
  

Abstract — In most fuzzy systems, the completeness of the 
fuzzy rule base is required to generate meaningful output when 
classical fuzzy reasoning methods are applied. This means, in 
other words, that the fuzzy rule base has to cover all possible 
inputs. Regardless of the way of rule base construction, be it 
created by human experts or by an automated manner, often 
incomplete rule bases are generated. One simple solution to 
handle sparse fuzzy rule bases and to make infer reasonable 
output is the application of fuzzy rule interpolation (FRI) 
methods. In this paper, we present a Fuzzy Rule Interpolation 
Matlab Toolbox, which is freely available. With the 
introduction of this Matlab Toolbox, different FRI methods can 
be used for different real time applications, which have sparse 
or incomplete fuzzy rule base. 

I. INTRODUCTION 
UZZY systems use fuzzy rule base to make inference. A 
fuzzy rule base is fully covered (at level α), if all input 

universes are covered by rules at level α. Such fuzzy rule 
bases are also called dense or complete rule bases. In 
practice, it means that for all the possible observations there 
exists at least one (at least partially) matching rule, whose 
antecedent part overlaps the input data at level α. If this 
condition is violated, the rule base is considered to be sparse, 
i.e. it contains gaps. The classical fuzzy reasoning 
techniques like Zadeh’s, Mamdani’s, Larsen’s or even 
Sugeno’s cannot generate an acceptable output for such 
cases. Fuzzy rule based interpolation (FRI) techniques were 
introduced to generate inference for sparse fuzzy rule base, 
thus extend the usage of fuzzy inference mechanisms for 
sparse fuzzy rule base systems. Basically, FRI techniques 
perform interpolative approximate reasoning by taking into 
consideration the existing fuzzy rules for cases where there 
is no matching fuzzy rule. 

There are several FRI techniques that satisfy the general 
applicability conditions introduced in [13]. These techniques 
can be divided into two groups depending on whether they 
generate the estimated conclusion directly or in two steps: 
first creating an intermediate rule by interpolation, and then 
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specifying the conclusion. 
Relevant members of the first group are the KH method 

[1] proposed by Kóczy and Hirota, MACI [2] (Tikk and 
Baranyi), FIVE [3] (Kovács and Kóczy), IMUL [4], [19] 
(Wong, Gedeon, and Tikk), the method based on the 
conservation of the relative fuzziness [5] (Kóczy, Hirota, 
and Gedeon), the interpolative reasoning based on graduality 
[6] (Bouchon-Meunier, Marsala, and Rifqi), and VKK 
method [7] (Vass, Kalmár and Kóczy). The methods 
belonging to the second group are described best by the 
generalized methodology (GM) defined by Baranyi et al. in 
[8]. Other typical members of this group are the ST method 
[9] (Yan, Mizumoto, and Qiao), the IGRV [10] developed 
by Huang and Shen, and the technique proposed by Jenei 
[11]. More details on most of these methods will be 
described in Section III. 

The rest of this paper is organized as follows. Section II 
presents the background of FRI and introduces numerous 
comparison conditions for such methods. Section III gives a 
short overview of FRI methods with special emphasis on 
those that will be included in our FRI Matlab toolbox. 
Section IV introduces the toolbox itself. Finally, Section V 
gives the conclusions. 

II. BACKGROUND OF FUZZY RULE INTERPOLATION 

A. Notation 
We use the conventional notations for fuzzy sets. A and B 

denote fuzzy sets of input and output universes, respectively. 
An n-dimensional MIMO (multi input, multi output) fuzzy 
rule, iR , is formulated as: 

imiiiniii BBBAAAR ,,,,,,: 2121 …… →  (1) 
where the first lower index refers to the rule, and the second 
index to the dimension. The observation and the conclusion 
are denoted by a star superscript: A*, B*. We refer to an α-
cut of a fuzzy set as Aα, where A denotes the set itself. The 
subscript indicating the cut precedes all other subscripts. 

