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Abstract - One of the main obstacles facing current
fuzzy modelling techniques is that of dataset dimen-
sionality. To enable these techniques to be effective, a
redundancy-removing step is usually carried out be-
forehand. Rough Set Theory (RST) has been used
as such a dataset pre-processor with much success,
however it is reliant upon a crisp dataset; important
information may be lost as a result of quantization.
This paper proposes a new dimensionality reduction
technique that employs a hybrid variant of rough sets,
fuzzy-rough sets, to avoid this information loss.

I. Introduction

It is estimated that every 20 months or so the amount
of information in the world doubles. In the same way,
tools for use in the various knowledge fields (acquisi-
tion, storage, retrieval, maintenance, etc) must develop
to combat this growth. Knowledge is only valuable when
it can be used efficiently and effectively [1].

Over the past twenty years, rough set theory (RST)
has become a topic of great interest to researchers and
has been applied to many domains. This success is due in
part to the following aspects of the theory: only the facts
hidden in data are analysed, no additional information
about the data is required, and it helps find a minimal
knowledge representation. One particular use of RST is
that of attribute reduction in datasets. Given a data-
set with discretized attribute values, it is possible to find
a subset of the original attributes that are the most in-
formative (termed a reduct); all other attributes can be
removed from the dataset with minimal information loss.
This method tends to be a pre-processing step to reduce
dataset dimensionality before some other action is per-
formed (for example, induction of rules [9]).

However, it is most often the case that the values of
attributes may be both symbolic and real-valued, and
this is where traditional rough set theory encounters a
problem. It is not possible in the theory to say whether
two attribute values are similar and to what extent they
are the same; for example, two close values may only

differ as a result of noise, but in RST they are considered
to be as different as two values of a different order of
magnitude.

One answer to this problem has been to discretize the
dataset beforehand, producing a new dataset with crisp
values. This is often still inadequate, however, as the
degrees of membership of values to discretized values are
not considered at all. For example, two values may both
be mapped to the same class “Negative”, but one may
be much more negative than the other when comparing
the two underlying real values. This is a source of in-
formation loss, which is against the rough set ideology
of retaining information content. It is clear that there is
a need for some method that will provide the means of
data reduction for crisp and real-value attributed data-
sets which utilises the extent to which values are similar.
This could be achieved through the use of fuzzy-rough sets
[2]. Fuzzy-rough sets encapsulate the related but distinct
concepts of vagueness (for fuzzy sets) and indiscernibil-
ity (for rough sets), both of which occur as a result of
uncertainty in knowledge or data; a method employing
fuzzy-rough sets should be better equipped to handle this
uncertainty.

The rest of this paper is structured as follows. Sec-
tion 2 discusses the fundamentals of rough set theory,
in particular focusing on dimensionality reduction. The
third section introduces the hybrids of rough and fuzzy
sets; section 4 builds on these definitions to outline a pro-
cedure for fuzzy-rough dimensionality reduction. This is
then applied to a test domain and compared with tradi-
tional crisp RSAR, demonstrating the power of the new
approach. Finally, the paper concludes with a discussion
of the results and outlines future work to be carried out.

II. Theoretical Foundations

A. Rough Sets

A rough set [7] is an approximation of a vague concept
by a pair of precise concepts, called lower and upper ap-
proximations (which are informally a classification of the
domain of interest into disjoint categories). Objects be-



longing to the same category characterised by the same
attributes (or features) are not distinguishable.

The Rough Set Attribute Reduction (RSAR) method
[9] employs rough sets to remove redundant conditional
attributes from discrete-valued datasets, while retain-
ing their information content. Central to RSAR is the
concept of indiscernibility. Let I = (U, A) be an inform-
ation system, where U is a non-empty set of finite objects
(the universe); A is a non-empty finite set of attributes
such that a : U → Va for every a ∈ A; Va is the value
set for attribute a. In a decision system, A = {C ∪ D}
where C is the set of conditional attributes and D is the
set of decision attributes.

