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Fuzzy Rules Extraction Directly from
Numerical Data for Function Approximation

Shigeo Abe, Senior Member, IEEE, and Ming-Shong Lan

Abstract—In our previous work we developed a method for
extracting fuzzy rules directly from numerical input-output data
for pattern classification. In this paper we extend the method
to function approximation. For function approximation, first,
the universe of discourse of an output variable is divided into
multiple intervals, and each interval is treated as a class. Then
the same as for pattern classification, using the input data for
each interval, fuzzy rules are recursively defined by activation
hyperboxes which show the existence region of the data for the
interval and inhibition hyperboxes which inhibit the existence
region of data for that interval. The approximation accuracy of
the fuzzy system derived by this method is empirically studied
using an operation learning application of a water purification
plant. Additionally, we compare the approximation performance
of the fuzzy system with the function approximation approach
based on neural networks. :

I. INTRODUCTION

UZZY systems and neural networks have recently been

proposed for function approximation [1]-[3]. When com-
paring these two technologies, fuzzy systems are more favor-
able in that their behavior can be explained based on fuzzy
rules and thus their performance can be adjusted by tuning the
rules. But since, in general, knowledge acquisition is difficult
and also the universe of discourse of each input variable
needs to be divided into several intervals, applications of fuzzy
systems are restricted to the fields where expert knowledge is
available and the number of input variables is small.

To overcome the problem of knowledge acquisition, several
methods for extracting fuzzy rules from numerical data have
been developed. But most methods assume the divisions
of input variables are fixed regions [4], [5]. In [6], fuzzy
rules with variable fuzzy regions (hyperboxes) are extracted
for classification problems. This approach has a potential
applicability to problems having a high-dimensional input
space. But because the overlap of hyperboxes of different
classes must be resolved by dynamically expanding, splitting
and contracting hyperboxes, the approach is difficult to apply
to the problems in which several classes overlap.

In [7], we discussed a method for extracting fuzzy rules
for pattern classification. The fuzzy rules with variable fuzzy
regions were defined by activation hyperboxes which show
the existence region of data for a class and inhibition hy-
perboxes which inhibit the existence of the data for that
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class. These rules were extracted directly from numerical
data by recursively resolving overlaps between two classes.
Performance comparison with neural networks for a license
plate recognition system showed that training time of our
method was negligible compared with that of neural networks,
while the recognition rates were almost the same.

In this paper we extend our method to function approxi-
mation. First, we divide the range of an output variable into
multiple intervals and using the input data belonging to each
interval we define fuzzy rules recursively in the same manner
as we discussed previously [7]. Each rule is composed of
an activation hyperbox which defines the existence region of
an interval and, if necessary, an inhibition hyperbox which
inhibits the existence of data in that activation hyperbox. Then,
we discuss their inference and defuzzification mechanisms.
Furthermore, we discuss how to delete redundant input vari-
ables based on the number of fuzzy rules created. Finally, we
apply our method to an operation learning application of a
water purification plant by which generalization ability and
training time are compared with that of neural networks.

II. FUNCTION APPROXIMATION BY Fuzzy
RULES WITH VARIABLE Fuzzy REGIONS

A. Fuzzy System Architecture

Since the extension of the method to multiple-output prob-
lems is straightforward, here we consider approximating func-
tions which have a one-dimensional output y and an m-
dimensional input vector x. First we divide the universe of
discourse of y into n intervals as follows:

[yo,y1l: o<y <m
(yi, %2 nn <y <y

ey

We call the i-th interval the output interval ¢. Using the
input data whose outputs are in the output interval i, we
recursively define the input region that generates output in
the output interval ;. Namely, first we determine activation
hyperboxes, which define the input region corresponding to the
output interval 7, by calculating the minimum and maximum
values of input data for each output interval. If the activation
hyperbox for the output interval 7 overlaps with the activation
hyperbox for the output interval j, the overlapped region is
defined as an inhibition hyperbox. If the input data for output
intervals ¢ or/and j exist in the inhibition hyperbox, within

(yn—layn]: Yn—1 < Yy _<_ Yn-
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Fig. 1. Recursive definition of activation and inhibition hyperboxes.

this inhibition hyperbox, we define one or two additional
activation hyperboxes; moreover, if two activation hyperboxes
are defined and they overlap, we further define an additional
inhibition hyperbox: this process is repeated until the overlap
is resolved. Fig. 1 illustrates this process schematically.

Based on an activation hyperbox or based on an activation
hyperbox and its corresponding inhibition hyperbox (if gen-
erated), a fuzzy rule is defined. Fig. 2 shows a fuzzy system
architecture, including a fuzzy inference net which calculates
degrees of membership for output intervals and a defuzzifier.

“For an input vector x, degrees of membership for output
intervals 1 to n are calculated in the inference net and then
the output ¥ is calculated by the defuzzifier using the degrees
of membership as inputs.