B. Justification of FRI methods 
The main purpose to introduce FRI was to break down the 

computational complexity required in most classical fuzzy 
reasoning methods [12]. Rule interpolation is efficient if the 
shape of the fuzzy set is simple, mostly piecewise linear, for 
example triangular or trapezoidal. In such cases, fuzzy sets 
can be described by only a few characteristic points. It 
should be noted that an α-cut based FRI method should 
determine the conclusion based on a sufficient number of α-
cuts, i.e. based on the characteristic points of the involved 
fuzzy sets. Otherwise the calculation could become too 
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“expensive”. Although it could be expected that the 
conclusion preserves the linearity of the premises, it is not 
always satisfied; i.e., the shape of the conclusion can be 
different from the shape of the other involved sets.  

C. General conditions on rule interpolation methods 
In this section, we briefly review the general conditions 

related to the interpolative methods introduced in [13] for 
the evaluation and comparison of the different techniques 
based on the same fundamentals. The conditions reflect an 
application-oriented viewpoint. 

1. Avoidance of the abnormal conclusion. The estimated 
fuzzy set should be a valid one. This requisite can be 
described by the constraints (2) and (3). 

 
{ } { } [ ]1,0supinf ** ∈∀≤ ααα BB  (2) 
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where { }*Binf α  and { }*Bsup α  are the lower and upper 
endpoints of the actual α-cut of the estimated fuzzy set. 

2. The continuity of the mapping between the antecedent 
and consequent fuzzy sets should be consistent. This 
condition indicates that similar observations should lead 
to similar results. 

3. Preserving the “in between”. If the antecedent sets of 
two neighboring rules surround an observation, the 
approximated conclusion should be surrounded by the 
consequent sets of those rules as well. 

4. Compatibility with the rule base. This condition requires  
the validity of the modus ponent, i.e. if an observation 
coincides with the antecedent part of a rule, the 
conclusion produced by the method should correspond 
to the consequent part of that rule. 

5. The fuzziness of the approximated result. There are two 
opposite approaches in the literature related to this 
topic. According to the first subcondition (5.a), the less 
uncertain the observation is, the less fuzziness should 
have the approximated consequent. In other words, in 
case of a singleton observation the method should 
produce a singleton consequence. The second approach 
(5.b) originates the fuzziness of the estimated 
consequent from the nature of the fuzzy rule base. Thus, 
crisp conclusion can be expected only if all the 
consequents of the rules taken into consideration in the 
interpolation are singleton, i.e. the knowledge base 
produces certain information from fuzzy input data. 

6. Approximation capability (stability). The estimated rule 
should approximate with the highest possible degree the 
relationship between universes of the antecedent and 
consequent. If the number of the measurement points 
tends to infinity, the result should converge to the 

approximated function independently from the position 
of the measurement points. 

7. Preserving the piece-wise linearity. If the fuzzy sets of 
the rules taken into consideration are piece-wise linear, 
the approximated sets should preserve this feature. 

8. Applicability in case of multidimensional antecedent 
universe. This condition indicates that an FRI technique 
should present similar characteristics when being 
extended and applied to multidimensional input spaces. 

9. Applicability without any constraint regarding to the 
shape of the fuzzy sets. This condition can be weakened 
practically to the case of piece-wise linear, and Gauss-
bell shaped fuzzy sets, being the most frequently 
encountered in the applications. 

III. OVERVIEW OF FUZZY RULE INTERPOLATION TECHNIQUES 
The first FRI technique was published by Kóczy and 

Hirota [1]. It is referred to as KH method. It is applicable to 
convex and normal fuzzy (CNF) sets. It determines the 
conclusion by its α-cuts in such a way that the ratio of 
distances between the conclusion and the consequents 
should be identical with the ones between the observation 
and the antecedents for all important α-cuts. The formula is  

),(:),(),(:),( 2
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1
* BBdBBdAAdAAd = , (4) 

that is called the fundamental equation of rule interpolation 
(FERI), which can be solved for B* for relevant α-cuts after 
decomposition. Here 11 BA → and 22 BA →  form the pair 
of flanking rules for the observation A*, and d: F(X)×F(X) 
→R  is a distance function of fuzzy sets. The solution of (4) 
for the simplest SISO (single input, single output) case is: 
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These are called the formulae of linear KH interpolator. 
Here },{ ULC ∈  where L and U denote “lower” and 
“upper” extreme of the α-cut or fuzzy distance, respectively. 

