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Fuzzy-Rough Sets Assisted Attribute Selection
Richard Jensen and Qiang Shen

Abstract—Attribute selection (AS) refers to the problem of se-
lecting those input attributes or features that are most predictive of
a given outcome; a problem encountered in many areas such as ma-
chine learning, pattern recognition and signal processing. Unlike
other dimensionality reduction methods, attribute selectors pre-
serve the original meaning of the attributes after reduction. This
has found application in tasks that involve datasets containing huge
numbers of attributes (in the order of tens of thousands) which, for
some learning algorithms, might be impossible to process further.
Recent examples include text processing and web content classifi-
cation. AS techniques have also been applied to small and medium-
sized datasets in order to locate the most informative attributes
for later use. One of the many successful applications of rough set
theory has been to this area. The rough set ideology of using only
the supplied data and no other information has many benefits in
AS, where most other methods require supplementary knowledge.
However, the main limitation of rough set-based attribute selec-
tion in the literature is the restrictive requirement that all data
is discrete. In classical rough set theory, it is not possible to con-
sider real-valued or noisy data. This paper investigates a novel ap-
proach based on fuzzy-rough sets, fuzzy rough feature selection
(FRFS), that addresses these problems and retains dataset seman-
tics. FRFS is applied to two challenging domains where a feature
reducing step is important; namely, web content classification and
complex systems monitoring. The utility of this approach is demon-
strated and is compared empirically with several dimensionality
reducers. In the experimental studies, FRFS is shown to equal or
improve classification accuracy when compared to the results from
unreduced data. Classifiers that use a lower dimensional set of at-
tributes which are retained by fuzzy-rough reduction outperform
those that employ more attributes returned by the existing crisp
rough reduction method. In addition, it is shown that FRFS is more
powerful than the other AS techniques in the comparative study.

Index Terms—Attribute selection, dimensionality reduction,
fuzzy-rough sets, rough selection.

I. INTRODUCTION

T
HERE are many factors that motivate the inclusion of a di-

mensionality reduction (DR) step in a variety of problem-

solving systems [5]. Many application problems process data

in the form of a collection of real-valued vectors (for example,

text classification [45], bookmark categorization [15]). If these

vectors exhibit a high dimensionality, then processing becomes

infeasible. Therefore, it is often useful, and sometimes neces-

sary, to reduce the data dimensionality to a more manageable

size with as little information loss as possible.

Sometimes, high-dimensional complex phenomena can be

governed by significantly fewer, simple variables [11]. The
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process of dimensionality reduction here will act as a tool for

modelling these phenomena, improving their clarity. There is

often a significant amount of redundant or misleading informa-

tion present; this will need to be removed before any further

processing can be carried out. For example, the problem of

deriving classification rules from large datasets often benefits

from a data reduction preprocessing step [33]. Not only does

this reduce the time required to perform induction, but it makes

the resulting rules more comprehensible and can increase the

resulting classification accuracy.

Whereas semantics-destroying dimensionality reduction

techniques irreversibly transform data, semantics-preserving

DR techniques (referred to as attribute selection) attempt to

retain the meaning of the original attribute set. The main aim

of attribute selection is to determine a minimal attribute subset

from a problem domain while retaining a suitably high accuracy

in representing the original attributes.

There are often many attributes involved, and combinatori-

ally large numbers of attribute combinations, to select from.

Note that the number of attribute subset combinations with

attributes from a collection of total attributes is

. It might be expected that the inclusion of an increasing

number of attributes would increase the likelihood of including

enough information to distinguish between classes. Unfortu-

nately, this is not true if the size of the training dataset does

not also increase rapidly with each additional attribute included.

This is the so-called curse of dimensionality [3]. A high-dimen-

sional dataset increases the chances that a data-mining algo-

rithm will find spurious patterns that are not valid in general.

Most techniques employ some degree of reduction in order to

cope with large amounts of data, so an efficient and effective re-

duction method is required.

A technique that can reduce dimensionality using informa-

tion contained within the data set and that preserves the meaning

of the attributes (i.e., semantics-preserving) is clearly desirable.

Rough set theory (RST) can be used as such a tool to discover

data dependencies and to reduce the number of attributes con-

tained in a dataset using the data alone, requiring no additional

information [23], [26].

Over the past ten years, RST has indeed become a topic of

great interest to researchers and has been applied to many do-

mains [16]. Given a dataset with discretized attribute values, it

is possible to find a subset (termed a reduct) of the original at-

tributes using RST that are the most informative; all other at-

tributes can be removed from the dataset with minimal informa-

tion loss. From the dimensionality reduction perspective, infor-

mative attributes are those that are most predictive of the class

attribute.

However, it is most often the case that the values of attributes

may be both crisp and real-valued, and this is where traditional

rough set theory encounters a problem. It is not possible in the

original theory to say whether two attribute values are similar

1063-6706/$25.00 © 2007 IEEE
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Fig. 1. Attribute selection process.

and to what extent they are the same; for example, two close

values may only differ as a result of noise, but in RST they are

considered to be as different as two values of a different order of

magnitude. As a result of this, extensions to the original theory

have been proposed, for example those based on similarity or

tolerance relations [36], [38], [39].

It is, therefore, desirable to develop techniques to provide

the means of data reduction for crisp and real-value attributed

datasets which utilizes the extent to which values are similar.

This can be achieved through the use of fuzzy-rough sets. Fuzzy-

rough sets encapsulate the related but distinct concepts of vague-

ness (for fuzzy sets [46]) and indiscernibility (for rough sets),

both of which occur as a result of uncertainty in knowledge [9].

Vagueness arises due to a lack of sharp distinctions or bound-

aries in the data itself. This is typical of human communication

and reasoning.

This paper presents a method, fuzzy-rough feature selection

(FRFS), that employs fuzzy-rough sets to provide a means by

which discrete or real-valued noisy data (or a mixture of both)

can be effectively reduced without the need for user-supplied

information. Additionally, this technique can be applied to data

with continuous or nominal decision attributes, and as such can

be applied to regression as well as classification datasets. The

only additional information required is in the form of fuzzy par-

titions for each attribute which can be automatically derived

from the data. In the work presented here, all fuzzy sets are

derived solely from the data. This avoids the need for domain

experts to provide information on the data involved and ties in

with the advantage of rough sets in that it requires no infor-

mation other than the data itself. However, if such experts are

readily available, it is beneficial to capture their knowledge in

the form of fuzzy data partitions to improve the transparency of

the selection process and any other future processes (e.g., rule

induction).

The rest of this paper is structured as follows. An introduc-

tion to the attribute selection problem is presented in Section II,

describing the main components of an attribute selector. Sec-

tion III introduces the theory main concepts behind crisp rough

set based attribute reduction. Next, the fuzzy-rough set-based

attribute selection method is described in detail. The new fuzzy-

rough attribute evaluation metric is compared with several of the

leading metrics using artificial data. FRFS is then applied to two

challenging areas: website categorization and complex systems

monitoring. The paper is concluded in Section VIII.

II. ATTRIBUTE SELECTION

Semantics-preserving dimensionality reduction techniques

attempt to retain the meaning of the original attribute set. The

main aim of attribute selection is to determine a minimal at-

tribute subset from a problem domain while retaining a suitably

high accuracy in representing the original attributes. In many

real world problems, AS is a must due to the abundance of

noisy, irrelevant or misleading attributes. A detailed review of

attribute selection techniques devised for classification tasks

can be found in [8].

The usefulness of an attribute or attribute subset is determined

by both its relevancy and redundancy. An attribute is said to be

relevant if it is predictive of the decision attribute(s), otherwise

it is irrelevant. An attribute is considered to be redundant if it

is highly correlated with other attributes. Hence, the search for

a good attribute subset involves finding those attributes that are

highly correlated with the decision attribute(s), but are uncorre-

lated with each other.