The fuzzy inference net consists of four layers at most.
The inference net is sparsely connected. Namely, different
output intervals have different units for the second to fourth
layers and there is no connection among units of different
output intervals. The second-layer units consist of fuzzy rules
which calculate the degrees of membership for an input vector
x. The third-layer units take the maximum values of inputs
from the second layer, which are the degrees of membership
generated by resolving overlaps between two output intervals.
The number of third-layer units for the output interval 7 is
determined by the number of output intervals whose input
spaces overlap with that of the output interval 7. Therefore,
if there is no overlap between the input space of the output
interval ¢ and that of any other output intervals, the network
for the output interval ¢ is reduced to two layers. The fourth-
layer unit for the output interval ¢ takes the minimum value
among the maximum values generated by the preceding layer,
each of them is associated with an overlap between two output
intervals. Therefore, if the output interval ¢ overlaps with only

Fuzzy Inference Net

Overlap with Interval j

Defuzzifier|—m

Input x

Fig. 2. Architecture of a fuzzy system.

one output interval, the network for the output interval % is
reduced to three layers. Calculation of a minimum in the fourth
layer resolves overlaps among more than two output intervals.
Thus in the process of generating hyperboxes, we need to
resolve only an overlap between two output intervals at a time.

B. Fuzzy Rule Extraction

Let a set of input data for the output interval ¢ be X;, where
1 =1,...,n. First, using X;, an activation hyperbox of level
1, denoted as A;;(1), is defined as follows:

Ay (D) = {x|vur(l) €z £ Vi), k=1,...,m}, Q)
where zj: the k-th element of input vector x; V
vuk(1) : the minimum value of =z of x € X;; and
viir(1) : the maximum value of z; of x € X.

If there is no overlap between activation hyperboxes A;;(1)
and A;;(1)(j # 4,5 = 1,...,n), we obtain a fuzzy rule of
level 1 for the output interval ¢ as follows:

If x is A;(1) then x is in output interval 1. 3) .

If there are some overlaps, we resolve them recursively. If
an overlap exists between the activation hyperboxes A;;(1)
and A;;(1), we define the overlapped region as the inhibition
hyperbox of level 1 denoted as I;;(1):

1;(1) = {x | wijr(1) < 2x < Wige(1),k =1,:..,m} (4
where v;(1) < wijk(l) < VVz‘jk(l) < Viik(1). Then we
define a fuzzy rule of level 1 with inhibition by

If xis Aii(l) and x is not Iij(l)
then x is in output interval s. (5)

If some data belonging to X; exist in I;;(1), we define the
activation hyperbox of level 2 denoted as A;;(2) within the
inhibition hyperbox I;;(1). Similarly, we define fuzzy rules of
levels higher than 2 until we resolve an overlap. In a general
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from, we define the fuzzy rule r;;({) of level /(> 1) without
inhibition as follows:

If x is A;;(l) then x is in output interval ¢, (6)

where ¢ = j for [ = 1 and ¢ # j for | > 2, and we define the
activation hyperbox A,;(1)(I > 2) as

Ay (D) = {x | vije(l) <z < Vi), k=1,...,m} (7

where for x € X; and x is in [;;(l — 1)
wijk(l = 1) <vije(l) <z < Vige(l) < Wiie(l = 1), (8)

Or we define the fuzzy rule r;;(l) of level [ with inhibition
as follows:

If x is A;j(!) and x is not I;;(1)
then x is in output interval 4, )]

where j' =i for | = 1 and j' = j for [ > 2, and the inhibition
hyperbox I;;(l) is

Li() = {x | wir(]) <z < Wisn(),k=1,...,m} (10)

for vir < wijr(l) < Wir(l) < Vijr(D).

C. Fuzzy Rule Inference

The degree of membership of the fuzzy rule (6) for a given
input x is determined by the membership function of the
activation hyperbox A;;(I), while the degree of membership
of the fuzzy rule (9) for a given input x is determined
by the difference between the membership function of the
activation hyperbox A;;(l) and that of the inhibition hyperbox
L;;(l). Thus first we define the membership functions for
the activation and inhibition hyperboxes. We assume that
the degree of membership of x for an activation hyperbox
A;;(1) is 1 if x is in the activation hyperbox and it decreases
as x moves away from the activation hyperbox. To realize
a membership function with this characteristic we use the
following function which takes the minimum value among the
degrees of membership of all the input variables. Here, the
membership function for each input variable is a trapezoidal
shape, as shown in Fig. 3.

mx(x) = min mx(x,k), (11)
k=1,...m
mX(x, k)
1 for Uk S T S Uk
= ¢ 1 — max(0, min(1,y(ur — zx)) for zx < ug
1 — max(0, min(1,vy(zx — Ux)) for zix > Uy
12)

where X = Aij(l), U = ’Ui]'k(l) Up = z]k(l), and «v is a
Sensitivity parameter. The minimum value in (11) is taken so
that the degree of membership within the hyperbox and on the
Surface of the hyperbox becomes 1.

