influenced by its neighbor with a probability of P v

i .
The state transition diagram of the diffusion process is shown
in Figure 4.

Send Signal to
Neighbors

Idle Post
Receive

Post

Λ (.)
=
1,
P
(.)

e

P
(.)
i

External

FIGURE 4. State transition diagram of the diffusion process.

B. ACCURACY WITH DIFFUSION PARAMETERS

We varied the diffusion parameters in three different combi-
nations viz. (i) keeping both Pe and Pi fixed for all the nodes
in the network, (ii) varying Pe while keeping Pi fixed for
all nodes and (iii) varying Pi for a fixed value of Pe. The
obtained results and details of the simulations are presented
below.

1) Globally fixed probability of external and internal

influences: Pe, Pi

In this setting, we assign a fix value for P v
e and P v

i for all
v ∈ V in a particular simulation. We randomly choose few
nodes (about 10%) and assign it with Λ = 1. In various
simulations, parameter Pe has been incremented within in-
terval (0.0, 1.0) and parameter Pi in [0.0, 1.0) with the same
increment value of 0.05. Thus, we run 380 simulations on
Net200 (Table 3). A single simulation is performed with 2000
time steps (characterizing the time-stamp in real data set) and
ts = 100 is considered while calculating FRW values using
Equations 2-5.

Figure 5a shows the variation of Ig with the value of Pe.
Each dot in the plot corresponds to a single simulation in
the network. The hue of the dots indicates the Pi value. It is
evident that the mean Ig remains nearly constant at around
0.8, whereas the standard deviation very slowly decreases
with rising Pe. We found that the accuracy is greater than
0.9 for 30% simulations and greater than 0.6 for about 88%
of the simulations.

Variation of Ig with the change in internal influence prob-
ability Pi is shown in Figure 5b. Hue represents the external
influence probability in this scatter plot. The blue line indicat-
ing the mean Ig clearly shows that it drops with the increase
in Pi. At the same time, the standard deviation represented by
the orange line reveals a slow increase. Despite the decrease,
the mean value of Ig is above or equal to 0.6 for all the
simulations. The same is evident from the heat map in Figure
6. We can see there that the higher accuracy is obtained when
Pi is between 0.05 to 0.6 irrespective of the value of Pe.
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FIGURE 5. Variation of Ig with (a) Pe and (b) Pi.
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2) Variable value of Pe

In this experiment, we randomly selected 10 seed nodes and
each of them is assigned with a Pe value taken from (0.0, 1.0]
with a step 0.1. We were interested in testing the model
behavior with uniformly distributed Pe. Simulations were
carried out for the values of Pi between [0.0, 1.0) with step
value 0.05. Twenty such simulations are further repeated for
10 different randomly chosen sets of seed nodes. Thus, total
200 simulations have been performed with this setting. The
Ig values for 10 experiments are shown using box-whisker in
Figure 7. Each label in x-axis corresponds to the results of ex-
periments on one set of randomly chosen 10 seed nodes and
the box-whisker graph of that label summarizes the outcome
of 20 different simulations (for different values of Pi) as
stated above. It is evident that the median value for accuracy
is at least 0.7, if considering each experiment separately.
The mean and standard deviation of all the 200 simulation
together is found to be 0.814 and 0.158, respectively.

3) Variable value of Pi

In this experiment we keep a global fixed value for Pe, while
we assigned uniform random values to Pi. Similar to Section
IV-B2 different values of Pe is used for different simulations.
The same process is repeated for 10 times with different
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uniform random values of Pi. The results for individual
experiments are shown in Figure 8. The mean value of Ig
is 0.7647. The minimum and maximum median accuracy are
found to be 0.68 for experiment no. 5 and as much as 0.81
for experiment no. 7.

C. COMPARATIVE STUDY

To the best of our knowledge, no attempt was made to
measure the willingness of the node to adopt from external
sources. Accordingly, no similar algorithm is available in
the literature to compare with straightforwardly. Therefore,
in our experiments, we choose popular seed selection algo-
rithms as a baseline. There are several algorithms for seed se-
lection in the literature [28]. In our study, we tried to compare
our method with well known seed selection algorithms of
different approaches. In particular, we used centrality based,
path based and content based seed selection methods. The
details of these methods are as follows:
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FIGURE 9. Comparative results for different algorithms. Color patch showing

the confidence interval at 95%.

• Degree Centrality: One of the classic approaches where
top-k influential nodes are selected based on their de-
gree scores. We use k = |{v ∈ V |Λv = 1}|. Predicted

TABLE 4. Precision, Recall and f-Score of different algorithms

Algorithm Recall Precision f -score
Degree 0.0942631 0.0942631 0.0942631
Degree Discount 0.103773 0.103773 0.103773
Diffusion Degree 0.0938844 0.0938844 0.0938844
NDIF 0.330682 0.330682 0.330682
PMIA 0.0973923 0.0973923 0.0973923
FRW 0.792716 1 0.884374

true positive is calculated by the cardinality of the
intersection of the seed selected by degree measure and
the set {v ∈ V |Λv = 1}.

• Diffusion Degree [29, 11]: Diffusion degree includes
the diffusion parameters along with the degree measure.
Similarly to degree, top k nodes are chosen based on the
node ranking upon diffusion degree.