Given an attribute set size , the task of AS can be seen as a

search for an “optimal” attribute subset through the competing

candidate subsets. The definition of what an optimal subset

is may vary depending on the problem to be solved. Although an

exhaustive method may be used for this purpose in theory, this

is quite impractical for most datasets. Usually AS algorithms

involve heuristic or random search strategies in an attempt to

avoid this prohibitive complexity. However, the degree of opti-

mality of the final attribute subset is often reduced. The overall

procedure for any attribute selection method is given in Fig. 1

[8].

The generation procedure implements a search method [19],

[35] that generates subsets of attributes for evaluation. It may

start with no attributes, all attributes, a selected attribute set or

some random attribute subset. Those methods that start with

an initial subset usually select these attributes heuristically be-

forehand. Attributes are added (forward selection) or removed

(backward elimination) iteratively in the first two cases [8]. In

the last case, attributes are either iteratively added or removed or

produced randomly thereafter. An alternative selection strategy

is to select instances and examine differences in their attributes.

The evaluation function calculates the suitability of an attribute

subset produced by the generation procedure and compares this

with the previous best candidate, replacing it if found to be

better.



JENSEN AND SHEN: FUZZY-ROUGH SETS ASSISTED ATTRIBUTE SELECTION 75

A stopping criterion is tested every iteration to determine

whether the AS process should continue or not. For example,

such a criterion may be to halt the AS process when a certain

number of attributes have been selected if based on the gener-

ation process. A typical stopping criterion centred on the eval-

uation procedure is to halt the process when an optimal subset

is reached. Once the stopping criterion has been satisfied, the

loop terminates. For use, the resulting subset of attributes may

be validated.

Determining subset optimality is a challenging problem.

There is always a trade-off in non-exhaustive techniques be-

tween subset minimality and subset suitability—the task is to

decide which of these must suffer in order to benefit the other.

For some domains (particularly where it is costly or impractical

to monitor many attributes), it is much more desirable to have

a smaller, less accurate attribute subset. In other areas it may

be the case that the modelling accuracy (e.g., the classification

rate) using the selected attributes must be extremely high, at

the expense of a non-minimal set of attributes.

Attribute selection algorithms may be classified into two cat-

egories based on their evaluation procedure. If an algorithm per-

forms AS independently of any learning algorithm (i.e., it is a

completely separate preprocessor), then it is a filter approach.

In effect, irrelevant attributes are filtered out before induction.

Filters tend to be applicable to most domains as they are not tied

to any particular induction algorithm.

If the evaluation procedure is tied to the task (e.g., classifica-

tion) of the learning algorithm, the AS algorithm employs the

wrapper approach. This method searches through the attribute

subset space using the estimated accuracy from an induction al-

gorithm as a measure of subset suitability. Although wrappers

may produce better results, they are expensive to run and can

break down with very large numbers of attributes. This is due

to the use of learning algorithms in the evaluation of subsets,

some of which can encounter problems when dealing with large

datasets.

III. ROUGH SET ATTRIBUTE REDUCTION

RSAR[7]providesafilter-basedtoolbywhichknowledgemay

be extracted from a domain in a concise way; retaining the in-

formation content whilst reducing the amount of knowledge in-

volved. The main advantage that rough set analysis has is that it

requires no additional parameters to operate other than the sup-

plieddata [10]. Itworksbymakinguseof thegranularity structure

of the data only. This is a major difference when compared with

Dempster–Shafer theoryandfuzzyset theorywhichrequireprob-

ability assignments and membership values respectively. How-

ever, this does not mean that no model assumptions are made. In

fact by using only the given information, the theory assumes that

the data is a true and accurate reflection of the real world (which

may not be the case). The numerical and other contextual aspects

of the data are ignored which may seem to be a significant omis-

sion, but keeps model assumptions to a minimum.

To illustrate the operation of these, an example dataset

(Table I) will be used. Here, the table consists of four con-

ditional attributes , one decision attribute and

TABLE I
EXAMPLE DATASET

eight objects. The task of attribute selection here is to choose

the smallest subset of these conditional attributes so that the

resulting reduced dataset remains consistent with respect to the

decision attribute.

A. Theoretical Background

Central to RSAR is the concept of indiscernibility. Let

be an information system, where is a non-empty set

of finite objects (the universe) and is a nonempty finite set of

attributes such that for every . is the set

of values that attribute may take. With any there is an

associated equivalence relation

(1)

The partition of , generated by is denoted

(or ) and can be calculated as follows:

(2)

where is specifically defined as follows for sets and

(3)

If , then and are indiscernible by at-

tributes from . The equivalence classes of the -indiscerni-

bility relation are denoted . For the illustrative example, if

, then objects 1, 6, and 7 are indiscernible; as are

objects 0 and 4. creates the following partition of

Let . can be approximated using only the information

contained within by constructing the -lower and -upper

approximations of

(4)

(5)
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Let and be equivalence relations over , then the positive,

negative, and boundary regions can be defined as

The positive region contains all objects of that can be clas-

sified to classes of using the information in attributes .

The boundary region, , is the set of objects that can

possibly, but not certainly, be classified in this way. The negative

region, , is the set of objects that cannot be classified

to classes of . For example, let and ,

then

This means that objects 2, 3, and 5 can certainly be classified

as belonging to a class in attribute e, when considering attributes

and . The rest of the objects cannot be classified as the infor-

mation that would make them discernible is absent.

An important issue in data analysis is discovering dependen-

cies between attributes. Intuitively, a set of attributes depends

totally on a set of attributes , denoted , if all attribute

values from are uniquely determined by values of attributes

from . If there exists a functional dependency between values

of and , then depends totally on . In rough set theory,

dependency is defined in the following way:

For , it is said that depends on in a degree

, denoted , if

(6)

If depends totally on , if depends

partially (in a degree ) on , and if then does not

depend on . In the example, the degree of dependency of at-

tribute from the attributes is:

By calculating the change in dependency when an attribute

is removed from the set of considered conditional attributes, a

measure of the significance of the attribute can be obtained. The

higher the change in dependency, the more significant the at-

tribute is. If the significance is 0, then the attribute is dispens-

able. More formally, given and an attribute

(7)

For example, if and , then

and calculating the significance of the three attributes gives

From this it follows that attribute is indispensable, but at-

tributes and can be dispensed with when considering the

dependency between the decision attribute and the given indi-

vidual conditional attributes.

B. Reduction Method

The reduction of attributes is achieved by comparing equiv-

alence relations generated by sets of attributes. Attributes are

removed so that the reduced set provides the same predictive

capability of the decision attribute as the original. A reduct is

defined as a subset of minimal cardinality of the condi-

tional attribute set such that

(8)

(9)

The intersection of all the sets in is called the core, the

elements of which are those attributes that cannot be eliminated

without introducing more contradictions to the dataset. The goal

of RSAR is to discover reducts.

Using the example, the dependencies for all possible subsets

of can be calculated

Note that the given dataset is consistent since

. The minimal reduct set for this

example is

If is chosen, then the dataset can be reduced as in Table II.

Clearly, each object can be uniquely classified according to the

attribute values remaining.
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TABLE II
REDUCED DATASET

Fig. 2. QUICKREDUCT algorithm.

The problem of finding a reduct of an information system has

been the subject of much research [2], [40]. The most basic so-

lution to locating such a subset is to simply generate all pos-

sible subsets and retrieve those with a maximum rough set de-

pendency degree. Obviously, this is an expensive solution to the

problem and is only practical for very simple datasets. Most of

the time only one reduct is required as, typically, only one subset

of attributes is used to reduce a dataset, so all the calculations

involved in discovering the rest are pointless.

To improve the performance of the above method, an ele-

ment of pruning can be introduced. By noting the cardinality

of any prediscovered reducts, the current possible subset can be

ignored if it contains more elements. However, a better approach

is needed—one that will avoid wasted computational effort.