The membership function of the inhibition hyperbox I;;(1)
with respect to A;;(!) is different from that with respect to
A;;(1). So hereafter, when we say the membership function of
135(1), we mean that of I;;(1) with respect to A;;(l), and the

Degree of Membership

Ju—y

u.-1y uy U, U,+1ly

Fig. 3. One-dimensional membership function for the activation hyperbox.

membership function of [;;(I), we mean that of I;;({) with
respect to Aj;(1); here I;;(1) = I;(1).

The membership function of the inhibition hyperbox I;;(1)
is the same as (11) although the definition of membership func-
tion m (l)(x k) for each dimension is different. We assume

that my,)(x, k) is 1 when input z is on the boundary of
L;(1) and when this boundary is also the boundary of A;;(1);
namely, if zrx = wir(l) = vij(l) or Wie(l) = V(D)
holds where 5/ = 4 for I = 1, and §/ = j for [ > 2. When
zp moves away from this type of boundary of I;;(l), the
value of m 1o (x, k) decreases with the same slope as that of

(%, k) This is to ensure that the degree of membership
of x for the fuzzy rule (9) becomes 0 on this boundary. When
input zy, is on the boundary of I;;(I) and this boundary is not
the boundary of A;;(1), in other words I;;(1) is within A;;(1),
the value of my, y(x, k) is O and increases as z; moves inside
I;;(1) from the boundary. This is to ensure that the degree of
membership is 1 when x is in A;;(I) and not in I;;({).

Let up = wyjx(l) and Uy = W;;1(1). Then the membership
function m Iij(g)(x, k) is given by (see top of next page):

Thus the degree of membership of a fuzzy rule r;;({)
represented by (6) for a given x is

drij(l) (X) = m.Aij(l)(x)' (19)

And the degree of membership of a fuzzy rule r;;() repre-
sented by (9) for a given x is

dm-j (l)(x) = max(O, mA”. ) (X) — m_[ij,(l)(l‘)) (20)

where 7/ =i for l = 1 and j' = j for [ > 2 (as illustrated in
Fig. 7). Here, the maximum operation assures the value will
be non-negative.

Thus, the final degree of membership of x for a set of fuzzy
rules {ry;(1) |1 =1,...} denoted as d,,,(x) is given by

dr,; (%) =

We take the maximum because the activation hyperbox A;;({+
1), if it exists, is included in the inhibition hyperbox I;;(l),
and thus each fuzzy rule in {r;;(I) | { = 1,...} is exclusive
of one another.

ll’illa?f(drij(l) (X)) (21)
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(i) For up, = wij(l) # vijrk(l) and Ux = Wijr(l) = Vijir(l) where j' =4 for I = 1, and j' = j for [ > 2 (see Fig. 4)

(@ For up + 1/v < Uy

1
mr; () (:E, k) =

(b) For ux + 1/v > Uy

1 — max(0, min(1, y(ug + 1/v — zx)))
my; (k) = {1 — maxEO, min(l,z(wk - Ul:)y)) ‘

1 — max(0, min(1,y(ug + 1/v — z)))
1 — max(0, min(1, y(zx > Ur)))

for ug + 1/v <z < Uy
for x5 < ug + 1/

(ii) For ug = wijk(l) = vijk and Ux = Wik (l) # Vijrx(l) where j' =i for I = 1, and ' = j for I > 2 (see Fig. 5)

(@ For up < Up — 1/

1
I, (1) (x’ k) =

(b) For up > Up — 1/")’

mIij(l)(x7 k)

_ {1 — max(0, min(1, v(ur — x)))
1 — max(0, min(l,v(zr — Ux + 1/7))) . for zi > ug

1 — max(0, min(1, y(uz — zx)))
1 — max(0, min(1,y(zx — Ux + 1/7)))

for zp > Ugk
(13)
for zp < Uy,
for Tk Z Uk
(14)
forup <zp < Up—1/v
for o < ug
for z > U — 1/7
(15)
for zj, < ug
(16)

(iii) For ug = wijk(l) # vijx(l) and Uy = Wiji(l) # Vijir(l) where j' =4 for [ = 1, and j' = j for [ > 2 (see Fig. 6)

(@) For up + 1/v < U — 1/y

1
™mr; () (xa k) =

() For ug + 1/y > Ux — 1/v

1 — max(0, min(1, y(ur + 1/v — zx)))
1 — max(0, min(1, v(zx — Uk + 1/7)))

forup +1/y <k < Up—1/v
for z < ug + 1/
for zp > Up — 1/
(17

1 — max(0, min(1, y(ug + 1/y — z))) for o < up +1/v
)

mr, (@, k) = {1 — max(0, min(1,y(zx — Ux + 1/7))

for zp > up + 1/’)’
- (18)

Now the degree of membership of x for the output interval
i denoted as d;(x) is given by

min
FFGI=L,m,
A (1)NA;;(1)#0

di (X) = (dV’ij (X)) . (22)

When the activation hyperbox of the output interval 7 overlaps
with those of more than one output interval e.g., j and k,
we resolve the conflict, independently, first between output
‘intervals i and j, then between output intervals ¢ and k. This
process is implemented by taking the minimum in (22). For
example, if d, (x) = 1 and d,,, (x) = 0, this means that x
is in the region inhibited by the inhibition hyperbox between
output intervals ¢ and k and thus x should not be classified as
the output interval ¢ at all.