TABLE I

Example Dataset

Object A B C Q

1 -0.4 -0.3 -0.5 no
2 -0.4 0.2 -0.1 yes
3 -0.3 -0.4 -0.3 no
4 0.3 -0.3 0 yes
5 0.2 -0.3 0 yes
6 0.2 0 0 no

With any P ⊆ A there is an associated equivalence
relation IND(P ):

IND(P ) = {(x, y) ∈ U2 | ∀ a ∈ P a(x) = a(y)} (1)

If (x, y) ∈ IND(P ), then x and y are indiscernible by
attributes from P . The partition of U, generated by
IND(P) is denoted U/P and can be calculated as follows:

U/P = ⊗{a ∈ P : U/IND({a})}, (2)

where

A ⊗ B = {X ∩ Y : ∀X ∈ A, ∀Y ∈ B, X ∩ Y 6= Ø} (3)

TABLE II

Discretized Dataset

Object A B C Q

1 NA NB NC no
2 NA ZB ZC yes
3 NA NB NC no
4 ZA NB ZC yes
5 ZA NB ZC yes
6 ZA ZB ZC no

To illustrate the operation of RSAR, an example data-
set (table I) has been quantized, producing the discret-
ized dataset seen in table II. Partitioning the universe of
objects according to attributes C and Q gives

U/C = {{1,3}{2,4,5,6}}, U/Q = {{1,3,6}{2,4,5}}

The equivalence classes of the P -indiscernibility rela-
tion are denoted [x]P . Let X ⊆ U , the P -lower approx-
imation of a set can now be defined as:

PX = {x | [x]P ⊆ X} (4)

Let P and Q be equivalence relations over U , then the
positive region can be defined as:

POSP (Q) =
⋃

X∈U/Q

PX (5)

The positive region contains all objects of U that can
be classified to classes of U/Q using the knowledge in
attributes P. In the example, the C-lower approximation
is calculated for each equivalence class of U/Q to give the
C-positive region.
CX = {x | [x]C ⊆ X}
C{1, 3, 6} = {1, 3}, C{2, 4, 5} = Ø
POSC(Q) =

⋃
X∈U/Q CX = {1, 3}

An important issue in data analysis is discovering de-
pendencies between attributes. Intuitively, a set of at-
tributes Q depends totally on a set of attributes P, de-
noted P ⇒ Q, if all attribute values from Q can be
uniquely determined by values of attributes from P.
In particular, if there exists a functional dependency
between values of Q and P, then Q depends totally on P.
Dependency can be defined in the following way:

For P,Q ⊂ A, Q depends on P in a degree k (0 ≤ k ≤
1), denoted P ⇒k Q, if

k = γP (Q) =
|POSP (Q)|

|U |
(6)

If k = 1 Q depends totally on P, if k < 1 Q depends
partially (in a degree k) on P, and if k = 0 Q does not
depend on P. The dependency for the example is

γC(Q) = |{1,3}|
|U| = 2/6

By calculating the change in dependency when an at-
tribute is removed from the set of considered conditional
attributes, a measure of the significance of the attribute
can be obtained. The higher the change in dependency,
the more significant the attribute is.

B. Reducts

The reduction of attributes is achieved by comparing
equivalence relations generated by sets of attributes. At-
tributes are removed so that the reduced set provides the
same quality of classification as the original. A reduct is
defined as a subset R of the conditional attribute set C



such that γR(D) = γC(D). A given dataset may have
many attribute reduct sets, so the set R of all reducts is
defined as:

R = {X : X ⊆ C, γX(D) = γC(D)} (7)

The intersection of all the sets in R is called the core, the
elements of which are those attributes that cannot be
eliminated without introducing more contradictions to
the dataset. In RSAR, a reduct with minimum cardinal-
ity is searched for; in other words an attempt is made to
locate a single element of the minimal reduct set Rmin ⊆
R :

Rmin = {X : X ∈ R, ∀Y ∈ R, |X | ≤ |Y |} (8)

A basic way of achieving this is to calculate the depend-
encies of all possible subsets of C. Any subset X with
γX(D) = 1 is a reduct; the smallest subset with this
property is a minimal reduct. However, for large datasets
this method is impractical and an alternative strategy is
required.