The QUICKREDUCT algorithm given in Fig. 2 (adapted from

[7]), calculates reducts without exhaustively generating all pos-

sible subsets. It starts off with an empty set and adds in turn,

one at a time, those attributes that result in the greatest increase

in the rough set dependency metric, until this produces its max-

imum possible value for the dataset. Other such techniques may

be found in [25].

According to the QUICKREDUCT algorithm, the dependency

of each attribute is calculated, and the best candidate chosen. In

Fig. 3, this stage is illustrated using the example dataset. As at-

tribute generates the highest dependency degree, then that at-

tribute is chosen and the sets and are evalu-

ated. This process continues until the dependency of the reduct

equals the consistency of the dataset (1 if the dataset is con-

sistent). The generated reduct shows the way of reducing the

dimensionality of the original dataset by eliminating those con-

ditional attributes that do not appear in the set.

Determining the consistency of the entire dataset is reason-

able for most datasets. However, it may be infeasible for very

large data, so alternative stopping criteria may have to be used.

Fig. 3. Branches of the search space.

One such criterion could be to terminate the search when there

is no further increase in the dependency measure. This will pro-

duce exactly the same path to a reduct due to the monotonicity

of the measure [7], without the computational overhead of cal-

culating the dataset consistency.

Other developments include REVERSEREDUCT where the

strategy is backward elimination of attributes as opposed to the

current forward selection process. Initially, all attributes appear

in the reduct candidate; the least informative ones are incre-

mentally removed until no further attribute can be eliminated

without introducing inconsistencies. This is not often used for

large datasets, as the algorithm must evaluate large attribute

subsets (starting with the set containing all attributes) which is

too costly, although the computational complexity is, in theory,

the same as that of forward-looking QUICKREDUCT. As both

forward and backward methods perform well, it is thought that

a combination of these within one algorithm would be effective.

This, however, is not guaranteed to find a minimal reduct.

Using the dependency function to discriminate between candi-

dates may lead the search down a nonminimal path. It is impos-

sible to predict which combinations of attributes will lead to an

optimal reduct based on changes in dependency with the addi-

tion or deletion of single attributes. It does result in a close-to-

minimal subset, though, which is still useful in greatly reducing

dataset dimensionality.

It is interesting to note that the rough set degree of depen-

dency measure is very similar to the consistency criterion

used by the FOCUS algorithm and others [1], [31]. In FOCUS,

a breadth-first search is employed such that any subset is

rejected if this produces at least one inconsistency. If this is

converted into a guided search using the consistency measure

as a heuristic, it should behave exactly as QUICKREDUCT. Con-

sistency is defined as the number of discernible objects out of

the entire object set—exactly that of the dependency measure.

IV. FUZZY-ROUGH FEATURE SELECTION

The RSAR process described previously can only operate ef-

fectively with datasets containing discrete values. Additionally,

there is no way of handling noisy data. As most datasets con-

tain real-valued attributes, it is necessary to perform a discretiza-

tion step beforehand. This is typically implemented by standard

fuzzification techniques [33], enabling linguistic labels to be as-

sociated with attribute values. It also aids the modelling of un-

certainty in data by allowing the possibility of the membership

of a value to more than one fuzzy label. However, membership

degrees of attribute values to fuzzy sets are not exploited in the

process of dimensionality reduction. By using fuzzy-rough sets

[9], [22], it is possible to use this information to better guide at-

tribute selection.
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A. Fuzzy Equivalence Classes

In the same way that crisp equivalence classes are central to

rough sets, fuzzy equivalence classes are central to the fuzzy-

rough set approach [9], [41], [44]. For typical applications, this

means that the decision values and the conditional values may

all be fuzzy. The concept of crisp equivalence classes can be

extended by the inclusion of a fuzzy similarity relation on the

universe, which determines the extent to which two elements are

similar in . The usual properties of reflexivity ,

symmetry and transitivity

hold.

The family of normal fuzzy sets produced by a fuzzy

partitioning of the universe of discourse can play the role

of fuzzy equivalence classes [9]. Consider the crisp parti-

tioning of a universe of discourse, , by the attributes in :

. This contains two equivalence

classes ( and ) that can be thought of as degen-

erated fuzzy sets, with those elements belonging to the class

possessing a membership of one, zero otherwise. For the first

class, for instance, the objects 2, 4, and 5 have a membership of

zero. Extending this to the case of fuzzy equivalence classes is

straightforward: objects can be allowed to assume membership

values, with respect to any given class, in the interval [0,1].

is not restricted to crisp partitions only; fuzzy partitions

are equally acceptable.

B. Fuzzy-Rough Sets

From the literature, the fuzzy -lower and -upper approxi-

mations are defined as [9]

(10)

(11)

where is an attribute subset, is the concept to be approx-

imated, and denotes a fuzzy equivalence class belonging to

. Note that although the universe of discourse in attribute

selection is finite, this is not the case in general, hence the use

of and . These definitions diverge a little from the crisp

upper and lower approximations, as the memberships of indi-

vidual objects to the approximations are not explicitly available.

As a result of this, the fuzzy lower and upper approximations are

herein redefined as

(12)

(13)

In the implementation of the fuzzy-rough reduction method, not

all need to be considered—only those where is

nonzero, i.e., where object is a fuzzy member of (fuzzy) equiv-

alence class . The tuple is called a fuzzy-rough

set. It can be seen that these definitions degenerate to traditional

rough sets when all equivalence classes are crisp [15].

C. Fuzzy-Rough Reduction Process

Fuzzy-rough set-based attribute selection builds on the notion

of the fuzzy lower approximation to enable reduction of datasets

containing real-valued attributes. As will be shown, the process

becomes identical to the crisp approach when dealing with nom-

inal well-defined attributes.

The crisp positive region in traditional rough set theory is de-

fined as the union of the lower approximations. By the extension

principle [47], the membership of an object , belonging

to the fuzzy positive region can be defined by

(14)

Object will not belong to the positive region only if the equiv-

alence class it belongs to is not a constituent of the positive re-

gion. This is equivalent to the crisp version where objects belong

to the positive region only if their underlying equivalence class

does so.

Using the definition of the fuzzy positive region, the fuzzy-

rough dependency function can be defined as follows:

(15)

As with crisp rough sets, the dependency of on is the pro-

portion of objects that are discernible out of the entire dataset. In

the present approach, this corresponds to determining the fuzzy

cardinality of divided by the total number of ob-

jects in the universe.

If the fuzzy-rough reduction process is to be useful, it must be

able to deal with multiple attributes, finding the dependency be-

tween various subsets of the original attribute set. For example,

it may be necessary to be able to determine the degree of depen-

dency of the decision attribute(s) with respect to .

In the crisp case, contains sets of objects grouped together

that are indiscernible according to both attributes and . In the

fuzzy case, objects may belong to many equivalence classes, so

the cartesian product of and must

be considered in determining . In general

(16)

where

(17)

Each set in denotes an equivalence class. For example, if

and

, then

The extent to which an object belongs to such an equivalence

class is therefore calculated by using the conjunction of con-

stituent fuzzy equivalence classes, say

(18)
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Fig. 4. Fuzzy-rough QUICKREDUCT algorithm.

D. Fuzzy-Rough QUICKREDUCT

A problem may arise when this approach is compared to the

crisp approach. In conventional RSAR, a reduct is defined as

a subset of the attributes which have the same information

content as the full attribute set . In terms of the dependency

function this means that the values and are identical

and equal to 1 if the dataset is consistent. However, in the fuzzy-

rough approach this is not necessarily the case as the uncertainty

encountered when objects belong to many fuzzy equivalence

classes results in a reduced total dependency.