D. Defuzzification

To defuzzify a fuzzy set into a nonfuzzy value in the output
space, the method based on the center of gravity is often used.
But here we use the method discussed in [4], which uses a
bell-shaped function as the membership function of the output
variable and approximates the center of gravity as follows:

D i1 mioidi(x)

2 23)
2 im10idi(x) (

y=

where m; and o; are, respectively, the center (or mean) and
the width (or variance) of a bell-shaped function of the input

“interval ¢. We choose this expression for conveniently tuning

m; and o5, if necessary for increasing approximation accuracy.
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Degree of Membership
ju—y

up u,+ly Ue Ug+ly

(a) For ux+1/y< U

123

Degree of Membership
[y

U +1ly

(b) For u,+1/y > U

Fig. 4. Membership function for the inhibition hyperbox. The minimum value of the %-th input variable for the inhibition hyperbox is within the corresponding
activation hyperbox, while the maximum value is on the surface of the activation hyperbox.

[y

Degree of Membership

uk-l/’)/ uk Uk'l/'}/ Uk

(a) Foru, <U,- l/y

Degree of Membership
[a—

u, -y

(b) Foru,>U, -1y

Fig. 5. Membership function for the inhibition hyperbox. The maximum value of the k-th input variable for the inhibition hyperbox is within the corresponding
activation hyperbox, while the minimum value is on the surface of the activation hyperbox. i

Good initial estimates of m, and ¢; are, respectively,

m; = (yi + yi—1)/2 and

P =‘(yi - Yi-1)/2. 24)
To increase the approximation accuracy of fuzzy systems, we
can tune m,; and o; using the method as follows [4]:
m™ = ™ 4 g Am{™
O'idi(X)

2 i=10di(X)
aEnH) = o’z(n) + OéAO’i(n)

Am{™ = [y(x) - §(x)

)

and (see (25) below) where n and « denote the number
of epochs and a tuning parameter which controls the rate
of change, respectively, and Amgn) and Aagn) are changes
determined by the steepest descent method.

E. Selection of Input Variables

For a given number of divisions in the universe of dis-
course of the output variable, the larger the number of rules
generated for each output interval, the more difficult function
approximation becomes. Thus if the total number of rules
generated for output intervals is the same even if we delete one
input variable, we can consider that this variable is redundant.
Namely, we can delete input variables in the following manner.

midi (%) (35, 09di (%)) = di(%) (Xr  mioidi(x))

Aoi(n) = [y(x) — 5(x)] x

25
o)) @)
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[y
I

Degree of Membership

(b) For uy+1/y > Uy - 1y

Fig. 6. Membership Function for the Inhibition Hyperbox. The minimum and maximum values of the k-th input variable for the inhibition hyperbox

are within the corresponding activation hyperbox.

X2

Li(1)
ao

Aii(1)

X1

Aiu(l)

(1)

max(0,A:(1) - Iii(1))

Fig. 7. Degree of membership of output interval ¢ at zo2 = ag with activation
and inhibition hyperboxes for uy + 1/y < U;. Here u; and U; are the
minimum and maximum values of variable z1 of an inhibition hyperbox.

Let M be the set of input variables, and r;(M) be the
number of fuzzy rules obtained for the output interval ¢ with
M and a given set of data. Let M’ be the set in which one
input variable is deleted from M. Then acquire new fuzzy
rules using numerical data with M’. If

n

(M) = 3 (M)

i=1

(26)

holds, then remove the deleted variable from M permanently;
otherwise restore the deleted variable. The above procedure
is repeated until testing is finished for all the input variables
included in the initial set of M.

@ : Training Data of Output Interval 1

4 : Training Data of Output Interval 2

1.0 —
2 3
08 H ©® ﬂ
Au(l)
8
0.6 - 4 AnQ2) #
X2 5
0.4 1 Iz (1)
@
02 ‘
An(1
p L 2(1) 7 A
0 | | | I |
0 0.2 04 0.6 0.8 1.0
X1

Fig. 8. An ekample illustrating the procedure of defining activation hyper-
boxes and an inhibition hyperbox.