1. R← {}

2. do

3. T ← R

4. ∀x ∈ (C −R)

5. if γR∪{x}(D) > γT (D)

6. T ← R ∪ {x}

7. R← T

8. until γR(D) = γC(D)

9. return R

Fig. 1. The QuickReduct Algorithm

The QuickReduct algorithm [4], [9] attempts to cal-
culate a minimal reduct without exhaustively generating
all possible subsets. It starts off with an empty set and
adds in turn those attributes that result in the greatest
increase in γP (Q), until this produces its maximum pos-
sible value for the dataset (usually 1).

Running the algorithm on the example dataset results
in a non-minimal reduct {A, B, C} (i.e. all attributes are
chosen by this method). It can be seen upon examina-
tion of the dataset that the set of attributes {A, B} is the
true minimal reduct. Although γ is a non-optimal heur-
istic, the algorithm has also suffered due to the informa-
tion lost in the discretization procedure. A method using
fuzzy-rough sets should therefore be more informed.

III. Fuzzy-Rough Hybrids

A. Fuzzy Equivalence Classes

In the same way that crisp equivalence classes are central
to rough sets, fuzzy equivalence classes are central to the

hybrid approaches. Rough set theory can be extended by
the inclusion of a similarity relation [2] on the universe,
a fuzzy set S which determines the extent to which two
elements are similar in S. The usual properties of re-
flexivity (µS(x, x) = 1), symmetry (µS(x, y) = µS(y, x)
) and transitivity (µS(x, z) ≥ µS(x, y) ∧ µS(y, z)) hold.

Using the fuzzy similarity relation, it is now possible
to define the fuzzy equivalence class [x]S for objects close
to x:

µ[x]S (y) = µS(x, y) ∀y ∈ X (9)

This definition degenerates to the normal definition of
equivalence classes when S is non-fuzzy. The following
axioms should hold for a fuzzy equivalence class Fi [3]:

1. µFi
is normalized, ∃x, µFi

(x) = 1

2. µFi
(x) ∧ µS(x, y) ≤ µFi

(y)

3. µFi
(x) ∧ µFi

(y) ≤ µS(x, y)

The first axiom corresponds to the requirement that an
equivalence class is non-empty. The second axiom states
that elements in y’s neighbourhood are in the equivalence
class of y. The final axiom states that any two elements in
Fi are related via S. With these definitions, the concepts
of rough-fuzzy and fuzzy-rough sets may be introduced.

B. Rough-Fuzzy Sets

A rough-fuzzy set is a generalisation of a rough set, de-
rived from the approximation of a fuzzy set in a crisp
approximation space. In RSAR, this corresponds to the
case when the decision attribute(s) values are fuzzy. The
lower and upper approximations incorporate the extent
to which objects belong to these sets, and are defined as:

µRX([x]R) = inf{µX(x)|x ∈ [x]R} (10)

µRX([x]R) = sup{µX(x)|x ∈ [x]R} (11)

where µX(x) is the degree to which x belongs to fuzzy
equivalence class X , and each [x]R is crisp. The tuple
< RX, RX > is called a rough-fuzzy set. It can be
seen that in the crisp case (where µX(x) is 1 or 0), the
above definitions become identical to that of the tradi-
tional lower and upper approximations.

C. Fuzzy-Rough Sets

Rough-fuzzy sets can be generalised to fuzzy-rough sets
[2], where all equivalence classes may be fuzzy. In RSAR,
this means that the decision values and the conditional



values may all be fuzzy. The lower and upper approxim-
ations are now:

µX(Fi) = infxmax{1 − µFi
(x), µX(x)} ∀i (12)

µX(Fi) = supxmin{µFi
(x), µX(x)} ∀i (13)

where Fi denotes a single fuzzy equivalence class. The
tuple < X, X > is called a fuzzy-rough set. Again, it can
be seen that these definitions degenerate to traditional
rough sets when all equivalence classes are crisp. Addi-
tionally, if all Fis are crisp, the result is a rough-fuzzy
set. Fuzzy-rough sets have been used before [8] but not
in the field of dimensionality reduction.