A possible way of combatting this would be to determine the

degree of dependency of a set of decision attributes upon the

full attribute set and use this as the denominator rather than

(for normalization), allowing to reach 1. With these issues

in mind, a fuzzy-rough hill-climbing search algorithm has been

developed as given in Fig. 4. It employs the fuzzy-rough depen-

dency function to choose which attributes to add to the current

reduct candidate in a manner similar to QUICKREDUCT. The al-

gorithm terminates when the addition of any remaining attribute

does not increase the dependency (such a criterion could be used

with the QUICKREDUCT algorithm).

As the fuzzy-rough degree of dependency measure is non-

monotonic, it is possible that the hill-climbing search terminates

having reached only a local optimum. The global optimum may

lie elsewhere in the search space. This provided the motivation

for the use of an alternative search mechanism based on ant

colony optimization [17]. However, the algorithm as presented

in Fig. 4 is still highly useful in locating good subsets quickly.

It is also possible to reverse the search process in a manner

identical to that of REVERSEREDUCT; that is, start with the full

set of attributes and incrementally remove the least informative

attributes. This process continues until no more attributes can

be removed without reducing the total number of discernible

objects in the dataset. Again, this tends not to be applied to larger

datasets as the cost of evaluating these larger attribute subsets is

too great.

Note that with the fuzzy-rough QUICKREDUCT algorithm, for

a dimensionality of evaluations of the dependency

function may be performed for the worst-case dataset. However,

as FRFS is used for dimensionality reduction prior to any in-

volvement of the system which will employ those attributes be-

longing to the resultant reduct, this operation has no negative

impact upon the run-time efficiency of the system.

TABLE III
EXPERIMENTAL COMPARISON OF THE TWO FORMULATIONS FOR THE

CALCULATION OF THE POSITIVE REGION

E. Optimizing FRFS

There are several optimizations that can be implemented to

speed up the FRFS process. The original definition of the fuzzy

positive region, given in (14), can be more explicitly defined as

(19)

where is a subset of the conditional attributes, the decision

attribute(s). In order to speed up computation time, (19) can be

rewritten as

(20)

This reformulation helps to speed up the calculation of the

fuzzy positive region by considering each fuzzy equivalence

class in first. If the object is found not to belong to ,

the remainder of the calculations for this class need not be evalu-

ated, due to the use of the min operator. This can save substantial

time, as demonstrated in Table III, where the two definitions of

the positive region are used to determine reducts from several

small to large datasets. The times here are the times taken for

each version of FRFS to find a reduct. Each version of FRFS will

follow exactly the same route and will locate identical reducts.

All the datasets are from the machine learning repository [4] and

contain real-valued conditional attributes with nominal classifi-

cations.

Additionally in Table III, average runtimes are given for

the optimized implementation of the fuzzy-rough attribute

selector. This includes the use of the algorithm presented in

Fig. 5, which is designed to result in faster computation of

the fuzzy-rough metric for small attribute subsets. Excess

computation is avoided at lines (4) and (6) which exploit the

nature of t-norms and s-norms in the definitions of the lower

approximation and positive region.

V. EVALUATING THE FUZZY-ROUGH METRIC

In order to evaluate the utility of the new fuzzy-rough mea-

sure of attribute significance, a series of artificial datasets were

generated and used for comparison with five other leading at-

tribute ranking measures. The datasets were created by gener-

ating around 30 random attribute values for 400 objects. Two or

three attributes (referred to as , or ) are chosen to contribute

to the final boolean classification by means of an inequality. The
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Fig. 5. Optimized ’ calculation for small subsets.

task for the attribute rankers was to discover those attributes that

are involved in the inequalities, ideally rating the other irrelevant

attributes poorly in contrast.

A. Compared Metrics

The metrics compared are: the fuzzy-rough measure (FR), re-

lief-F (Re), information gain (IG), gain ratio (GR), OneR (1R)

and the statistical measure . The implementation of these met-

rics, apart from the fuzzy-rough measure, was obtained from

[42]. A brief description of each is presented next.

1) Information Gain: The IG [13] is the expected reduc-

tion in entropy resulting from partitioning the dataset objects

according to a particular attribute. The entropy of a labelled col-

lection of objects is defined as

Entropy (21)

where is the probability, typically approximated by the pro-

portion of belonging to class . Based on this, the IG metric is

(22)

where is the set of values for attribute the set

of training examples, the set of training objects where has

the value .

2) Gain Ratio: One limitation of the IG measure is that it

favours attributes with many values. The GR seeks to avoid this

bias by incorporating another term, split information, that is sen-

sitive to how broadly and uniformly the attribute splits the con-

sidered data

Split (23)

where each is a subset of objects generated by partitioning

with the -valued attribute . The GR is then defined as follows:

Split
(24)

3) Measure: In the method [14], attributes are indi-

vidually evaluated according to their statistic with respect to

the classes. For a numeric attribute, the method first requires its

range to be discretized into several intervals. The value of an

attribute is defined as

(25)

where is the number of intervals; the number of classes,

the number of samples in the th interval, th class; the

number of objects in the th interval; the number of objects

in the th class; the total number of objects; and the

expected frequency of . The larger the

value, the more important the attribute.

4) Relief-F: Relief [18] evaluates the worth of an attribute

by repeatedly sampling an instance and considering the value of

the given attribute for the nearest instance of the same and dif-

ferent class. The distance between two objects is the sum of the

number of attributes that differ in value between them, for nom-

inal values. When dealing with continuous attributes, the dis-

tance is the normalised sum of the difference in attribute values.

Relief-F extends this idea to dealing with multiclass problems

as well as handling noisy and incomplete data. When used for

attribute selection, the user must supply a threshold which de-

termines the level of relevance that attributes must surpass in

order to be finally chosen.

5) OneR: The OneR classifier [12] learns a one-level deci-

sion tree, i.e., it generates a set of rules that test one particular

attribute. One branch is assigned for every value of an attribute;

each branch is assigned the most frequent class. The error rate

is then defined as the proportion of instances that do not belong

to the majority class of their corresponding branch. Attributes

with the higher classification rates are considered to be more

significant than those resulting in lower accuracies.

B. Metric Comparison

The tables presented in this section show the results for the

application of the metrics (outlined in Section V-A above) to

the artificial data. The task for these metrics is to detect those

attributes appearing in the datasets that affect the classifications.

A good metric must also ignore attributes that are irrelevant,

i.e., have no bearing upon the classification. The final row in

each table indicates whether all irrelevant attributes are given a

ranking of zero. The full results can be seen in Tables XVI–XXI.

For the data presented in Table IV, the first attribute, , is

used to determine the classification. The values of attributes

and are derived from : . Hence, a good

feature ranker should detect the importance of these attributes,

and consider all remaining attributes as irrelevant. It can be ob-

served from the table that all metrics successfully rank the influ-

ential attributes highest. IG, GR, 1R, and rank these attributes

equally, whereas Re and FR rank attribute higher. Only FR,

IG, GR, and rate all the other attributes as zero.

Thus, attribute rankers can discover the influential attributes

but on their own are incapable of determining multiple attribute
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TABLE IV
ATTRIBUTE EVALUATION FOR x > 0:5; y =

p
x; z = x

TABLE V
ATTRIBUTE EVALUATION FOR (x + y) > 0:25

TABLE VI
ATTRIBUTE EVALUATION FOR (x + y) > 0:5

TABLE VII
ATTRIBUTE EVALUATION FOR (x + y) < 0:125

interactions. Table IV could be reduced to one attribute only (ei-

ther , or ) without any loss of information as only these con-

tribute to the classification. However, the rankers all rate these

attributes highly and would only provide enough information to

reduce the data to at least these three attributes. Here, the rankers

have found the predictive (or relevant) attributes but have been

unable to determine which of these are redundant.

Table V shows the results for the inequality .

If this inequality holds for an object then it is classified as 1, with

a classification of 0 otherwise. Hence, both attributes and

are required for deciding the classification. All attribute rankers

evaluated detect this. FR, IG, GR, 1R and also rank the tenth

attribute highly—probably due to a chance correlation with the

decision. The results in Table VI are for a similar inequality, with

all the attribute rankers correctly rating the important attributes.

