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ABSTRACT

Fuzzy rules are used to model solute dispersion in a river dead zone, such that the turbulent

diffusion is determined by a fuzzy inference system which relates the local mean velocity shear to

the longitudinal velocity fluctuations. A finite-volume hybrid scheme is applied to a non-orthogonal

grid for which a mean velocity field is produced using the computational fluid dynamics (CFD)

package Telemac 2D. At each cell face fuzzy rules predict a fuzzy number, and these numbers reflect

the possible magnitudes of turbulent velocity fluctuations. These are input to the finite-volume

model using a single-value simulation method. Multiple model runs produce a fuzzy number for the

solute concentration in each cell. The results of the fuzzy model are then compared with data

collected in a field experiment with rhodamine dye in the River Severn.
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INTRODUCTION

The transport and mixing of a solute as it travels down-

stream in a natural channel is affected to a large extent by

the geometry of the river through which it travels. In

particular, areas of slow-moving, recirculating or stagnant

water in the regions near the banks, often known as ‘dead

zones’, are thought to trap and retain tracer dyes, thus

creating a long tail in the tracer curve further downstream.

Owing to the relatively slow movement of water in the

dead zone, a shear zone is created between it and the main

flow, and thus the dead zone will often act as a distinct cell

which is separate from the main flow. Exchanges of

momentum and transported scalar properties, such as heat

and solute concentration, between these two regions

occur at variable rates across the shear zone. It is therefore

important that the exchanges that take place in these dead

zone regions are well understood.

To gain further insights into the processes at work

in the dead zone region, a numerical model has been

developed. There are many computational fluid dynamics

(CFD) packages available to model mass transport but

in general these rely on the theory of Fickian turbulent

diffusion, whereby a turbulent diffusion coefficient,

analogous to molecular diffusion, is thought to exist

(Taylor 1921). The turbulent diffusion coefficient is

notoriously hard to estimate for natural channels (Young

& Wallis 1993), and therefore a different technique has

been suggested based on fuzzy rules. The fuzzy dispersion

model developed here relies on the hypothesis that

the turbulent diffusion fluxes of a scalar property are a

direct result of the turbulent velocity fluctuations. This

supposition is supported by previous work in a laboratory

flume (Kettle & Beven 2001). The fuzzy model allows the

uncertainties in our knowledge of the turbulent field to be

incorporated directly into the model. These uncertainties

are then carried through the model to produce a distribu-

tion of possible tracer fields resulting from the different

possible fluctuating fields.

However, in order to model the dispersion of the

tracer, the mean velocity field must be known. This is

calculated using the CFD package Telemac 2D, in which

a semi-distributed constant-eddy viscosity model is

employed. The flow domain is divided into three different
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zones: the dead zone, the main flow and a shear zone that

separates them. This was justified on the basis of local

transverse components of Reynold’s stresses calculated

from acoustic Doppler velocimeter (ADV) measurements

of turbulent time series within the different zones. These

stresses, which can be interpreted as turbulent fluxes of

momentum, were found to vary considerably, with values

of 0.479, 2.053 and 0.09 kg m − 1 s − 2 in the main flow,

shear zone and dead zone, respectively. Multiple runs of

Telemac 2D were used to find the parameter sets which

gave stable flow fields that approximately satisfied the

constraints introduced by the velocity data observed (see

Hankin et al. 2001). The appropriate parameters were

found to be an eddy viscosity of 0.03 kg m − 1 s − 1 and

Manning’s n of 0.045 in the dead zone, an eddy viscosity of

0.018 kg m − 1 s − 1 and n = 0.025 in the shear zone, and an

eddy viscosity of 0.027 kg m − 1 s − 1 and n = 0.039 in the

main channel. The results of this simulation are shown in

Figure 1. The mean velocity field used in the mixing model

is not an exact match with the field velocity measurements

since Telemac 2D slightly underestimates the longitudinal

and lateral extent of the dead-zone region into the main

flow. However, if observed and predicted velocities are

compared at locations relative to the shear zone they show

reasonable agreement, implying that the mean flow field is

of the correct order of magnitude. Given the uncertainty

involved in taking field velocity measurements, as well

as in the conversion of a fully three-dimensional system

to two dimensions, the velocity field was accepted as

adequate.