IV. Fuzzy-Rough Dimensionality Reduction

A. The Approach

Unlike its crisp counterpart, the present work on fuzzy
RSAR employs fuzzy equivalence classes. Consider the
crisp partitioning U/Q = {{1,3,6}{2,4,5}} of the ex-
ample. This contains two equivalence classes ({1,3,6}
and {2,4,5}) that can be thought of as fuzzy sets, with
those elements belonging to the class possessing a mem-
bership of one, zero otherwise. For the first class, the
objects 2, 4 and 5 have a membership of zero. Extending
this to the fuzzy case is straightforward: objects can be
allowed to assume membership values in the interval [0,1].
As Q contains discrete values, its equivalence classes can
be determined in the traditional way. However, U/Q is
not restricted to crisp partitions only; fuzzy partitions
are equally acceptable.

As before, the next step is to calculate the lower ap-
proximations of the sets. In fuzzy RSAR the approxim-
ations are themselves fuzzy and are defined as:

µX(Fi) = infx max{1 − µFi
(x), µX(x)} ∀i

This is similar to the traditional approach where the pos-
itive region is determined by the use of the equivalence
classes in U/Q. The membership of each object x in
the dataset to the fuzzy equivalence class Fi is obtained
from the definition of Fi. Within the example, for the
first equivalence class X = {1,3,6}, both µ{1,3,6}(NA)

and µ{1,3,6}(ZA) need to be calculated as both NA and

ZA are the fuzzy equivalence classes in U/A. For simpli-
city, consider only the first of these fuzzy sets:

µ{1,3,6}(NA) = infx max{1 − µNA
(x), µ{1,3,6}(x)}

The membership of each object x in the dataset to the
fuzzy equivalence class NA is obtained from the definition
of NA (figure 2). As U/Q in this case is crisp, the extent
to which x belongs to {1,3,6} is 1 only if x ∈ {1,3,6}, and
0 otherwise. For example, regarding object 2:

1

0
-0.5 0.50

ZN

Fig. 2. Corresponding fuzzy sets

max{1 - µNA
(2),µ{1,3}(2)} = max{1 - 0.8,0} = 0.2

Calculating this for all objects in the dataset and for both
fuzzy equivalence classes gives
µ{1,3,6}(NA) = inf{1, 0.2, 1, 1, 1, 1} = 0.2

µ{1,3,6}(ZA) = inf{1, 0.8, 1, 0.6, 0.4, 1} = 0.4

Similarly for X = {2,4,5},
µ{2,4,5}(NA) = inf{0.2, 1, 0.4, 1, 1, 1} = 0.2

µ{2,4,5}(ZA) = inf{0.8, 1, 0.6, 1, 1, 0.4} = 0.4

The crisp positive region in traditional rough set theory is
defined as the union of the lower approximations. There-
fore, by the extension principle, the fuzzy positive region
of a fuzzy equivalence class Fi ∈ U/A can be defined as:

µPOSA
(Fi) = sup

X∈U/Q

µX(Fi) (14)

In the example, µPOSA
(NA) = 0.2, and µPOSA

(ZA) =
0.4. Again using the extension principle, it is possible to
define the membership of an object x ∈ U to the fuzzy
positive region:

µPOSA
(x) = sup

Fi∈ U/A

min(µFi
(x), µPOSA

(Fi)) (15)

This states that the extent to which object x belongs
to POSA is the degree to which it belongs to each fuzzy
equivalence class and the degree to which the equivalence
class belongs to POSA. So, for object 2:

µPOSA
(2) = max(min(0.8, 0.2), min(0.2, 0.4)) = 0.2

The memberships for the remaining objects are:

µPOSA
(1) = 0.2, µPOSA

(3) = 0.4, µPOSA
(4) = 0.4,

µPOSA
(5) = 0.4, µPOSA

(6) = 0.4

Finally, using the definition of the fuzzy positive region,
the new dependency function can be defined as follows

γ′
A(Q) =

|µPOSA
(x)|

|U |
=

∑
x∈U µPOSA

(x)

|U |
(16)

As with traditional rough sets, the dependency is
the proportion of objects that are discernible out of



the entire dataset using only the information in A. In
the present approach, this corresponds to determin-
ing the cardinality of µPOSA

(x) divided by the total
number of objects in the universe. In the example this is:

γ′
A(Q) =

∑
x∈U

µP OSA
(x)

|U| = 2.0/6

Calculating for B and C gives:

γ′
B(Q) = 2.4

6 , γ′
C(Q) = 1.6

6

If this process is to be useful, it must be able to deal
with multiple attributes, finding the dependency for vari-
ous subsets of the original attribute set. For example, it
may be necessary to be able to determine the degree of
dependency for P = {A, B}. In the crisp case, U/P con-
tains sets of objects grouped together that are indiscern-
ible according to both attributes A and B. In the fuzzy
case, objects may belong to many equivalence classes,
so the cartesian product of U/A and U/B must be con-
sidered.