FR, IG, GR, and evaluate the remaining attributes as having

zero significance.

In Table VII, all metrics apart from 1R locate the relevant

attributes. For this dataset, 1R chooses 22 attributes as being

the most significant, whilst ranking attributes and last. This

may be due to the discretization process that must precede the

application of 1R. If the discretization is poor, then the resulting

attribute evaluations will be affected.

Table VIII shows the results for data classified by

. All attribute rankers correctly detect these variables.

However, in Table IX the results can be seen for the same in-

equality but with the impact of variable increased. All metrics

determine that has the most influence on the decision, and al-

most all choose and next. Again, the 1R measure fails and

chooses attributes 15, 19 and 24 instead.

TABLE VIII
ATTRIBUTE EVALUATION FOR x � y � z > 0:125

TABLE IX
ATTRIBUTE EVALUATION FOR x � y � z > 0:125

In summary, only the FR and Re metrics are applicable

to datasets where the decision attribute is continuous. Both

methods find the attributes that are involved in generating the

decision values. This short investigation into the utility of the

new fuzzy-rough measure has shown that it is comparable

with the leading measures of attribute importance. Indeed, its

behaviour is quite similar to the information gain and gain

ratio metrics. This is interesting as both of these measures

are entropy-based: an attribute subset with a maximum (crisp)

rough set dependency has a corresponding entropy of 0. Unlike

these metrics, the fuzzy-rough measure may also be applied to

datasets containing real-valued decision attributes.

VI. APPLICATION TO WEBSITE CATEGORIZATION

There are an estimated 1 billion web pages available on the

Internet with around 1.5 million web pages being added every

day. The task to find a particular web page, which satisfies a

user’s requirements by traversing hyper-links, is very difficult.

To aid this process, many web directories have been devel-

oped—some rely on manual categorization whilst others make

decisions automatically. However, as web page content is vast

and dynamic, manual categorization is becoming increasingly

impractical. Automatic web site categorization is therefore

required to deal with these problems.

The keywords extracted from web pages are weighted not

only according to their statistical occurrence but also to their

location within the document itself. These weights are almost

always real-valued, which can be a problem for most attribute

selectors unless data discretisation takes place (a source of in-

formation loss). This motivates the application of FRFS to this

domain.

A key issue in the design of the system was that of modularity;

it should be modelled in such a way as to enable the straight-

forward replacement of existing techniques with new methods.

The current implementation allows this flexibility by dividing

the overall process into several independent sub-modules (see

Fig. 6).

The training and testing datasets were generated using Yahoo

[43]. Five classification categories were used, namely: Arts

and Humanities, Entertainment, Computers and the Internet,

Health, and Business and Economy. A total of 280 web sites

were collected from Yahoo categories and classified into these

categories. An additional 140 web sites were collected for use
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Fig. 6. Modular decomposition of the classification system.

TABLE X
PERFORMANCE: TRAINING DATA (USING VSM)

as test data. From this collection of data, the keywords, weights

and corresponding classifications were collated into training

and test datasets, containing 2557 attributes.

For the task of classification, two simple classifiers were used:

the Boolean inexact model (BIM) [30] and the vector space

model (VSM) [29]. More efficient and effective classifiers can

be employed for this, but for simplicity only these conventional

classifiers are adopted here to show the power of attribute reduc-

tion. Better classifiers are expected to produce more accurate re-

sults, though not necessarily enhance the comparisons between

classifiers that use reduced or unreduced datasets.

A. Results

For this set of experiments, FRFS is compared with the stan-

dard crisp RSAR approach. As the unreduced training dataset

exhibits high dimensionality (2557 attributes), it is too large to

evaluate. This motivates the use of feature selection methods to

reduce dimensionality to a more manageable size.

Using RSAR, the original dataset was reduced to 29 at-

tributes (1.13% of the full attribute set). However, using FRFS

the number of selected attributes was only 23 (0.90% of the full

attribute set). It is interesting to note that the subsets discovered

by FRFS and RSAR share four attributes in common. With

such a large reduction in attributes, it must be shown that

classification accuracy does not suffer in the FRFS-reduced

system.

To see the effect of dimensionality reduction on classification

accuracy, the system was tested on the original training data first

and the results are summarised in Table X. The results are av-

eraged over all the classification categories. Clearly, FRFS ex-

hibits better precision and error rates. Note that this performance

was achieved using fewer attributes than the crisp RSAR ap-

proach.

TABLE XI
PERFORMANCE: UNSEEN DATA

Table XI contains the results for experimentation on 140 pre-

viously unseen web sites. For the crisp case, the average preci-

sion is rather low and the average error is high. With FRFS, there

is a significant improvement in both the precision and classifi-

cation error.

It must be pointed out here that although the testing accuracy

is rather low, this is largely to do with the poor performance

of the simple classifiers used. The fact that VSM-based results

are much better than those using BIM-based classifiers shows

that when a more accurate classification system is employed, the

accuracy can be considerably improved with the involvement

of the same attributes. Nevertheless, the purpose of the present

experimental studies is to compare the performance of the two

attribute reduction techniques, based on the common use of any

given classifier. Thus, only the relative accuracies are important.

Also, it is worth noting that the classifications were checked

automatically. Many websites can be classified to more than one

category, however only the designated category is considered to

be correct here.

FRFS requires a reasonable fuzzification of the input data,

whilst the fuzzy sets are herein generated by simple statistical

analysis of the dataset with no attempt made at optimizing these

sets. A fine-tuned fuzzification will certainly improve the per-

formance of FRFS-based systems [21].

VII. APPLICATION TO COMPLEX SYSTEMS MONITORING

The ever-increasing demand for dependable, trustworthy in-

telligent diagnostic and monitoring systems, as well as knowl-

edge-based systems in general, has focused much of the at-

tention of researchers on the knowledge-acquisition bottleneck.

The task of gathering information and extracting general knowl-

edge from it is known to be the most difficult part of creating a

knowledge-based system. Complex application problems, such
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Fig. 7. Water treatment plant, with number of measurements shown at different points in the system.

as reliable monitoring and diagnosis of industrial plants, are

likely to present large numbers of attributes, many of which

will be redundant for the task at hand [24], [32]. This greatly

hinders the performance of rule induction algorithms (RIAs).

Additionally, inaccurate and/or uncertain values cannot be ruled

out. Such applications typically require convincing explanations

about the inference performed, therefore a method to allow au-

tomated generation of knowledge models of clear semantics is

highly desirable.

In order to speed up the rule induction task and reduce rule

complexity, a preprocessing step is required. This is particularly

important for tasks where learned rulesets need regular updating

to reflect the changes in the description of domain attributes.

This step reduces the dimensionality of potentially very large

attribute sets while minimising the loss of information needed

for rule induction. It has an advantageous side-effect in that it

removes redundancy from the historical data. This also helps

simplify the design and implementation of the actual pattern

classifier itself, by determining what attributes should be made

available to the system. In addition, the reduced input dimen-

sionality increases the processing speed of the classifier, leading

to better response times. Most significant, however, is the fact

that fuzzy-rough attribute selection preserves the semantics of

the surviving attributes after removing any redundant ones. This

is essential in satisfying the requirement of user readability of

the generated knowledge model, as well as ensuring the under-

standability of the pattern classification process.

A. The Application

In order to evaluate further the utility of the FRFS approach

and to illustrate its domain-independence, a challenging test

dataset was chosen, namely the Water Treatment Plant Database

[4] (in addition to the experimental evaluation carried out in the

last section).