The fluctuating velocity field is calculated using the

transverse velocity shear in a set of fuzzy rules derived

from flume data described in Kettle & Beven (2001). Once

a fuzzy number for the longitudinal velocity fluctuation u′
(the root mean square of the temporal deviations from the

mean longitudinal velocity) has been calculated, a single

value of u′ is chosen at random. This is then used to find a
corresponding fuzzy number for the cross-stream velocity

fluctuation v′, from which a single value is chosen. The

model is run in this way using several hundred realiz-

ations, each with a slightly different fluctuating field, to

produce a fuzzy number for the solute concentration in

each cell. This approach attempts to capture some of the

uncertainty inherent in the system, and to carry this

through the model without loss of information.

METHODS

Experimental equipment and procedures

Dead-zone site

The chosen reach is on the River Severn at Leighton,

which is close to Shrewsbury in Shropshire. In this region

the river is up to 80 m wide, with a classic meandering

sequence with alternating gravel point bars and steeply cut

banks. The dead zone under investigation lies immediately

downstream of a gravel bar, as shown in Figure 1. The

dead zone contains slow-moving recirculating water that

is separated from the main flow by a visibly turbulent

shear-zone region.

Velocity measurements

Velocity measurements were taken using an acoustic

Doppler velocimeter (ADV) that measures instantaneous

Figure 1 | Site of experiment with numbered measurement points marked, depth of

river bed, and mean velocity field produced by TELEMAC-2D. Dye injection

point is shown by an asterisk in the first plot. The third plot depicts only a

selection of the velocity vectors from the grid used in the model to allow

greater clarity.
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flow velocities in three dimensions. The ADV samples are

taken at 25 Hz, over a measuring volume of approximately

1 cc, located 5 cm below the sensor head. The accuracy of

this instrument was investigated by Lane et al. (1998) and

was found to give good results for mean flow velocities.

Velocity measurements were taken at the tracer sites at

a depth which allowed submersion of the probe, and

vertical velocity profiles were measured at intervals across

the width of the main flow, upstream of the dead zone,

using an Ott electromagnetic current meter array. These

measurements were depth-averaged and used as input for

the velocity field simulation in Telemac 2D.

Tracer measurements

The rhodamine tracer was released at a steady rate for

220 min into the main flow upstream of the dead zone.

Water samples were then taken from the river at six

strategic sites (see Figure 1).

SITE 1. This location marks the ‘reattachment zone’,

i.e. the point where fluid from the main flow enters the

recirculation zone by advection.

SITE 2. This site is at the furthest end of the dead zone,

and samples from here should be from water that has

travelled almost completely through the dead zone.

SITE 3. This site marks the beginning of the

shear zone, where fast-moving water meets the slowing,

recirculating dead-zone water.

SITES 4 and 5. These sites lie either side of the shear

zone, and give an insight into how the flow structure

affects dispersion.

SITE 6. This site is approximately in the centre of the

dead zone.

Ten minutes after release of the dye, discrete bottled

samples were collected simultaneously at Sites 1–5. There-

after, samples were collected at 15-min intervals. Site 6

was sampled every 2 s using an in situ fluorometer.

Samples were taken at approximately 0.5 m below the

water surface, or at half the water depth in very shallow

sites. The dye pump was switched off after 220 min, but the

manual sampling continued until 345 min after the

release, and the fluorometer continued to sample for a

further 163 min, after which time the concentration levels

in the dead zone had returned to the background level.

Velocity and turbulence characteristics

Figure 2 shows the time-series data for the longitudinal

velocity, U, which is taken to be in the x direction on the

axes in Figure 1. The plots clearly show that each of the

sites is affected by periodic forcing of differing frequencies.

Using a Fourier transform, the dominant time period was

calculated. The reattachment site (Site 1) shows the

strongest periodicity, with a time period of 375.5 s.

However, the time-series plot indicates that there exists

another much larger time period, but the data were not

collected for long enough to capture this. It is thought that

this longer period may be associated with recirculation in

the dead zone, which also appears to cause a periodic

lateral movement of the shear zone, as was observed in the

field. The dead-zone side of the shear zone (Site 4) has a

time period of 60.8 s, whilst the main flow side of the shear

zone (Site 5) has a time period of 67.8 s and the data do

not indicate a larger periodicity is present. The site of the

fluorometer (Site 6) near the centre of the dead zone has a

time period of 246.3 s along with a much larger time

period on a similar time scale to that in the reattachment

zone. Again, the time series does not continue for long

enough to capture this. Thus, it can be seen that the dead

zone exhibits a complex time-dependent flow structure.