It is shown in, e.g., [13] that KH method violates 
condition 1, i.e. the conclusion is not directly interpretable as 
fuzzy sets (see also Figure 1). This drawback motivated 
many researchers in finding alternative solutions. An 
obvious modification was proposed by Vass, Kalmár and 
Kóczy [7] (termed VKK method), where the conclusion is 
computed based on the distance of the centre points and the 
widths of the α-cuts, instead of lower and upper distances. 
The VKK method decreases the applicability limit of KH 
method, but does not eliminate it completely. The technique 
cannot be applied if any of the antecedent sets is singleton 
(the width of the antecedent’s support must be nonzero). 
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Fig. 1. Abnormal conclusion generated by the KH technique 

 
Despite the above disadvantage, KH is popular because its 

simplicity that infers its advantageous complexity properties. 
It was generalized in several ways. Among them the 
stabilized KH interpolator (6) is emerged, as it is proved to 
hold the universal approximation property [15], [16].   
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This method takes into account all flanking rules of an 
observation in the calculation of the conclusion in extent to 
the inverse of the distance of antecedents and observation. 
The universal approximation property holds if the distance 
function is raised to the power of N (input’s dimension). 

Another modification of KH is the modified alpha-cut 
based interpolation (MACI) method [2], which alleviates 
completely the abnormality problem. MACI’s main idea is 
the following: it transforms fuzzy sets of the input and 
output universes to such a space where abnormality is 
excluded, then computes the conclusion there, which is 
finally transformed back to the original space. MACI uses 
vector representation of fuzzy sets and originally was 
applicable to CNF sets [17]. These latter conditions 
(convexity and normality of fuzzy sets) can be relaxed, but it 
increases the computational need of the method considerably 
[18] (cf. condition 9). MACI is one of the most applied FRI 
methods [19], since it preserves advantageous computational 
and approximate nature of KH, while it excludes its 
abnormality.  

Another fuzzy interpolation technique was proposed by 
Kóczy et al. [5] that is related to condition 5a. It is called 
conservation of “relative fuzziness” (CRF) method, which 
notion means that the left (right) fuzziness of the 
approximated conclusion in proportion to the flanking 
fuzziness of the neighboring consequent should be the same 
as the (left) right fuzziness of the observation in proportion 
to the flanking fuzziness of the neighboring antecedent. The 
technique is applicable to CNF sets. The authors showed that 
this method has immediate connection with FERI.  

A new improved fuzzy interpolation technique for 
multidimensional input spaces (IMUL) was proposed in [4], 
and described in details in [19]. IMUL applies a combination 
of CRF and MACI methods, and mixes advantages of both. 
The core of the conclusion is determined by MACI method, 
while its flanks by CRF. The main advantages of this 
method are its applicability for multi-dimensional problems 
and its relative simplicity. It is therefore ideal for real-word 
problems.  

A rather different application oriented aspect of the fuzzy 
rule interpolation emerges in the concept of FIVE. The fuzzy 
reasoning method “FIVE” (Fuzzy Interpolation based on 
Vague Environment, originally introduced in [21], [22]) was 
developed to fit the speed requirements of direct fuzzy 
control, where the conclusions of the fuzzy controller are 
applied directly as control actions in a real-time system (see 
[3]).  
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Fig. 2. Interpolation of two fuzzy rules (Ri: Ai→Bi), by the Shepard operator 
based FIVE, and for comparison the min-max CRI with the centre of gravity 

defuzzification. 
 