1) Problem Case: The dataset itself is a set of historical data

charted over 521 days, with 38 different input attributes mea-

sured daily. Each day is classified into one of thirteen categories

depending on the operational status of the plant. However, these

can be collapsed into just two or three categories (i.e., Normal

and Faulty, or OK, Good and Faulty) for plant monitoring pur-

poses as many classifications reflect similar performance. Be-

cause of the efficiency of the actual plant the measurements were

taken from, all faults appear for short periods (usually single

days) and are dealt with immediately. This does not allow for a

lot of training examples of faults, which is a clear drawback if a

monitoring system is to be produced. Note that this dataset has

been utilised in many previous studies, including that reported

in [33] (to illustrate the effectiveness of applying crisp RSAR as

a preprocessing step to rule induction, where a different RIA is

adopted from here).

The 38 conditional attributes account for the following five

aspects of the water treatment plant’s operation (see Fig. 7):

1) input to plant (nine attributes);

2) input to primary settler (six attributes);

3) input to secondary settler (seven attributes);

4) output from plant (seven attributes);

5) overall plant performance (nine attributes).

The original dataset was split into 75% training and 25%

testing data, maintaining the proportion of classifications

present. It is likely that not all of the 38 input attributes

are required to determine the status of the plant, hence, the

dimensionality reduction step. However, choosing the most

informative attributes is a difficult task as there will be many

dependencies between subsets of attributes. There is also a

monetary cost involved in monitoring these inputs, so it is

desirable to reduce this number.

This work follows the original approach for complex systems

monitoring developed in [33]. The original monitoring system

consisted of several modules as shown in Fig. 8. It is this mod-

ular structure that allows the new FRFS technique to replace the

existing crisp method [34].

Originally, a precategorization step preceded attribute selec-

tion where attribute values were quantized. To reduce potential

loss of information, the original use of just the dominant sym-

bolic labels of the discretized fuzzy terms is now replaced by

a fuzzification procedure. This leaves the underlying attribute
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Fig. 8. Modular decomposition of the implemented system.

values unchanged but generates a series of fuzzy sets for each

attribute. These sets are generated entirely from the data while

exploiting the statistical data attached to the dataset (in keeping

with the rough set ideology in that the dependence of learning

upon information provided outside of the training dataset is

minimized). This module may be replaced by alternative fuzzi-

fiers, or expert-defined fuzzification if available. Based on these

fuzzy sets and the original real-valued dataset, FRFS calculates

a reduct and reduces the dataset accordingly. Finally, fuzzy rule

induction is performed on the reduced dataset using the model-

ling algorithm developed in [6]. Note that this algorithm is not

optimal, nor is the fuzzification. Yet the comparisons given later

are fair due to their common background. Alternative fuzzy

modelling techniques can be employed for this if available.

B. Experimental Results

The experiments were carried out over a tolerance range (with

regard to the employment of the RIA). A suitable value for the

threshold must be chosen before rule induction can take place.

However, the selection of tends to be an application-specific

task; a good choice for this threshold that provides a balance

between a resultant ruleset’s complexity and accuracy can be

found by experiment. It should be noted here that due to the

fuzzy rule induction method chosen, all approaches generate

exactly the same number of rules (as the number of classes of

interest), but the arities in different rulesets differ. This helps

avoid a potential complexity factor in the comparative studies

due to the need otherwise of considering the sizes of learned

rulesets. Only the complexity in each learned rule needs to be

examined,

C. Comparison With Unreduced Attributes

First of all, it is important to show that, at least, the use of

attributes selected does not significantly reduce the classifica-

tion accuracy as compared to the use of the full set of original

attributes. For the 2-class problem, the fuzzy-rough set-based

attribute selector returns 10 attributes out of the original 38.

Fig. 9 compares the classification accuracies of the reduced

and unreduced datasets on both the training and testing data. As

can be seen, the FRFS results are almost always better than the

Fig. 9. Training and testing accuracies for the 2-class dataset over the tolerance
range.

Fig. 10. Average rule arities for the 2-class dataset.

unreduced accuracies over the tolerance range. The best results

for FRFS were obtained when is in the range 0.86 to 0.90,

producing a classification accuracy of 83.3% on the training set

and 83.9% for the test data. Compare this with the optimum for

the unreduced approach, which gave an accuracy of 78.5% for

the training data and 83.9% for the test data.

By using the FRFS-based approach, rule complexity is

greatly reduced. Fig. 10 charts the average rule complexity over

the tolerance range for the two approaches. Over the range of

values, FRFS produces significantly less complex rules while

having a higher resultant classification accuracy. The average

rule arity of the FRFS optimum is 1.5 which

is less than that of the unreduced optimum, 6.0.

The 3-class dataset is a more challenging problem, reflected

in the overall lower classification accuracies produced. The

fuzzy-rough method chooses 11 out of the original 38 attributes.

The results of both approaches are presented in Fig. 11. Again,

it can be seen that FRFS outperforms the unreduced approach

on the whole. The best classification accuracy obtained for

FRFS was 70.0% using the training data, 71.8% for the test

data . For the unreduced approach, the best accuracy

obtained was 64.4% using the training data, 64.1% for the test

data .
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Fig. 11. Training and testing accuracies for the 3-class dataset over the toler-
ance range.

Fig. 12. Average rule arities for the 3-class dataset.

Fig. 12 compares the resulting rule complexity of the two ap-

proaches. It is evident that rules induced using FRFS as a pre-

processor are simpler, with little loss in classification accuracy.

In fact, the simple rules produced regularly outperform the more

complex ones generated by the unreduced approach. The av-

erage rule arity for the FRFS-based method is 4.0 which is less

than that of the unreduced method, 8.33.

These results show that FRFS is useful not only in removing

redundant attribute measures but also in dealing with the

noise associated with such measurements. The rules produced

are reasonably short and understandable. However, when se-

mantics-destroying dimensionality reduction techniques are

applied, such readability is lost.

D. Comparison With Entropy-Based Attribute Selection

To support the study of the performance of FRFS for use as

a preprocessor to rule induction, a conventional entropy-based

technique is herein used for comparison. This approach utilizes

the entropy heuristic employed by machine learning techniques

such as C4.5 [28]. Those attributes that provide the most gain

in information are selected. A summary of the results of this

comparison can be seen in Table XII. Further related experi-

mentation using C4.5 as the classification method can be found

TABLE XII
COMPARISON OF FRFS AND ENTROPY-BASED ATTRIBUTE SELECTION

Fig. 13. Training and testing accuracies for the 2-class dataset: comparison
with PCA and random-reduction methods.

in [17], where FRFS and entropy-based selection are compared

with a novel ant colony optimization-based method.

For both the 2-class and 3-class datasets, FRFS selects three

fewer attributes than the entropy-based method. FRFS has a

higher training accuracy and the same testing accuracy for

the 2-class data using less attributes. However, for the 3-class

data, the entropy-based method produces a very slightly higher

testing accuracy. Again, it should be noted that this is obtained

with three additional attributes over the FRFS approach.

E. Comparison With PCA and Random Reduction

The previous comparisons ensured that little information loss

is incurred due to FRFS. The question now is whether any other

attribute sets of a dimensionality 10 (for the 2-class dataset) and

11 (for the 3-class dataset) would perform similarly. To avoid a

biased answer to this, without resorting to exhaustive computa-

tion, 70 sets of random reducts were chosen of size 10 for the

2-class dataset, and a further 70 of size 11 for the 3-class dataset

to see what classification results might be achieved. The classi-

fication accuracies for each tolerance value are averaged.

The effect of using a different dimensionality reduction

technique, namely PCA, is also investigated. To ensure that the

comparisons are fair, only the first 10 principal components

are chosen for the 2-class dataset (likewise, the first 11 for the

3-class dataset). As PCA irreversibly destroys the underlying

dataset semantics, the resulting rules are not human-compre-

hensible but may still provide useful automatic classifications

of new data.
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TABLE XIII
BEST INDIVIDUAL CLASSIFICATION ACCURACIES (2-CLASS DATASET) FOR

FRFS, PCA, AND RANDOM APPROACHES

Fig. 14. Training and testing accuracies for the 3-class dataset: comparison
with PCA and random-reduction methods.