However, for modelling purposes it is simpler to assume a

Figure 2 | Time series data for mean longitudinal velocity, U, at 4 tracer sites.
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steady flow. Therefore the flow is considered to be steady,

such that the mean velocity is taken from the time series,

and the root mean square of the deviations from this mean

are represented in the fluctuating velocity u′. Figure 3
shows the probability distributions of the temporal fluc-

tuations from the mean velocity. These are calculated by

dividing the range between the minimum and maximum

recorded velocities in each time series into ten equal

intervals and summing up the number of values in each

interval. However, these distributions are biased accord-

ing to which section of the dominant time period the

velocity data were collected in. To approach a non-skewed

distribution, the data must be collected over a time period

that is a multiple of the lowest-frequency periodic motion.

Sites with a smaller time period show symmetrical

distributions, whereas the reattachment zone and the

fluorometer site show negatively skewed distributions.

If only the means of the time series data are con-

sidered, the sites may be summarized as shown in Table 1.

This table shows that the mean velocity varies by an order

of magnitude over the shear zone. This is reasonable, since

the dead-zone water is in the lee of the gravel bar and is

hardly affected by the main flow expect by the diffusion of

momentum across the shear zone and a gentle recircula-

tion generated when the main flow hits the bank at the far

end. At this point, the fast-moving water has spread out to

both banks and has lost some of the high speed it reached

at the constriction point at the start of the gravel bar.

Tracer results

Bottled samples were analysed in the laboratory with the

calculated concentrations standardized to a temperature

of 20°C. Figure 4 shows the changes in tracer concen-

tration at each site. Site 3 has been inserted separately

because the concentration is an order of magnitude

greater than that at the other sites. The dye first appears at

Site 5 (main flow) and then reaches Site 1 (the reattach-

ment zone). The dye then appears at Site 4 (the dead zone

side of the shear zone). It may have reached here by

turbulent diffusion through the shear zone, or by catching

a fast zone of recirculation in the dead zone. After 30 min

from the release time, the tracer reaches the centre of the

dead zone (Site 6). However, it is not until 100 min after

Figure 3 | Probability distributions for u′.

Table 1 | Velocity characteristics of four tracer sites. All velocities are in cm s−1

Site Description U V W u′ v′ w′

1 Reattachment − 1.35 0.20 0.061 2.81 1.67 0.85

4 Shear zone (dead zone) − 1.54 − 3.87 − 0.48 2.2 2.18 0.88

5 Shear zone (main flow) 22.3 − 44.53 − 1.72 14.42 12.13 7.86

6 Centre of dead zone − 0.95 − 2.51 − 0.32 2.96 1.6 0.92
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the release time that the tracer reaches the far side of the

dead zone (Site 2). The tracer is recorded at Site 3 as soon

as the dye is released, and shows very large fluctuations in

concentration over the time period monitored. This is

probably because the site is in a shallow area near the

bank that may itself be a miniature dead zone which is

periodically flushed by the large-scale lateral movement of

the shear zone.

Fuzzy sets and fuzzy rules

A fuzzy set is a set of objects in which each object has a

membership function assigned to it that indicates the

extent to which the object belongs to the set. An example

of a fuzzy set is the set of ‘fast velocities’. Since there is

no definite boundary between ‘fast’ and ‘not fast’, each

velocity reading belongs to the set to a different degree.

The membership function of fuzzy set A is denoted by mA,

and is a mapping from the universal set, X, to the interval

of real numbers from 0 to 1 inclusive. The closer that

mA(X) is to 1 the more X belongs to A, and the closer it is

to 0 the less it belongs to A.

Each fuzzy rule used in this work contains only input

and one output, so that logical operators (e.g. AND and

OR) are not incorporated. In Boolean logic, a rule can

either apply with absolute certainty or not apply. In fuzzy

logic, a rule may partially apply, so that there may be cases

where a few different rules with different consequences

can, to a certain degree, be applied to the same input. The

level to which a rule applies to a given input is termed the

degree of fulfilment (DOF) of a fuzzy rule and is a value in

the interval [0,1]. Figure 4 shows how two rules may be

used by one input, and how the consequence of each rule

may be combined to produce the final output fuzzy set.

There are many methods for combining the rule responses

(see Dubois & Prade 1991; Bardossy & Duckstein 1995);

in this work the sum method is used, in which the

final output is simply the sum of all fuzzy sets given by the

rules.