The main idea of the FIVE is based on the fact that most 

of the control applications serves crisp observations and 
requires crisp conclusions from the controller. Adopting the 
idea of the vague environment (VE) [20], FIVE can handle 
the antecedent and consequent fuzzy partitions of the fuzzy 
rule base by scaling functions [20] and therefore turn the 
fuzzy interpolation to crisp interpolation. 

The idea of a VE is based on the similarity (in other 
words: indistinguishability) of the considered elements. In 
VE the fuzzy membership function )(xAµ  is indicating level 
of similarity of x to a specific element a that is a 
representative or prototypical element of the fuzzy set 

)(xAµ , or, equivalently, as the degree to which x is 
indistinguishable from a [20]. Therefore the α-cuts of the 
fuzzy set )(xAµ  are the sets which contain the elements that 
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are (1−α)-indistinguishable from a. Two values in a VE are 
ε-distinguishable if their distance is greater than ε. The 
distances in a VE are weighted distances. The weighting 
factor or function is called scaling function (factor) [20]. If 
VE of a fuzzy partition (the scaling function or at least the 
approximate scaling function [21], [22]) exists, the member 
sets of the fuzzy partition can be characterized by points in 
that VE (see e.g. scaling function s on Figure 2). Therefore 
any crisp interpolation, extrapolation, or regression method 
can be adapted very simply for FRI [21], [22]. Because of its 
simple multidimensional applicability, in FIVE the Shepard 
operator based interpolation (first introduced in [23]) is 
adapted (see e.g. Figure 2). 
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Fig. 3. Formation of solid in the input dimension and determination of A*′ 

 
Conceptually different approaches were proposed by 

Baranyi et al [8] based on the relation and on the semantic 
and inter-relational features of the fuzzy sets. The family of 
these methods applies GM; this notation also reflects to the 
feature that these methods are able to process arbitrary 
shaped fuzzy sets. The basic concept is to calculate the 
reference point of the conclusion based on the ratio of the 
distances between the reference points of the observation 
and the antecedents. Due to the modular structure of the 
methodology several techniques can be applied in its two 
steps.  

For example the solid cutting method (SCM) is used in the 
first step of the GM. Its key idea is that all involved sets are 
rotated by 90º around a vertical axis going through their 
reference point; then by connecting the corresponding points 
of antecedents and consequents two solids can be formed: 
one in the input and one in the output dimension. In figure 3, 
the solid formed in an input dimension is depicted. The 
solids are cut at the centres of the observation and at the 
location of the conclusion, respectively, which results in the 
set A*′ in the input space and in the set B*′ in the output 
space.  

The fuzzy set approximation technique FEAT-p proposed 
by Johanyák and Kovács in [28] is also applicable in the first 
step of the GM. It comes from the assumption that a better 
set approximation can be attained by taking into 
consideration all the sets in the partition. First, all the sets 
are shifted horizontally in order to reach the coincidence of 
the abscissa of their reference points with the abscissa of the 
reference point of the observation. Next, the shape of the 

new set is determined from the collection of the overlapped 
sets by introducing the concept of the polar cut (see Figure 
4) defined by the polar distance rho and the angle θ and 
assuming that a resolution and an extension principle can be 
defined for polar cuts, too. Its main advantages are that it can 
handle subnormal sets, and it is applicable for extrapolation, 
too. 

 
Fig. 4. Polar cut 

 
In the second step of the GM a single rule reasoning 

method (e.g. revision function) is used to determine the final 
conclusion B* based on the similarity of the observation A* 
and the “interpolated” observation A*′. The detailed 
description can be found for example in [8]. 

The methods following the GM have numerous 
advantages, such as: 
– they always give an interpretable conclusion as a “real” 

fuzzy set, i.e., any abnormal shape of the conclusion is 
precluded; 

– they can be applied to arbitrary shaped fuzzy sets, i.e., 
neither convexity nor normality is prescribed, only the 
centres of the sets have to be ordered. It means that 
some part of the observation can even exceed the 
support of antecedents; 

– versions specialized for piecewise linear fuzzy sets 
produce piecewise linear fuzzy set as conclusions, hence 
methods are shape-invariants.  