U/P = ⊗{a ∈ P : U/IND(a)}, (17)

In the example case where P = {A, B} and U/A =
{NA, ZA}, U/B = {NB, ZB}:
U/P = U/A ⊗ U/B = {NA, ZA} ⊗ {NB, ZB}
= {{NA, NB}, {NA, ZB}, {ZA, NB}, {ZA, ZB}}

Each set in U/P is an equivalence class. The extent
to which an object belongs to such a class is calculated
by finding the conjunction of membership degrees to all
sets in the class:

µ{F1...Fn}(x) = min(µF1
(x), µF2

(x), ..., µFn
(x)) (18)

Considering the first equivalence class {NA, NB} in the
example, the membership of an object x can be calcu-
lated by:

µ{NA,NB}(x) = min(µNA
(x), µNB

(x))

B. Reduct Computation

A problem can be seen here when this approach is com-
pared to the traditional approach. In RST, a reduct is
defined as a subset R of the attributes which have the
same information content as the full attribute set A. In
terms of the dependency function this means that the
values γ(R) and γ(A) are identical and equal to 1 if the
dataset is consistent. However, in the fuzzy-rough ap-
proach this is not necessarily the case as the uncertainty
encountered when objects belong to many fuzzy equival-
ence classes results in a reduced total dependency.

One solution could be to stop the QuickReduct al-
gorithm if there is no gain in dependency with any of the

attributes added to the potential reduct (i.e. a “dead
end” has been reached by the search). This may well fail
in larger datasets as it may be the case that the algorithm
will not stop until all attributes are added; each addition
may produce a small increase in the overall dependency.
The introduction of some threshold value to terminate
the algorithm if the change in dependency is not signific-
ant enough could alleviate this problem. However, it is
not known at the present whether this is a suitable solu-
tion as it requires information outside the given dataset.

With these issues in mind, a new QuickReduct al-

1. R← {}, γ′
best ← 0, γ′

prev ← 0

2. do

3. T ← R

4. γ′
prev ← γ′

best

5. ∀x ∈ (C −R)

6. if γ′
R∪{x}(D) > γ′

T (D)

7. T ← R ∪ {x}

8. γ′
best ← γ′

T (D)

9. R← T

10. until γ′
best = γ′

prev

11. return R

Fig. 3. The New QuickReduct Algorithm

gorithm has been developed (figure 3). It employs the
new dependency function γ′ to choose which attributes
to add to the current reduct candidate in the same way
as the original QuickReduct process. The algorithm
terminates when the addition of any remaining attribute
does not increase the dependency (such a criterion could
be used with the original QuickReduct algorithm).
To obtain a reduct from the example dataset, the al-
gorithm first evaluates the dependency values for each
attribute. For the example,

γ′
{A}(Q) =

2

6
, γ′

{B}(Q) =
2.4

6
, γ′

{C}(Q) =
1.6

6

From this it can be seen that attribute B will cause the
greatest increase in dependency degree. This attribute is
chosen and added to the potential reduct.

γ′
{A,B}(Q) =

3.4

6
, γ′

{B,C}(Q) =
3.2

6

Adding attribute A to the reduct candidate causes the
larger increase of dependency, so the new candidate be-
comes {A, B}. Lastly, attribute C is added to the reduct:

γ′
{A,B,C}(Q) =

3.4

6

As this causes no increase in dependency, the algorithm
stops and outputs the reduct {A, B}. Unlike crisp RSAR,



the true minimal reduct was found using the information
on degrees of membership. It is clear from this example
alone that the information lost by using crisp RSAR can
be important when trying to discover the smallest reduct
from a dataset.