Fuzzy rules for u′

The fuzzy rules used to predict the fluctuating field were

derived from velocity data collected in a laboratory flume

(see Kettle & Beven 2001). From these data, a set of

non-dimensional rules was developed relating the trans-

verse velocity shear z∂U/∂yz/(Uf/h) to the mean longi-

tudinal velocity fluctuation u′/Uf, where h is the mean

water depth and Uf is the mean channel velocity. The fuzzy

inference system consists of one input (z∂U/∂yz/Uf/h)

and one output (u′/Uf), as shown in Figure 5. Both have
five membership functions and the system is described by

the five rules:

1. If z¤U/∂yz/(Uf/h) is in fuzzy set 1, then (u′/Uf) is
in fuzzy set 1.

2. If z¤U/∂yz/(Uf/h) is in fuzzy set 2, then (u′/Uf) is
in fuzzy set 2.

. . . and so on.

The membership functions for the fuzzy sets used in

these rules are shown in Figure 6. These are derived from

the probability distributions of the flume velocity data

described by Kettle & Beven (2001). The output fuzzy sets

from each rule are aggregated using the sum method as

described above. There is no need for the final fuzzy set to

be defuzzified to a single crisp number as the model takes

advantage of the fact that u′ may occur over a range of
values for a given velocity shear.

Figure 4 | Tracer time curves at each site.
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Numerical model

Figure 4 shows that for a significant period of time

during the experiment the concentrations changed little

over time. It is therefore possible to model the main

characteristics of the system as a steady-state simulation.

The model is run on a two-dimensional non-orthogonal

depth-averaged grid. Telemac 2D is used to generate the

mean mass fluxes through each cell face. The mean

velocities are derived from these fluxes and input to the

fuzzy inference system. The fuzzy inference system then

provides the fuzzy set of the fluctuating velocity u′ at the
cell face. The calculation of the turbulent mass fluxes

across each cell face relies on the assumption that each

cell is well mixed. The mass fluxes from the mean and

fluctuating fields are then used to calculate the transport

of mass through the domain.

In the finite-volume formulation, as shown in

Figure 7, the diffusive component is conceptualized as

an equal and opposite exchange of fluid across a cell

boundary. For example, fluid from cell P will move out of

the cell at a speed u′
e into cell E, and fluid from cell E will

move into cell P at a speed u′
e. Upper-case subscripts

denote node points (cell centres) and lower-case

subscripts denote cell face values. Integrating over the

control volume in Figure 7, with the transported scalar fi

considered to be constant over the cell face i, and the flow

into the cell taken as positive, gives

fwAwUw − feAeUe + fsAsVs − fnAnVn
= u′

wAw(fP − fW) + u′
eAe(fp − fE)

+ v′
sAs(fP − fS) + v′

nAn(fP − fN) (1)

where Ai is the area of the cell face i given by the product

of the depth at location i(di) and the length of the cell side

0.45

0.8

|dU/dy| / (Uf /h)=0.55

Final fuzzy set for u'/Uf

Input: |dU/dy| / (Uf/h) Output: u'/ Uf

Rule 1

Rule 2

µ

µ

µ

Figure 5 | A simplified example of how a fuzzy inference system uses a value for the

non-dimensionalized transverse velocity shear in 2 rules to produce 2 fuzzy

sets for the non-dimensionalized velocity fluctuation which are then

aggregated to produce a single fuzzy set.

Figure 6 | Input and output membership functions for fuzzy rules relating non-dimensionalized longitudinal velocity fluctuations and transverse velocity shear.
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i, for i = e,w,n,s. This is the general equation for the

numerical scheme, which is automatically cast in a

fully conservative manner because of the finite-volume

formulation.

Hybrid finite-volume scheme

The values of f at the cell faces in Equation (1) are

calculated according to the hybrid scheme (Spalding 1972).