The only problematic point of some of these methods is 
that the calculation of the conclusion even for the special 
piecewise linear case requires considerable time, thus one of 
the most important reasons for inventing FRI techniques is 
violated or at least partly neglected. 

IV. FRI MATLAB TOOLBOX 

A. General description 
The Fuzzy Rule Interpolation Toolbox (FRI TB) is a 

collection of Matlab functions implementing interpolation 
based fuzzy inference techniques. The current version 
supports nine FRI methods (KH, the stabilized version of the 
KH, MACI, IMUL, CRF, FIVE, VKK, GM with SCM, 
FERI, and FPL, and GM with FEAT-p, FERI, and FPL), but 
the number of the included techniques is continuously 
growing. The whole toolbox is available for download under 
GNU General Public License from the web site [25]. The 
FRI TB was developed using Matlab 7 (R14) under 
Microsoft Windows XP. 
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Fig. 5. FIS data structure 

 
The FRI TB can be viewed as an extension of the standard 

Fuzzy Logic Toolbox (FL TB). It uses the FIS data structure 
extended with new parameters (see Figure 5) enabling to 
define subnormal membership functions (i.e. linguistic terms 
with height smaller than 1). Its data loader function 
(ireadfis) can equally use the new and the original FIS file 
format. This feature enables that a fuzzy system created by 
the FL TB can be reused, loaded, and evaluated by our 
program, which simplifies the comparison of results 
obtained by different inference methods. The new FIS data 
file format differs from the original only in the description of 
the membership functions. For example the line 

MF1=’mf1’:’trimf’,[0.4 0.6 0.8]![0 0.8 0] 
describes a triangular shaped linguistic term, of which 
characteristic points are {0.4, 0.0},{0.6, 0.8}, and {0.8, 0.0}. 
This extension was necessary because the FL TB presume 
the normality of the sets and therefore the ordinate values of 
the characteristic points are not stored. 
 

 
Fig. 6. The observation data file 

 
The FRI Toolbox contains a collection of sample FIS data 

files. Their naming convention can be explained in the 
easiest way through an example. The file 

In_4D_Out_2D_N_01.fis 

defines a FIS with 4 input and 2 output dimensions. Each set 
is normal. The digits at the end (01) denote that this one is 
the first from its group. 

The data describing the observation are also read from a 
text file with a structure similar to the structure of the FIS 
file and having the extension obs. Figure 6 presents the data 
file of an observation with 4 dimensions. Each line in the 
section [Observation] describes a fuzzy set of the input in 
each dimension. The meaning of their elements is the same 
as in the case of the FIS data file. Let us review the naming 
convention of the sample observation files through an 
example. In 

Obs_4D_Trap_01.obs 
the meaning of the first part is obvious, 4D denotes that it is 
4 dimensional, Trap indicates that all the four sets are 
trapezoidal shaped, and the digits at the end (01) denote that 
this is the first from its group. In the memory the observation 
is stored as an array of structures (obsstr). The fields of this 
structure are presented in Figure 7.  

The input and output universes can be multi-dimensional, 
the number of dimensions is not restricted. The system 
supports piece-wise linear membership functions (singleton, 
triangular, trapezoidal, and polygonal) for the most part of 
the methods. The method FIVE enables only singleton 
shaped observations. 

The current version of the toolbox enables only the use of 
convex and normal fuzzy sets in the rules and in the 
observation, as well. The range of the linguistic variables has 
to be [0,1]. Extrapolation is not supported.  
 

 
Fig. 7. The structure describing the observation 

 
Each method requires the existence of at least two such 

rules, which surround the observation in each dimension. At  
interpolation, it is an important task is to find flanking rules. 
If the observation coincides with the antecedent part of a 
rule, the rule is viewed as right or left flanking depending on 
the existence of other left or right flanking rules. For 
example if there is no left flanking rule the actual rule is 
considered as left flanking one.  