F. An Illustrative Example

To illustrate the procedures of fuzzy rule extraction, infer-
ence and defuzzification step by step, we consider a fuzzy
system with two input variables and two output intervals and
assume we have training data listed below (See Fig. 8): For
output interval 1:

1: (0.3, 0.3)

(0.1, 0.8)
0.8, 0.8)
0.5, 0.5)
0.6, 0.4)
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For output interval 2:
6: (0.4, 0.1)
7: (0.9, 0.1)
8: 0.9, 0.6)
For simplicity we do not illustrate the tuning procedure,
therefore the output values for the training data are omitted.
Fuzzy rule extraction Using the above training data, the
activation hyperboxes of level 1 are defined as follows:

A (1) = {x|0.1 <z <0.8,0.3 <z < 0.8} (use(2)),
27

Asp(l) = {x]0.4 <z £0.9,0.1 <z < 0.6} (use(2)).
(28)
Since Aj1(1) overlaps with Ag2(1), we define the following
inhibition hyperbox:

.[12(1) = {X | 0.4 S T1 S 08,03 S T _<_ 06} (USC(4)).
(29)
Thus the fuzzy rules of level 1 are:

If x is A11(1) and x is not I15(1)

then x is in output interval 1
(use(5)),

If x is A22(1) and x is not J12(1)

then x is in output interval 2

(use(5)).

(30)

€2y

Since data 4 and 5 belonging to output interval 1 are in I;2(1),
we define the activation hyperbox of level 2 for output interval
1 as follows:

(use(7)).
(32)
But since no data belonglng to output interval 2 are in
I15(1), the fuzzy rule extraction process is stopped. And we
obtain the following fuzzy rule of level 2:

A15(2) = {x] 0.5 < 21 <0.6,0.4 < 5 < 0.5}

If x is A12(2) then x is in output interval 1 (use (6)).
(33).
Fuzzy rule inference We assume ~v = 1. Then, the membership

functions of A;1(1) are as follows:

Ma (1) (X’ 1) =

1 for 0.1 <z; £0.8
1 — max(0, min(1, (0.1 — xl))) for z; < 0.1
1 — max(0, min(1, (z; — 0.8))) for z3 > 0.8

(use (12)),

(34

may,1)(X,2) =
1 for 0.3 <z <0.8

1 — max(0, min(1, (0.3 — z3))) for z3 <0.3
1 — max(0, min(1, (zg — 0.8))) for x5 > 0.8
(use (12)).

(35)

The membership functions of I15(1) with respect to A12(1) are

mr,) (X, 1) =

1 — max(0, min(1, (1.4 — z,))) for z; < 0.8
1 — max(0, min(1, (z; — 0.8))) for z; > 0.8
(use (14)),

(36)

M, (%,2) =

(1 —max(0,min(1, (0.3 — z3))) for zo < 0.3
1 — max(0, min(1, (g + 0.4))) for zo > 0.3
(use (16)).

(37

The membership functions A2(1) are

mAzz(l)(xv 1) =
1 for04<z; <09

1 —max(0, min(1, (0.4 — z1))) forz; < 0.4
1 — max(0, min(1, (z; — 0.9))) for z; > 0.9
(use (12)),

(38)

M Ay, (1) (X, 2) =
1 for 0.1 <z, <0.6
1 — max(0, min(1, (0.1 — z2))) for z9 < 0.1
1 — max(0, min(1, (z2 — 0.6))) for z» > 0.6
(use (12)).
(39

The membership functions of 23 (1) with respect to Ag1(1) are

mfu(l)(x’ 1) =

1 — max(0, min(1, (0.4 — z1))) for z; < 0.4
1 — max(0, min(1, (z; +0.2))) forz; > 0.4
(use (16)),
(40)

M, (1) (X, 2) =
1 — max(0, min(1, (1.3 — z2))) for zz < 0.6
1 — max(0, min(1, (z2 — 0.6))) for z > 0.6
(use (14)).
(4D

The membership functions of A;2(2) are as follows:

mAn(?)(x’ 1) = )
1 for0.5<z; <0.6

1 — max(0, min(1, (0.5 — z1))) forz; < 0.5
1'— max(0, min(1, (1 — 0.6))) for z; > 0.6
(use (12)),

“42)

M, @) (X,2) =
1 for 0.1 < x4 <0.5

1 — max(0, min(1, (0.4 — z3))) for zo < 0.4
1 — max(0, min(1, (z2 — 0.5))) for zz > 0.5
(use (12)).

(43)
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Now calculate the degrees of membership at x = (0.65,0.5).
The degree of membership of x for A11(1) is

M,y (1)(0.65,0.5) = min(1,1) = 1

(use (34),(35) and (11)).  (44)

The degree of membership of x for I;2(1) with respect to
All(l) is

mi,,1)(0.65,0.5) = min(0.25,0.9) = 0.25

(use (36),(37), and (11))  (45)
Thus the degree of membership for fuzzy rule (30) is
dryy(1)(0.65,0.5) = max(0,1 — 0.25) = 0.75

(use (44),(45) and (20)).  (46)

Likewise the degree of membership of x for fuzzy rule (33) is

dy,,(2)(0.65, 0.5) = mA12(2)(0-65,0‘5)
= min(0.95,1) = 0.95

(use (42),(43) and (11)).  (47)

Thus, the degree of membership of x for fuzzy rules (30) and
(33) is

d1(0.65,0.5) = max(0.75,0.95) = 0.95

(use (46), (47) and (21)). (48)