V. A Test Application

A. The Problem

In order to evaluate the utility of the new fuzzy RSAR
approach, a challenging test dataset was chosen, namely
the Water Treatment Plant Database [6]. The dataset
itself is a set of historical data charted over 521 days,
with 38 different input attributes measured daily. Each
day is classified into one of thirteen categories depending
on the operational status of the plant. However, these
can be collapsed into just two or three categories (i.e.
Normal and Faulty, or OK, Good and Faulty) as many
classifications reflect similar performance.

It is likely that not all of the 38 input attributes are re-
quired to determine the status of the plant, hence the di-
mensionality reduction step. However, choosing the most
informative attributes is a difficult task as there will be
many dependencies between subsets of attributes. There
is also a monetary cost involved in monitoring these in-
puts, so it is desirable to reduce this number. This prob-
lem has been used recently [9] to illustrate the effective-
ness of applying crisp RSAR as a pre-processing step to
rule induction. However, as the dataset is entirely com-
posed of real-valued attributes, discretization had to be
performed. This clearly is a potential source of inform-
ation loss. By applying the present work, such loss can
be reduced.

The original monitoring system consisted of several
modules; it is this modular structure that allows the
new fuzzy RSAR technique to replace the existing crisp
method. Originally, a precategorisation step preceded
dimensionality reduction where attribute values were
quantized. This is now replaced by a fuzzification pro-
cedure which leaves the underlying attribute values un-
changed but generates a series of fuzzy sets for each
attribute. These sets are generated entirely from the
data while exploiting the statistical data attached to the
dataset (in keeping with the rough set ideology). Based
on these fuzzy sets and the original real-valued dataset,
fuzzy RSAR calculates a reduct and reduces the dataset
accordingly. Finally, fuzzy rule induction is performed on
the reduced dataset using the modelling algorithm given
in [5]. Note that this algorithm is not optimal, nor is
the fuzzification. Yet the comparisons given below are
fair due to their common background. Alternative fuzzy
modelling techniques can be employed for this if avail-
able. The algorithm used herein works based on the use

fuzzy RSAR

crisp RSAR
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Fig. 4. Classification errors for 2- and 3-class datasets

of a tolerance threshold and produces a set of rules that
enable classification. It is difficult to determine the best
tolerance beforehand, so the experiments presented here
are performed over a tolerance range.

B. Results

TABLE III

Extent of dimensionality reduction

Method Attributes Attributes
2-class 3-class

Fuzzy RSAR 10 11
Crisp RSAR 11 11

Two factors must be considered when comparing fuzzy
and crisp RSAR: the extent of dimensionality reduction
and the resulting classification accuracy. As can be seen
from table III, fuzzy RSAR selects fewer attributes than
the crisp method for the 2-class dataset and results in a
lower classification error over the entire tolerance range
(figure 4). Both results show that there is a lot of redund-
ancy in the dataset which may be removed with little loss
in classification accuracy. For the 3-class dataset, the ap-
proaches perform similarly using the same number of at-
tributes (but not identical attributes). The classification
results can also be seen in figure 4.

Both approaches are dependent on an accurate fuzzi-
fication of the test dataset. Fuzzy RSAR in particular
is more sensitive to this as it depends on the generated
fuzzy sets to derive reductions. As indicated previously,
no attempt has been made here to optimise the algorithm
and fuzzification; however, it can be expected that this
would help improve the results.

VI. Conclusion

This paper has highlighted the shortcomings of tra-
ditional rough set attribute reduction when applied to
datasets with real-valued attributes and has proposed a
new method based on fuzzy-rough sets. The new ap-
proach incorporates the information usually lost in crisp
discretization by utilising the generated fuzzy-rough sets
to provide a more informed technique. This has been



illustrated with a test application. The results show
that fuzzy RSAR reduces dataset dimensionality without
much loss in information content. The approach per-
forms better than traditional RSAR on the whole, in
terms of both data reduction and reduction quality. Fur-
ther testing and experimentation is required - particu-
larly in the area of attribute fuzzification. Work is also
being carried out on a fuzzified dependency function. Or-
dinarily, the dependency function returns values for sets
of attributes in the range [0,1]; the fuzzy function returns
qualitative fuzzy labels for use in a new QuickReduct

algorithm. Additionally, research is being carried out
into the potential utility of fuzzy reducts.
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