Most of the papers presenting the FRI methods specify an 
initial condition related to the ordering of the antecedent and 
consequent parts of the surrounding rules that can be 
expressed for the one dimensional case by (7) and (8). 

21 AAA ≺≺ ∗  (7) 

21 BB ≺  (8) 
where Ai and Bi denote the antecedent and consequent sets of 
the left respectively right flanking rules. In the real world 
applications, this condition cannot be always fulfilled. 
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Therefore most of our implementations do not require it.  

B. Parameters of the method 
In the case of the α-cut based techniques the number of 

the α-levels for which the calculations are made can be set 
by the user.  IMUL, MACI, and the techniques belonging to 
the GM family use a reference point for the characterization 
of the position of each fuzzy set. The type of this reference 
point is a parameter of their implementations. Most of the 
techniques calculate multidimensional distances in the 
Minkowski sense. The parameter w of the formula can also 
be set by the user. Its default value is 2.  

The method FIVE uses the Shepard interpolation. Its 
power factor can be given as parameter; by default it is equal 
to the antecedent dimensions of the rule base. The user can 
choose between linear and non-linear scaling factor 
approximations. The technique FEAT-p takes into 
consideration all fuzzy sets that belong to the partition with 
different weight values. The type of the weighting factor and 
its parameters also can be set by the user. 
C. The usage of the software 

The functions can be used from command line or from a 
graphical interface. The current version of the GUI is simple 
and easy to use. It can be started by typing in the Command 
Window with the command GraphTest. First, the location of 
FIS and the observation data should be given (see Figure 8), 
which can be done through the standard file open dialog box. 

 

 
Fig. 8. Specifying FIS and observation 

 
After the selection and load of the data, a new panel 

appears that enables to the user to choose an inference 
method (Figure 9).  

 

  
Fig. 9. Selection of inference method 

 

The evaluation of the modeled fuzzy system, i.e. the 
inference process starts by pressing the Start inference 
button. The input and output universes are represented in 
two separate windows each containing the same number of 
diagrams as the dimension of the input and output 
respectively. 

 

 
Fig. 10. Antecedent partitions and observation 

 

 
Fig. 11. Consequent partitions and conclusion 

 
In the example presented on Figures 10 and 11 the fuzzy 

system has 4 input and 2 output dimensions, the knowledge 
base contains only two rules, and the observation is of 
trapezoid shape. The result was inferred by MACI method. 

The sets representing the observation and the conclusion 
respectively; the sets belonging to the interpolated 
intermediate rule in the case of the techniques belonging to 
the group of two-steps methods described by the GM, are 
represented by thin and colored lines.  

In the case of the method FIVE the scaling functions 
describing the input and output universes are visualized as, 
well 

D. Further development plans 
The FRI Toolbox is under continuous development. We 

plan its development in three main directions. 
• Extending the existent implementations in order to 

support all kinds of polygonal membership functions 
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even the subnormal and non-convex ones in case of the 
methods whose definition cover these non-regular cases, 
too. 

• Implementation of new methods and techniques. From 
the first group of FRI methods among others, we are 
going to include the interpolative reasoning based on 
graduality [6]. From the second group, we are going to 
implement the similarity transfer based method [9], the 
semantic revision based methods (SRM I-II) [26], and 
the α-cut based FEAT-α technique [27]. 

• The graphical user interface will also be extended in 
order to ensure the input of FIS and observation related 
data interactively. 

V. CONCLUSIONS 
Fuzzy rule interpolation techniques extend the 

applicability of fuzzy rule based reasoning methods for the 
case when the rule base is sparse or incomplete. We gave a 
brief ovreview of the popular FRI methods and the 
comparison conditions. The paper introduced the FRI 
Matlab Toolbox, a freely available public tool that serves as 
the comparison test bed for FRI techniques and offers 
straightforward application possibility for real world 
problems. 

REFERENCES 
[1] L. T. Kóczy, K. Hirota, “Rule interpolation by α-level sets in fuzzy 

approximate reasoning”, in J. BUSEFAL, Automne, URA-CNRS. Vol. 
46. Toulouse, France, 1991, pp. 115-123. 