Since we consider only two intervals, we need not use (22).
Likewise the degree of membership of x for Agy(1) is

mAzz(l)(0'6570-5) = min(l, ]_) =1

(use (39) and (11)). 49)

The degree of membership of x for I5;(1) with respect to
Azz(l) is

My, (1)(0.65,0.5) = min(0.15,0.2) = 0.15

(use (40),(41) and (11)).  (50)
Thus the degree of membership for fuzzy rule (31) is
dpyy(1)(0.65,0.5) = da(0.65,0.5)
= max(0,1 — 0.15) = 0.85
(use (49),(50) and (21)). (SD)

Difuzzification  Let the output interval is divided as [0, 0.5)
and [0.5, 1]. Then using (24),
mq = 0.25,mo = 0.75 and 01,02 = 0.25. (52)
Substituting (48), (51) and (52) into (23) gives
9 = 0.486 (53)

III. PERFORMANCE EVALUATION
USING A WATER PURIFICATION PLANT

In this section we apply the proposed method to a water
purification plant in which the amount of coagulant injection
needs to be estimated [8]. The amount of coagulant injection is
determined by ten variables on water qualities, such as turbid-
ity and temperature of water, and on floc image properties such
as a floc diameter. For evaluation we divided 563 input-output
data which were gathered over a one-year period into 478
stationary data and 95 nonstationary data according to whether
the value of turbidity was or was not smaller than a specified
value. Then we further divided each type of data into two
groups to generate training and test data under the restriction
that training and test data have a similar distribution of output
values. The resulting training and test data are (1) 241 training
data and 237 test data, and (2) 45 training data and 40 test data,

Using each group of the training and test data, we empir-
ically studied the effects of the number of divisions of the
output variable, tuning of the mean values and variances of the
output membership function, and the sensitivity parameter of
input membership functions on approximation accuracy. First,
we studied the approximation errors of the fuzzy system by
varying the number of divisions of the output variable without
tuning mean values m,;’s and variances ¢;’s, i.e., they were set
by using (24). In this study, the sensitivity parameter was set
to four. Then we studied whether the approximation accuracy
could be improved by tuning the mean values and variances for
100 epochs with the tuning parameter o = 0.01. Furthermore,
using the optimum number of divisions, we studied the effect
of the sensitivity parameter on the approximation accuracy;
and we compared the performance of the fuzzy approximator
with that of the neural network. Finally, we investigated
whether eliminating some input variables, according to the
method described in Section ILE would improve the approxi-
mation accuracy of the fuzzy system.

A. Performance Evaluation Using the 241 Training
Data and 237 Test Data (Stationary Data)

Table I shows the average and maximum approximation et-
rors of the fuzzy system based on 241 training data and 237 test
data for different numbers of divisions, varying from 3 to 8,
of the universe of discourse for the output variable. The fuzzy
system could not determine an output on one or two data in the
test data set because the inputs of these data were outside the
ranges defined by the training data; to overcome this problem,
for these data we changed the sensitivity parameter « from four
to a smaller value by which the fuzzy region in the input space
was enlarged. As seen in the table, dividing the universe of dis-
course of the output variable into seven divisions gave the best
performance. To check the effect of tuning the parameters m;
and o; on approximation errors, we set « of (25) to be 0.01 and
the parameters were tuned for 100 epochs using the training
data. The results are listed in Table II. Again the seven-division
gave the best performance. In some cases, tuning the parame-
ters for 10 epochs was sufficient because good initial values of
m; and o; were used; in most cases, tuning'the parameters for
more than 100 epochs did not further improve the performance.
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TABLE 1
ApPPROXIMATION ERRORS (IN MG/L) oF Fuzzy SYSTEMS FOR
THE 241 TRAINING DATA AND 237 TEST DATA (v = 4)

No. of Divisions Training Data Test Data
Ave. Error Max. Error  Ave. Error  Max. Error
3 2.01 6.69 2.16 5.50
4 1.47 7.61 1.53 6.57
5 1.15 7.35 1.28 5.71
6 1.24 5.48 1.40 5.73
7 1.13 6.72 1.20 5.19
8 1.21 6.99 1.29 5.18

Note: In this and subsequent tables, the set giving the best performance is
indicated by the bold-faced type.

TABLE 11
APPROXIMATION ERRORS (IN MG/L ) ofF Fuzzy SYSTEM
WITH PARAMETER TUNING FOR THE 241 TRAINING DATA
AND 237 TEST DaTA ((v = 4), 100 Erochs, a = 0.01)

No. of Divisions Training Data Test Data
Ave. Error Max. Error  Ave. Error  Max. Error
3 1.75 6.47 1.90 8.33
4 1.60 5.54 1.67 5.76
5 1.12 4.42 1.25 5.31
6 1.12 4.16 1.28 5.53
7 1.07 4.75 1.18 5.57
8 1.15 4.09 1.25 5.90

To compare the results with those generated by using neural
networks as function approximators, we trained three-layer
networks with five, ten and fifteen hidden units, respectively;
and for each of the three different networks, 100 trials were
performed and each trial used different initial values. From
this, we found that the performance of the three networks