This scheme uses a combination of the up-wind and

central differencing schemes, such that it exploits the

transportiveness of the up-wind scheme and the increased

accuracy of central differencing. If the central-difference

scheme is used to find the values of f at the cell faces, then

the discretization scheme is only stable and accurate if the

ratio of advection to diffusion is less than two. In the work

presented here, this non-dimensional value is given by

zU/u′z, and is equivalent to the Peclet number used in
traditional finite-volume schemes, which is defined as

Pe =zU∆x/etz where ∆x is the cell length and et is

the turbulent diffusion coefficient. Therefore, the hybrid

scheme utilizes the central difference scheme to

calculate f at the cell face ifzPeTz<2 at that face (where

PeT = U/u′), otherwise the up-wind scheme is employed.
For example, if the east cell face has zPeTz<2, the

hybrid scheme uses a central-difference approximation to

estimate f at the east cell face, so that

fe = linear interpolation between fP and fE

However, if the east cell face has zPeTz≥2, then the
up-wind scheme is used, so that

fe = fP if Ue>0

fe = fE if Ue<0

This is easily applied in two dimensions by treating each

cell boundary in the way described above. Once the values

of f at the cell faces have been found in terms of the

cell centre values of f, Equation (1) is rearranged in the

form

apfP = aWfW + aEfE + aSfS + aNfN + Su (2)

with

aP = aW + aE + aN + aS + (Ue − Uw) + (Un − Us) − Sp

where the coefficients aE, aw, aN, aS and aP depend upon

the magnitude of the Peclet number at faces e, w, n and s,

and the source term is a function of the dependent vari-

able, such that the source over the cell volume is given by

(Su + SpfP). The source term is defined in this way so that

it is possible to set the variable f at node P to a value ffix

by assigning Sp a very large arbitrary value Z and setting Su
to Zffix. The value of Z must be large enough to render the

other terms on the right-hand side of Equation (2)

negligible, so that fP = ffix (Versteeg & Malalasekera

1995).

Velocity fluctuations

The mean velocity field produced by Telemac 2D is used to

calculate the transverse velocity shear, which is the input

to the fuzzy rule system. The rules then produce a fuzzy

number for u′. A single value for u′ is generated based on
the single-value simulation method of fuzzy variables

(Dou et al. 1997), termed the fuzzy-numerical simulation

method by Chanas & Nowakowski (1988). This is done by

randomly generating a value t of the membership function

on the interval [0,1]. This is the membership value at

which the fuzzy set for u′ is bounded below so that a new

Figure 7 | A control volume around node P.
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fuzzy set (known as the t-level set) is created in which

each member, u′
t, has a membership value greater than t. A

value from the t-level set is then randomly chosen to be the

single value for u′. The fuzzy number for v′ is then found
from a fuzzy regression relationship (Bardossy et al. 1990)

given by

v′ = 0.7864u′ + 0.0038, m = 1 (3)

v′ + = 1.1664u′ + 0.0038, m = 0

v′ − = 0.4064u′ + 0.0038, m = 0

where m is the membership value of the fuzzy set, and v′ +

and v′ − are the upper and lower velocity bounds. This
relationship is derived from laboratory flume data and is

given in detail in Kettle & Beven (2001). A single value for

v′ is then found in a similar way so that the same value of
t is used to create the t-level set for v′, and then a value
from v′

t is chosen at random. The single values of u′ and v′
are then used in the finite volume to calculate the diffu-

sion. The resulting concentration field gives the distribu-

tion for the chosen t-level. Multiple runs give possible

concentration fields for each t-level, from which a final

fuzzy number for concentration may be reconstructed for

each cell.

Figure 8 shows the output for u′ from the fuzzy rules
when the distribution has been defuzzified to a crisp

number by taking the centroid of the fuzzy set. This figure

shows that the fuzzy rules predict that the main areas of

turbulent activity are concentrated along the bank regions

and in the shear zone. This pattern is supported by general

observations in the field, but the actual values of the

turbulent fluctuations are approximately half the size of

those at the corresponding points measured in the flow.

This is because the field measurements include large

temporal variations in velocity due to the periodic nature

of the dead-zone flow system that cannot be accounted for

in the steady state. Since the fuzzy rules are derived from

velocity measurements taken around a dead zone in a

laboratory flume, these oscillations should be inherent in

the data used to derive the rules. However, the laboratory

dead zone is of length 30 cm and the river dead zone is

approximately 100 m in length, so the underestimation of

the turbulent fluctuations may reflect a scale problem. It

could be that the periodic oscillation of the shear zone is

more significant at this much larger scale.

Dye source

In order to simulate the steady-state portion of the

experiment accurately, the tracer concentration in the

injection site cell is calculated by a mass balance equation

and fixed at this value for the simulation. This is done by

setting the source terms in this cell as

Su = 10
30ffix and Sp = − 10

30

When this source is added to the discretized equation it

gives

(aP + 10
30)fP = Σaifi + 1030ffix (4)

The actual value of the number 1030 is arbitrary, as it just

has to be very large compared with the coefficients ai.