[2] D. Tikk , P. Baranyi, “Comprehensive analysis of a new fuzzy rule 
interpolation method”, in IEEE Trans. Fuzzy Syst., Vol. 8, pp. 281-
296, June 2000. 

[3] Sz. Kovács, L. T. Kóczy, “Application of an approximate fuzzy logic 
controller in an AGV steering system, path tracking and collision 
avoidance strategy”, Fuzzy Set Theory and Applications, In Tatra 
Mountains Mathematical Publications, Mathematical Institute Slovak 
Academy of Sciences, Vol. 16, Bratislava, Slovakia, 1999, pp. 456-
467. 

[4] K. W. Wong, T. D. Gedeon, and D. Tikk: “An improved 
multidimensional α-cut based fuzzy interpolation technique”, in Proc. 
Int. Conf Artificial Intelligence in Science and Technology 
(AISAT’2000), Hobart, Australia, 2000, pp. 29–32. 

[5] L.T. Kóczy, K. Hirota, and T. D. Gedeon, “Fuzzy rule interpolation by 
the conservation of relative fuzziness”, Technical Report TR 97/2. 
Hirota Lab, Dept. of Comp. Int. and Sys. Sci., Tokyo Inst. of Techn., 
Yokohama, 1997. 

[6] B. Bouchon-Meunier, C. Marsala, and M. Rifqi, “Interpolative 
reasoning based on graduality”, in Proc. FUZZ-IEEE’2000, 2000, pp. 
483-487. 

[7] G. Vass, L. Kalmár, L. T. Kóczy, “Extension of the fuzzy rule 
interpolation method”, in Proc. Int. Conf. Fuzzy Sets Theory 
Applications (FSTA ’92), Liptovsky M., Czechoslovakia, 1992, pp. 1-
6. 

[8] P. Baranyi, L. T. Kóczy, and Gedeon, T. D.: A Generalized Concept 
for Fuzzy Rule Interpolation. IEEE Trans. on Fuzzy Systems, Vol. 12, 
No. 6, 2004, pp 820-837. 

[9] S. Yan, M. Mizumoto, and W. Z. Qiao, “An Improvement to Kóczy 
and Hirota’s Interpolative Reasoning in Sparse Fuzzy Rule Bases”, in 
International Journal of Approximate Reasoning, 1996, vol. 15, pp. 
185-201. 

[10] Z. Huang, Q. Shen, “Fuzzy interpolation with generalized 
representative values”, in Proceedings of the UK Workshop on 
Computational Intelligence, pp. 161-171, 2004. 

[11] S. Jenei,: “Interpolation and Extrapolation of Fuzzy Quantities 
revisited - (I). An Axiomatic Approach.” in Soft Computing, 5, pp. 
179-193, 2001. 

[12] L. T. Kóczy, and K. Hirota, “Size Reduction by Interpolation in Fuzzy 
Rule Bases”, IEEE Transactions of System, Man and Cybernetics, 
Vol. 27, pp. 14–25, 1997. 

[13] Zs. Cs. Johanyák, Sz. Kovács, “A brief survey and comparison on 
various interpolation based fuzzy reasoning methods”,  Acta 
Politechnica Hungarica, Journal of Applied Sciences at Budapest 
Tech Hungary, Vol 3, No 1, ISSN 1785-8860, pp. 91-105, 2006. 
Available at: http://www.bmf.hu/journal/Johanyak_Kovacs_5.pdf 

[14] L. T. Kóczy, and Sz. Kovács, “Shape of the Fuzzy Conclusion 
Generated by Linear Interpolation in Trapezoidal Fuzzy Rule Bases,” 
in Proceedings of the 2nd European Congress on Intelligent 
Techniques and Soft Computing, pp. 1666–1670, Aachen, 1994. 