The results of FRFS, PCA and random approaches can be

seen in Fig. 13 for the 2-class dataset. On the whole, FRFS

produces a higher classification accuracy than both PCA-based

and random-based methods over the tolerance range. In fact,

FRFS results in the highest individual classification accuracy

for training and testing data (see Table XIII).

For the 3-class dataset, the results of FRFS, PCA and random

selection are shown in Fig. 14. The individual best accuracies

can be seen in Table XIV. Again, FRFS produces the highest

classification accuracy (71.8%), and is almost always the best

over the tolerance range. Although PCA produces a compara-

tively reasonable accuracy of 70.2%, this is at the expense of

incomprehensible rules.

F. Alternative Fuzzy Rule Inducer

As stated previously, many fuzzy rule induction algorithms

exist and can be used to replace the RIA adopted in the present

monitoring system. Here, an example is given using Lozowski’s

algorithm as presented in [20]. This method extracts linguisti-

cally expressed fuzzy rules from real-valued attributes as with

the subsethood-based RIA. Provided with training data, it in-

duces approximate relationships between the characteristics of

the conditional attributes and their underlying classes. However,

as with many RIAs, this algorithm exhibits high computational

complexity due to its generate-and-test nature. The effects of

this become evident where high dimensional data needs to be

TABLE XIV
BEST RESULTANT CLASSIFICATION ACCURACIES (3-CLASS DATASET) FOR

FRFS, PCA, AND RANDOM APPROACHES

Fig. 15. Classification accuracies for the 2-class dataset.

Fig. 16. Classification accuracies for the 3-class dataset.

TABLE XV
EXTENT OF DIMENSIONALITY REDUCTION

processed. Indeed, for this particular domain, attribute selec-

tion is essential as running the RIA on all conditional attributes

would be computationally prohibitive.

The results presented here compare the use of fuzzy-rough set

based attribute selection with the crisp rough set-based method.

For RSAR, the data is discretized using the supplied fuzzy sets

and reduction performed on the resulting dataset. The experi-

ments were carried out over a tolerance range, required by the

fuzzy RIA. This is a different threshold from those required in

the subsethood-based approach. The tolerance here indicates the

minimal confidence gap in the decision between a candidate rule

and other competing contradictory rules.

As can be seen from Table XV, FRFS selects fewer attributes

than the crisp method for the2-class dataset and results in a higher

classification accuracy over the entire tolerance range (Fig. 15).

Both results show that there is a lot of redundancy in the dataset

which may be removed with little loss in classification accuracy.
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TABLE XVI
ATTRIBUTE EVALUATION FOR x > 0:5; y =

p
x; z = x

For the 3-class dataset the approaches perform similarly, with

the FRFS method generally outperforming the other two, using

the same number of attributes (but not identical attributes).

The classification results can be seen in Fig. 16.

VIII. CONCLUSION

This paper has been concerned with the development of

fuzzy-rough attribute selection, combatting the problems of

noisy and real-valued data, as well as handling mixtures of

nominal and continuous valued attributes. FRFS achieves this

by the use of fuzzy-rough sets, and the new measure of attribute

significance: the fuzzy-rough degree of dependency. A partic-

ular issue for attribute selectors is the problem of real-valued

decision attributes. FRFS can deal with this whereas many AS

techniques cannot.

The new fuzzy-rough metric was experimentally evaluated

against other leading metrics for use in attribute ranking. The

results confirmed that the fuzzy-rough measure performs com-

parably to these metrics, and better than them in several cases.

The dimensionality of the datasets involved in text categorisa-

tion are of the order of thousands to tens of thousands. FRFS was

used to tackle this potentially restrictive amount of data success-

fully within a web page categorisation system. In fact, the extent

of data reduction was several orders of magnitude, making the

classification task manageable. The fuzzy-rough technique was

also applied to complex systems monitoring to show how not

only rule clarity can be significantly improved with attribute se-

lection, but also that the reduced knowledge base can achieve

competitive results in terms of monitoring accuracy. The fuzzy-

TABLE XVII
ATTRIBUTE EVALUATION FOR (x + y) > 0:25

TABLE XVIII
ATTRIBUTE EVALUATION FOR (x + y) > 0:5

rough method was shown to perform very well against other at-

tribute selector methods for this task.

Through this series of investigations and experiments, the po-

tential utility of the fuzzy-rough method for attribute selection
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TABLE XIX
ATTRIBUTE EVALUATION FOR (x + y) < 0:125

TABLE XX
ATTRIBUTE EVALUATION FOR x � y � z > 0:125

has been demonstrated. However, there are many other areas

that benefit from a data reduction step. It would be highly bene-

ficial to investigate how FRFS may be applied to other domains

TABLE XXI
ATTRIBUTE EVALUATION FOR x � y � z > 0:125

such as image recognition and gene expression analysis. For ex-

ample, gene expression microarrays are a rapidly maturing tech-

nology that provide the opportunity to analyse the expression

levels of thousands or tens of thousands of genes in a single ex-

periment. As a result of the high dimensionality of this type of

data, attribute selection must take place before any further pro-

cessing can be carried out.

Part of the future work in fuzzy-rough feature selection would

be to consider other alternatives to fuzzy similarity. For ex-

ample, the strong transitivity condition based on the minimum

operator in the fuzzy similarity relation definition could be re-

placed with the Lukasiewicz triangular norm. This would result

in a so-called likeness function, and may result in more flexi-

bility when dealing with uncertainty.

REFERENCES

[1] H. Almuallim and T. G. Dietterich, “Learning with many irrelevant
features,” in Proc. 9th Nat. Conf. Artif. Intell., 1991, pp. 547–552.

[2] “Rough sets and current trends in computing,” in Proc. 3rd Int. Conf.,
J. J. Alpigini, J. F. Peters, J. Skowronek, and N. Zhong, Eds., 2002.

[3] R. Bellman, Adaptive Control Processes: A Guided Tour. Princeton,
NJ: Princeton Univ. Press, 1961.

[4] C. L. Blake and C. J. Merz, UCI Repository of Machine Learning

Databases. Irvine, CA: Univ. California, 1998 [Online]. Available:
http://www.ics.uci.edu/~mlearn/

[5] M. A. Carreira-Perpinñán, “Continuous latent variable models for di-
mensionality reduction and sequential data reconstruction,” Ph.D. dis-
sertation, Univ. Sheffield, Sheffield, U.K., 2001.

[6] S. Chen, S. L. Lee, and C. Lee, “A new method for generating fuzzy
rules from numerical data for handling classification problems,” Appl.

Artif. Intell., vol. 15, no. 7, pp. 645–664, 2001.
[7] A. Chouchoulas and Q. Shen, “Rough set-aided keyword reduction for

text categorisation,” Appl. Artif. Intell., vol. 15, no. 9, pp. 843–873,
2001.



JENSEN AND SHEN: FUZZY-ROUGH SETS ASSISTED ATTRIBUTE SELECTION 89

[8] M. Dash and H. Liu, “Feature selection for classification,” Intell. Data

Anal., vol. 1, no. 3, 1997.
[9] D. Dubois and H. Prade, “Putting rough sets and fuzzy sets together,”

Intell. Decision Support, pp. 203–232, 1992.
[10] I. Düntsch and G. Gediga, Rough Set Data Analysis: A Road to Non-

Invasive Knowledge Discovery. Bangor, ME: Methodos, 2000.
[11] B. S. Everitt, “An introduction to latent variable models,” in Mono-

graphs on Statistics and Applied Probability. London, U.K.:
Chapman & Hall, 1984.

[12] R. C. Holte, “Very simple classification rules perform well on most
commonly used datasets,” Mach. Learn., vol. 11, pp. 63–90, 1993.

[13] E. Hunt, J. Martin, and P. Stone, Experiments in Induction. New
York: Academic, 1966.