Thus, if the ai values are negligible in Equation (4), then

fP = ffix

Figure 8 | Longitudinal velocity fluctuations, u′, in cm/s taken from the centroid of the

fuzzy set produced by the input ofz)U/)yz/(Uf/h) into the fuzzy inference

system.
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Once the coefficient for each node in the domain has been

calculated, a large system of linear equations in the form of

Equation (2) is obtained. Since there is an equation for

each node, solving these equations simultaneously yields

the value of f at each node. These discretized equations

are solved using the iterative tri-diagonal matrix algorithm

(TDMA) developed by Thomas (1949). It is applied here

in an iterative fashion, as described in Versteeg &

Malalasekera (1995).

RESULTS AND DISCUSSION

Figure 9 shows that the concentration distribution

predicted by the model captures the observed data at the

reattachment zone (Site 1), at the start of the shear zone

(Site 3), on the dead-zone side of the shear zone (Site 4)

and in the centre of the dead zone (Site 6). The concen-

tration at Site 5, which is on the main-flow side of the

shear zone, is underestimated, which could be due to the

absence of the vertical dimension. The model assumes

complete vertical mixing, but over this short distance it is

unlikely that the tracer will have mixed through the whole

depth in the main flow. Thus, in reality the measured

concentration will exceed that predicted by the model.

The concentrations at the other sites in the dead zone are

generally overestimated, which implies that the model is

over-predicting the amount of tracer entering the dead

zone. This could be due to an inaccurate mean velocity

field or an overestimation of the turbulent mixing laterally

across the shear zone. However, given that the turbulent

diffusion of the dye is based on fuzzy rules derived from

velocity measurements taken from a laboratory flume that

is two orders of magnitude smaller than the river dead

zone, the fuzzy model produces reasonable results. The

periodicity in the river dead zone presents problems when

studying the magnitude of the velocity fluctuations, which

suggests that a better result could be obtained using the

fuzzy rules in a time-dependent flow model.

CONCLUSION

In this paper, an alternative approach to the popular CFD

packages based on fuzzy rules has been presented to

describe the imprecise nature of mixing in a river

situation, and to incorporate this uncertainty into a model

structure. The results show that despite the simplification

of a time-dependent flow in a complex three-dimensional

geometry to a depth-averaged, steady-state situation, it

is still possible to predict concentration fields, within

degrees of uncertainty, using the fuzzy model. The fuzzy

rules also appear to work (to a certain extent) on a variety

of scales, from a laboratory flume (Kettle & Beven 2001) to

a large river. The flexibility and simplicity of the fuzzy

rules allow more information on the flow to be added with

ease. Future work may lead to the development of rules

relating local bed roughness to turbulent fluctuations. To

conclude, fuzzy rules allow non-linear information to be

incorporated easily into a finite-volume model so that

limiting assumptions about the turbulent field need not be

made. This extra information allows the uncertainties

inherent in the turbulent field to be carried through the

model to produce a distribution of possible concentrations

that compare well with those measured in the field.

Figure 9 | Steady state concentration (in units of 106 kg/m3) at each sample site. The

predicted fuzzy number for concentration is shown by the dotted lines such

that the most likely concentration corresponds to a membership value of 1,

but all concentrations with membership values greater than zero are possible

to lesser extents. The observed data is a single value depicted by a solid line.
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NOMENCLATURE
Ae area of east face (m2)
aE coefficients of fE
aN coefficients of fN
aP coefficients of fP
aS coefficients of fS
aW coefficients of fW
et diffusion coefficient (m2 s − 1)
e east cell face
h water depth (m)
mA membership function of fuzzy set A
n north cell face
P centre cell node
Pe

T
Peclet number used in model

Pe Traditional Peclet number
f value of property per unit mass
Sp source term
Su source term
s south cell face
t time (s)
u′ root mean square of the temporal fluctuating

longitudinal velocity (m s − 1)
U mean longitudinal velocity at a point in the flow

domain (m s − 1)
Uf average longitudinal velocity for all the main

flow (m s − 1)
v′ root mean square of the temporal cross-stream

fluctuating velocity (m s − 1)
V mean cross-stream velocity (m s − 1)
W mean vertical velocity (m s − 1)
w′ root mean square of the temporal vertical fluctu-

ating velocity (m s − 1)

w west cell face
x distance (m)
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