.did not differ very much; therefore here we show only the
results from the network with ten hidden units, which are
listed in Table III. When training the network for more
than 2000 epochs, e.g., 3000 and 4000 epochs, the average
approximation error for the test data increased because the
neural approximator overfitted the training data, which resulted
in losing the generality. Thus in this case the best performance
of the neural approximator was obtained when it was trained
for about 2000 epochs. Meanwhile, the average approximation
error of the neural approximator was slightly better than that
-of the fuzzy system, but the maximum error of the former was
‘worse than that of the latter. Therefore the performance of
these two types of approximators was considered comparable
“for our current application.
. Training the neural network using a 31 MIPS mainframe
‘computer took an average one minute, while it only took less
‘than one second using a 16 MIPS workstation to extract fuzzy
rules. Although tuning the parameters of the fuzzy system
took time, it was still less than the training time of the neural
network.
¢ Table IV shows the approximation errors as well as the
numbers of rules generated when different input variables were
“deleted. When the input variables 7 and/or 10 were deleted,

TABLE III
APPROXIMATION ERRORS (IN MG/L) oF NEURAL NETWORKS FOR THE 241
TRAINING DATA AND 237 TEST DATA (10 HDDEN Units, 100 TRIALS)

No. of Epochs Training Data Test Data
Ave.Error Max. Error  Ave. Error  Max. Error
500 1.03 12.5 1.09 5.72
1000 0.95 5.20 1.03 7.08
2000 0.84 4.75 0.99 6.95
3000 0.83 4.61 1.00 6.95
4000 0.83 4.40 1.01 6.97
TABLE 1V

APPROXIMATION ERRORS (IN MG/L) oF Fuzzy SYSTEMS FOR THE 241
TRAINING DATA AND 237 TEST DATA WHEN INPUT VARIABLE ARE DELETED
(TuNED FOR 100 EpocHS, 7 DIVISIONS FOR THE OUTPUT RANGE, v = 4)

Input Deleted No. of Rules Test Data

Ave. Error Max. Error

Training Data
Ave. Error Max. Error

none 33 1.07 4.75 1.18 5.57
1 34 1.09 5.82 1.20 5.65
2 35 1.15 4.78 1.22 5.63
3 36 1.07 4.77 1.18 5.45
4 38 1.36 5.37 1.47 5.51
5 42 1.09 4.77 1.20 5.58
6 34 1.09 4.75 1.20 5.59
7 33 1.07 4.75 1.18 5.81
8 35 1.08 4.75 1.19 5.50
9 37 1.08 4.75 1.21 5.56
10 33 1.06 4.73 1.17 5.62

7,10 33 1.07 4.74 1.18 5.7¢6

the number of rules generated was the same as that when none
of them was deleted, and the average approximation error and
maximum error of these cases were also about the same. When
other variables were deleted the approximation error became
worse except when the input variable 3 was deleted.

B. Performance Evaluation Using the 45 Training Data
and 40 Test Data (Nonstationary Data)

Table V shows the approximation errors of the fuzzy system
based on 45 training data and 40 test data, respectively, without
tuning the parameters of the defuzzification method. Table VI
shows the approximation errors of the fuzzy system based on
45 training data and 40 test data, respectively, with tuning
the parameters of the defuzzification method; the optimal
number of divisions was 5 or 7. We further checked the
effect of the sensitivity parameter v on the approximation
error based on five divisions; Tables VII and VIII show the
results without and with tuning, respectively. For both cases,
the best results were obtained for v = 20. Table IX shows the
average approximation errors of the neural network. The best
performance was obtained when the network was trained for
1000 epochs; comparing this result with the best result shown
in Table VII, the average approximation errors for the training
data were about the same, whereas the average approximation
error of the fuzzy system for the test data was better than that
of the neural network.



128 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 25, NO. 1, JANUARY 1995

TABLE V
ArPPROXIMATION ERRORS (IN MG/L) OF Fuzzy SYSTEMS
FOR THE 45 TRAINING DATA AND 40 TEST DATA (y = 4)

Test Data
Ave. Error  Max. Error

No. of Divisions Training Data

Ave. Error Max. Error

3 2.85 7.55 3.11 10.2

4 2.29 7.50 2.65 7.97

5 2.38 8.23 2.79 8.43

6 2.79 6.65 3.12 8.87

7 2.03 7.54 2.33 10.0

8 1.96 8.23 2.34 9.97
TABLE VI

APPROXIMATION ERRORS (IN MG/L) oF Fuzzy SYSTEMS
WITH PARAMETER TUNING FOR THE 45 TRAINING DATA
AND 40 TeST DatA (7 = 4, 100 Epocss, o = 0.01)