• Degree Discount [9]: Node’s centrality is calculated
here by discounting edges of already selected seeds
from the degree.

• Prefix excluding Maximum Influence Arborescence
(PMIA) [30]: This is a path based method. Nodes are
selected based on the expected influence of the paths
connecting the node with others in the network.

• Network Discovery of Influencers using Flows (NDIF)
[31]: This is a content-based algorithm, where content
flow is used to identify the flow paths. Then, the algo-
rithm greedily chooses the seeds. This algorithm is the
closest algorithm to our proposed methods as it also uses
content in order to find seeds. The algorithm takes the
network structure and content streams as the input.

Comparative results for different algorithms for the glob-
ally fixed Pi and Pe are shown in Figure 9. Each data plotted
here is the average over different Pi (Figure 9a) and Pe

(Figure 9b) values. It is evident from the figures that overall,
the proposed method detects the externally influenced nodes
with very high accuracy compared to the baseline algorithms.
As expected, NDFI performs better compared to the other
structure-based algorithms. It is found that for Pi between
0.0 and 0.15, accuracy of NDIF is very high. However, as
Pi increases the accuracy falls sharply and from Pi = 0.4
it stabilizes around 0.1. On the other hand, the proposed
method maintains high accuracy, with the lowest level of 0.6
for Pi = 0.95. Table 4 shows the average values of Precision,
Recall and f -score for different methods. Note that in the
case of proposed FRW method the FP is zero so the Precision
is 1.0, and for the other methods FP = FN as we take the top-k
nodes where k is equal to the number of desire seeds. Hence
in the case of these comparing methods desire nodes (TP +
FN) is equal to the retrieved nodes (TP + FP).

The results NDIF are better for smaller values of Pi, and
as we increase cascade size from 0 to 4, the performance
deteriorates. The results are shown in Figure 10.FRW’s per-
formance is also affected by the user-defined parameter a.
The effect of different values of a is presented in Figure
11. Reducing a would produce higher accuracy. However, in
practical scenarios, reducing a to very low values results can
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TABLE 5. Real-World Data Set

Properties/Name Twitter Weibo

Nodes 475,311 1,776,950
Edges 2,735,341 308,489,739
Avg. Degree 11.5097 173.61
Total #tag Posts 12,054,205 8,454,839
Total Days 33 365
Type Undirected Directed

result in higher miss-classification.

D. PREDICTION OF TOP-K A CONTENT PRODUCER

In order to predict the top-k number of users who may create
higher number of posts influenced by exogenous factors, we
formulate the problem as a ranking problem. We split the
data into two parts, namely, training set and testing set. With
the training data, we selected the top-k nodes based on their
FRW model predicted score. These top-k nodes created the
most number of externally influenced posts in the network
and intuitively it is expected that these nodes would continue
to do so in the future as well. We verified this from the test
data set. The experiment is conducted with two real-world
social network viz. Twitter [36] and Weibo [37] network.
The Twitter network contains reciprocal links of Twitter user.
The data was collected between March 24, 2012 and April
25, 2012. The network properties are shown in Table 5. It
is an undirected network along with the hashtags used in
tweets. Each hashtag has been associated with a time stamp
to indicate when it was used. Weibo data, on the other hand,
is a following-follower network collected for 2009-2012. In
our experiment, we took the content stream for the year 2011.
In twitter, first 25 days (about 75% hashtags) were used as
training data, and the rest (about 8 days) data was used as
testing set. In Weibo, we used 11 months data for identifying
the top-k content producer and the last month of the year is
used as a test set, similar to Twitter. Similarly, we get the
top-k nodes by the comparing methods and total number of
externally influenced posts in the test set is computed. These
results are compared and shown in Figure 12. X-axis shows
the value of k and the y-axis shows the number of externally
influenced posts in the test set by the top-k nodes. It is evident
that FRW performs better than the baseline algorithms to a
large extent.

V. CONCLUSION

We considered a new problem of estimating users’ will-
ingness to adopt information from external sources in the
context of information diffusion in the network. Given a
social network and stream shared in the network, we provided
an algorithm and a measure to identify the willingness of
a node, i.e. openness of a node to external influences. The
proposed method is called fuzzy relative willingness (FRW).
Empirical analysis demonstrates that FRW is able to discover
the externally influenced nodes with high accuracy. Compar-
ative analysis with baseline algorithm reveals that FRW is
better than the most similar state-of-the art approach for most
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FIGURE 12. Comparative results of top-k content producer for different

real-world data.

of the cases.
The FRW generated scores are also used to predict the

top-k content producer, that is the top-k nodes who share
and spread the external information in the network. This
concept was tested on both directed and undirected real-
world networks, namely, Twitter (undirected) and Weibo (di-
rected). Experimental studies demonstrate that our algorithm
can better predict the number of future posts compared to all
other methods.

Quantification of human willingness, i.e. openness, will
provide a new research direction in the domain of informa-
tion diffusion and target set (seed) selection. The presented
algorithm is relatively simple, but the idea of representing
willingness with fuzzy membership values will provide an
opportunity to use other well-known membership functions
to suit the data set and the applications they are used for.
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