[15] D. Tikk, I. Joó, L. T. Kóczy, P. Várlaki, B. Moser, and T. D. Gedeon. 
Stability of interpolative fuzzy KH-controllers. Fuzzy Sets and 
Systems, 125(1) pp. 105–119, January 2002. 

[16] D. Tikk: Notes on the approximation rate of fuzzy KH interpolator. 
Fuzzy Sets and Systems, 138(2), pp. 441–453, September 2003. 

[17] Y. Yam, and L. T. Kóczy, “Representing membership functions as 
points in high dimensional spaces for fuzzy interpolation and 
extrapolation”, in Tech. Rep.CUHK-MAE-97-03, Dept. Mech. 
Automat. Eng., Chinese Univ. Hong Kong, , 1997. 

[18] D. Tikk, P. Baranyi, T. D. Gedeon, and L. Muresan, “Generalization 
of a rule interpolation method resulting always in acceptable 
conclusion”, in Tatra Mountains Math. Publ., 21, pp. 73–91, 2001. 

[19] K. W. Wong, D. Tikk, T. D. Gedeon and L. T. Kóczy, “Fuzzy rule 
interpolation for multidimensional input spaces with applications: A 
case study”. IEEE Trans of Fuzzy Systems, 13(6), pp. 809–819, 
December 2005. 

[20] Klawonn, F.: Fuzzy Sets and Vague Environments, Fuzzy Sets and 
Systems, 66, pp. 207-221, 1994. 

[21] Kovács, Sz.: New Aspects of Interpolative Reasoning, in Proceedings 
of the 6th. International Conference on Information Processing and 
Management of Uncertainty in Knowledge-Based Systems, Granada, 
Spain, pp. 477-482, 1996. 

[22] Kovács, Sz., Kóczy, L.T.: The use of the concept of vague 
environment in approximate fuzzy reasoning, Fuzzy Set Theory and 
Applications, Tatra Mountains Mathematical Publications, 
Mathematical Institute Slovak Academy of Sciences, Bratislava, 
Slovak Republic, vol.12, pp. 169-181, 1997. 

[23] Shepard, D.: A two dimensional interpolation function for irregularly 
spaced data, in Proceeding of the 23rd ACM International. Conference, 
pp. 517-524, 1968. 

[24] Kóczy, L. T., Kovács, Sz.: On the preservation of the convexity and 
piecewise linearity in linear fuzzy rule interpolation, in Tech. Rep. TR 
93-94/402, Tokyo Inst. Technol., Yokohama, Japan, LIFE Chair 
Fuzzy Theory, 1993. 

[25] Fuzzy Rule Interpolation Matlab Toolbox website, http://fri.gamf.hu 
[26] Z. Shen, L. Ding, M. Mukaidono, “Methods of revision principle”, In 

Proc. 5th IFSA World Congr., 1993, pp. 246–249. 
[27] Zs. Cs Johanyák, Sz. Kovács, “Fuzzy set approximation based on 

linguistic term shifting”, MicroCad 2006, Miskolc, Hungary, March 
16-17, 2006, pp. 123-128. Available at: 
http://informatika.gamf.hu/kutatas/jcs_ksz_fuzzyapprox.pdf 

[28] Zs. Cs Johanyák, Sz. Kovács, “Fuzzy set approximation using polar 
co-ordinates and linguistic term shifting”, SAMI 2006, 4rd Slovakian-
Hungarian Joint Symposium on Applied Machine Intelligence, 
Herl'any, Slovakia, January 20-21 2006, ISBN 963 7154 44 2, pp. 
219-227. Available at:  
http://informatika.gamf.hu/kutatas/jcs_ksz_fuzzyapproxpolar.pdf 

[29] P. Baranyi and L. T. Kóczy, “A general and specialsied solid cutting 
method for fuzzy rule interpolation,” in Journal BUSEFAL, Automne, 
Toulouse, France: Universite Paul Sabatier, 1996, pp. 13–22. 

 
 

357

Authorized licensed use limited to: Murdoch University. Downloaded on October 27, 2009 at 04:40 from IEEE Xplore.  Restrictions apply. 