[14] H. Liu and R. Setiono, “Chi2: Feature selection and discretization of
numeric attributes,” in Proc. 7th IEEE Int. Conf. Tools Artif. Intell.,
1995, pp. 336–391.

[15] R. Jensen and Q. Shen, “Fuzzy-rough attribute reduction with appli-
cation to web categorization,” Fuzzy Sets Syst., vol. 141, no. 3, pp.
469–485, 2004.

[16] ——, “Semantics-preserving dimensionality reduction: Rough and
fuzzy-rough based approaches,” IEEE Trans. Knowl. Data Eng., vol.
16, no. 12, pp. 1457–1471, Dec. 2004.

[17] ——, “Fuzzy-rough data reduction with ant colony optimization,”
Fuzzy Sets Syst., vol. 149, no. 1, pp. 5–20, 2005.

[18] K. Kira and L. A. Rendell, “The feature selection problem: Traditional
methods and a new algorithm,” in Proc. 9th Nat. Conf. Artif. Intell.,
1992, pp. 129–134.

[19] P. Langley, “Selection of relevant features in machine learning,” in
Proc. AAAI Fall Symp. Relevance, 1994, pp. 1–5.

[20] A. Lozowski, T. J. Cholewo, and J. M. Zurada, “Crisp rule extraction
from perceptron network classifiers,” in Proc. Int. Conf. Neural Net-

works, volume of Plenary, Panel and Special Sessions, 1996, pp. 94–99.
[21] J. G. Marin-Blázquez and Q. Shen, “From approximative to descriptive

fuzzy classifiers,” IEEE Trans. Fuzzy Syst., vol. 10, no. 4, pp. 484–497,
Aug. 2002.

[22] Rough-Fuzzy Hybridization: A New Trend in Decision Making. S. K.
Pal and A. Skowron, Eds. New York: Springer-Verlag, 1999.

[23] Z. Pawlak, Rough Sets: Theoretical Aspects of Reasoning About

Data. Norwell, MA: Kluwer, 1991.
[24] W. Pedrycz and G. Vukovich, “Feature analysis through information

granulation,” Pattern Recogn., vol. 35, no. 4, pp. 825–834, 2002.
[25] “Rough set methods and applications: New developments in knowl-

edge discovery in information systems,” in Studies in Fuzziness

and Soft Computing. L. Polkowski, T. Y. Lin, and S. Tsumoto,
Eds. Berlin, Germany: Physica-Verlag, 2000, vol. 56.

[26] L. Polkowski, “Rough Sets: Mathematical Foundations,” in Advances

in Soft Computing. Berlin, Germany: Physica-Verlag, 2002.
[27] J. R. Quinlan, “Induction of decision trees,” Mach. Learn., vol. 1, pp.

81–106, 1986.
[28] J. R. Quinlan, “C4.5: Programs for machine learning,” in The Morgan

Kaufmann Series in Machine Learning. San Mateo, CA: Morgan
Kaufmann, 1993.

[29] G. Salton, A. Wong, and C. S. Yang, “A vector space model for auto-
matic indexing,” Commun. ACM, vol. 18, no. 11, pp. 613–620, 1975.

[30] G. Salton, E. A. Fox, and H. Wu, “Extended Boolean information re-
trieval,” Commun. ACM, vol. 26, no. 12, pp. 1022–1036, 1983.

[31] J. C. Schlimmer, “Efficiently inducing determinations—A complete
and systematic search algorithm that uses optimal pruning,” in Proc.

Int. Conf. Mach. Learn., 1993, pp. 284–290.
[32] M. Sebban and R. Nock, “A hybrid filter/wrapper approach of feature

selection using information theory,” Pattern Recogn., vol. 35, no. 4, pp.
835–846, 2002.

[33] Q. Shen and A. Chouchoulas, “A fuzzy-rough approach for generating
classification rules,” Pattern Recogn., vol. 35, no. 11, pp. 341–354,
2002.

[34] Q. Shen and R. Jensen, “Selecting informative features with fuzzy-
rough sets and its application for complex systems monitoring,” Pat-

tern Recogn., vol. 37, no. 7, pp. 1351–1363, 2004.

[35] W. Siedlecki and J. Sklansky, “On automatic feature selection,” Int. J.

Pattern Recogn. Artif. Intell., vol. 2, pp. 197–220, 1988.
[36] A. Skowron and J. Stepaniuk, “Tolerance approximation spaces,” Fun-

damenta Informaticae, vol. 27, no. 2, pp. 245–253, 1996.
[37] Intelligent Decision SupportR. Slowinski, Ed. Norwell, MA: Kluwer

Academic Publishers, 1992.
[38] R. Slowinski and D. Vanderpooten, “Similarity relation as a basis for

rough approximations,” in Advances in Machine Intelligence and Soft

Computing. , P. Wang, Ed. Durham, NC: Duke Univ. Press, 1997,
vol. IV, pp. 17–33.

[39] J. Stefanowski and A. Tsoukiàs, “Valued tolerance and decision rules,”
Rough Sets Current Trends Comput., pp. 212–219, 2000.

[40] R. W. Swiniarski and A. Skowron, “Rough set methods in feature selec-
tion and recognition,” Pattern Recogn. Lett., vol. 24, no. 6, pp. 833–849,
2003.

[41] H. Thiele, Fuzzy rough sets versus rough fuzzy sets—An interpreta-
tion and a comparative study using concepts of modal logics Univ. of
Dortmund, Dortmund, Germany, Tech. Rep. CI-30/98, 1998.

[42] I. H. Witten and E. Frank, Data Mining: Practical Machine Learning

Tools With Java Implementations. San Mateo, CA: Morgan Kauf-
mann, 2000.

[43] Yahoo, [Online]. Available: www.yahoo.com
[44] Y. Y. Yao, “A comparative study of fuzzy sets and rough sets,” Inform.

Sci., vol. 109, pp. 21–47, 1998.
[45] Y. Yang and J. O. Pedersen, “A comparative study on feature selection

in text categorization,” in Proc. 14th Int. Conf. Mach. Learn., 1997, pp.
412–420.

[46] L. A. Zadeh, “Fuzzy sets,” Inform. Control, vol. 8, pp. 338–353, 1965.
[47] ——, “The concept of a linguistic variable and its application to

approximate reasoning,” Inform. Sci., vol. 8, pp. 199–249, 1975,
301–357; vol. 9: 43–80.

Richard Jensen received the B.Sc. degree in com-
puter science from Lancaster University, Lancaster,
U.K., and the M.Sc. and Ph.D. degrees in artificial
intelligence from the University of Edinburgh, Edin-
burgh, U.K., in 1999, 2000, and 2004, respectively.

He is a Postdoctoral Research Fellow with the
Department of Computer Science at the University of
Wales, Aberystwyth, U.K., working in the Advanced
Reasoning Group. His research interests include
rough and fuzzy set theory, pattern recognition,
information retrieval, feature selection, and swarm

intelligence. He has published approximately 20 peer-refereed articles in these
areas.

Qiang Shen received the B.Sc. and M.Sc. degrees in
communications and electronic engineering from the
National University of Defense Technology, China,
and the Ph.D. degree in knowledge-based systems
from Heriot-Watt University, Edinburgh, U.K.

He is a Professor with the Department of Computer
Science at the University of Wales, Aberystwyth,
U.K. His research interests include fuzzy and im-
precise modeling, model-based inference, pattern
recognition, and knowledge refinement and reuse.
He has published around 170 peer-refereed papers in

academic journals and conferences on topics within artificial intelligence and
related areas.

Dr. Shen is an Associate Editor of the IEEE TRANSACTIONS ON FUZZY

SYSTEMS and of the IEEE TRANSACTIONS ON SYSTEMS, MAN, AND

CYBERNETICS, PART B, and an Editorial Board Member of Fuzzy Sets

and Systems.