Training Data Test Data
Ave. Error Max. Error Ave. Ermor  Max. Error

No. of Divisions

3 2.35 8.41 2.88 11.9

4 1.94 7.91 2.34 8.35

5 1.74 8.50 2.18 8.36

6 1.83 7.26 2.70 10.6

7 1.73 6.86 1.97 8.86

8 1.82 7.23 2.09 9.05
TABLE VI

APPROXIMATION ERRORS (IN MG/L) oF Fuzzy SYSTEMS FOR THE 45
TRAINING DATA AND 40 TEST DATA (5 DIVISIONS OF THE QUTPUT RANGE)

Y Training Data Test Data
Ave.Error Max. Error Ave. Error Max. Error

4 2.38 8.23 2.80 8.43

8 1.73 8.16 2.16 6.37

12 1.75 8.08 1.89 6.75

16 1.70 7.99 1.81 6.89

20 1.72 7.91 1.62 5.45
TABLE VII

APPROXIMATION ERRORS (IN MG/L) OF Fuzzy SYSTEMS WITH PARAMETER
TUNING FOR THE 45 TRAINING DATA aND 40 TEST Data (5
DivisioNs OF THE OUTPUT RANGE, 100 EpocHs, a = 0.01)

¥ Training Data Test Data
Ave. Error Max. Error  Ave. Error  Max. Error

4 1.74 8.50 2.18 8.36
8 1.60 7.29 1.88 6.39
12 1.60 7.5 1.66 6.28
16 1.57 7.64 1.64 5.90
20 1.56 7.20 1.46 4.97

As shown in Table X, the number of rules created based on
10 input variables was 15. When we deleted input variable 1
in addition to variables 7 and 10, as for the 241 training data,

TABLE IX
APPROXIMATION ERRORS (IN MG/L) OF NEURAL NETWORKS FOR THE 45
TRAINING DATA AND 40 TEST DATA (10 HIDDEN UNITS, 100 TRIALS)

No. of Epochs Training Data Test Data

Ave. Error  Max. Error  Ave. Error  Max. Error

500 1.76 7.03 1.84 6.62
1000 1.59 6.83 1.74 6.78
2000 1.34 3.52 2.04 6.30
3000 111 3.41 2.15 8.49
4000 1.00 2.57 2.12 9.08

TABLE X

APPROXIMATION ERRORS (IN MG/L) OF Fuzzy SYSTEMS FOR THE 45 TRAINING
Data AND 40 TEST DATA WHEN INPUT VARIABLES ARE DELETED
(TUNED FOR 100 EpoCHS, 5 DIVISIONS OF THE OUTPUT RANGE, v = 4)

Input Deleted No. of Rules Training Data Test Data

Ave. Ertor  Max, Error  Ave. Error  Max. Error

none 15 1.74 8.50 2.18 8.36
7,10 15 1.83 7.83 2.00 8.09
1,7,10 15 1.92 8.02 2.14 8.36

the number of rules created remained 15; but if we deleted any
of the remaining input variables, the number of rules exceeded
15. Furthermore, the performance of the fuzzy system did not
deteriorate when some input variables were deleted according
to the proposed method.

IV. DISCUSSION OF RESULTS

The empirical studies described above indicate that the
approximation accuracy of the type of fuzzy system proposed
in this paper is comparable with that of neural networks.
Nevertheless, our fuzzy system approach to function approxi-
mation has several advantages over the approach using neural
networks. These advantages are listed as follows.

1) The fuzzy system architecture shown in Fig. 2 is auto-
matically determined through the acquisition of fuzzy
rules according to the overlap between the input spaces
of output intervals. Namely, the network has two layers
if there is no overlap between the input spaces of output
intervals; or it has three layers if the input space of one
output interval overlaps with the input space of at most
one output interval; or it has four layers if the input space
of one output interval overlaps with the input spaces of
more than one output interval.

2) Knowledge acquisition or training is very fast. Also
tuning of defuzzification parameters is not a problem
because the optimal values are not too far off the initial
values. :

3) System performance can be easily analyzed by fuzzy
rules. Thus modification of rule is also possible.

4) By varying the sensitivity parameter -y, we can easily
check whether a test datum is in a region where no
activation hyperbox is in its neighborhood.
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5) Implementation is relatively easy since the activation
and inhibition hyperboxes can be determined recur-
sively. -

There are two advantages of our fuzzy systems over con-

ventional fuzzy systems.

(1) Fuzzy rules can be easily obtained directly from nu-
merical data. '

(2) The fuzzy systems can be generated even for a large
number of input variables.

V. CONCLUSION

In this paper, we discussed a method for extracting fuzzy
~ rules directly from numerical input-output data for function
approximation. First, the universe of discourse of an output
variable was divided into multiple intervals, and each interval
was treated as a class. Then as for pattern classification, using
the input data for each interval, fuzzy rules were recursively
defined by activation hyperboxes which show the existence
region of the data for the interval and inhibition hyperboxes
which inhibit the existence region of data for that interval. The
approximation accuracy of the fuzzy system derived by this
method was empirically studied using an operation learning
application of a water purification plant. Meanwhile, the
approximation performance of the fuzzy system was compared
with the function approximation approach based on neural
networks. '
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