
Fuzzy Self-Learning Controllers for Elasticity

Management in Dynamic Cloud Architectures

Pooyan Jamshidi∗, Amir Sharifloo‡, Claus Pahl§, Hamid Arabnejad †, Andreas Metzger‡, Giovani Estrada ¶

∗Imperial College London, UK
†IC4, Dublin City University, Ireland

‡University of Duisburg-Essen, Germany
§University of Bozen-Bolzano, Italy

¶Intel, Ireland

Abstract—Cloud controllers support the operation and quality
management of dynamic cloud architectures by automatically
scaling the compute resources to meet performance guarantees
and minimize resource costs. Existing cloud controllers often
resort to scaling strategies that are codified as a set of architec-
ture adaptation rules. However, for a cloud provider, deployed
application architectures are black-boxes, making it difficult at
design time to define optimal or pre-emptive adaptation rules.
Thus, the burden of taking adaptation decisions often is delegated
to the cloud application. We propose the dynamic learning of
adaptation rules for deployed application architectures in the
cloud. We introduce FQL4KE, a self-learning fuzzy controller
that learns and modifies fuzzy rules at runtime. The benefit
is that we do not have to rely solely on precise design-time
knowledge, which may be difficult to acquire. FQL4KE empowers
users to configure cloud controllers by simply adjusting weights
representing priorities for architecture quality instead of defining
complex rules. FQL4KE has been experimentally validated using
the cloud application framework ElasticBench in Azure and
OpenStack. The experimental results demonstrate that FQL4KE
outperforms both a fuzzy controller without learning and the
native Azure auto-scaling.

Keywords: Cloud Architectures; Fuzzy Control; Self-adaptive
Systems; Self-learning; Q-Learning; Machine Learning.

I. INTRODUCTION

The dynamic quality management of deployed architectures

in the cloud, specifically the acquisition and release of resources

is a challenge due to the uncertainty introduced by workload,

cost and other quality requirements. In order to address this

challenge, auto-scaling [21], [22] has been proposed. Current

solutions typically rely on threshold-based rules, offered by

several commercial cloud providers/platforms such as Amazon

EC2, Microsoft Azure and OpenStack. Best practice is to

define a comprehensible set of scaling rules, assuming a linear

and constant dependency between resource assignments and

performance improvements, while in Internet scale applications,

the complexity of application architecture, the interferences

among components and the frequency by which hardware and

software failure happen typically invalidate the assumptions

[11], calling for new approaches [23], [8].

Alternative approaches have been investigated to dynamically

manage the quality of application architectures deployed in

the cloud, e.g., based on classical control theory and on

knowledge-based controllers and thus suffer from similar

limitations [10]. Traditional capacity planning approaches based

on queuing theory [26] do not fully address the dynamics

of cloud application architectures due to over-simplifications

and/or their static nature since the models are complex to be

evolved at runtime, often resort to parameter tunings. Recent

self-organizing controllers have shown to be a better fit for

the complexity of cloud controllers [11]. However, a practical

challenge for rule-based commercial approaches is the reliance

on users for defining adaptation and controllers. First, from

the cloud provider’s perspective, details of the application

architecture are often not visible, therefore, defining optimal

scaling rules are difficult. Thus, the burden of determining these

falls on the application developers, who do not have enough

knowledge about workloads, infrastructure or performance

modeling. Our aim is to design a controller that does not

depend on the user-defined rules.

A. Research Challenges

In [18], we exploited fuzzy logic to facilitate user intuitive

knowledge elicitation. The key strength of fuzzy logic is the

ability to translate human knowledge into a set of intuitive

rules. During the design process of a fuzzy controller, a

set of IF-THEN rules must be defined. Although users

are comfortable with defining auto-scaling rules using fuzzy

linguistic variables [18], the rules have to be defined at design-

time leading to the following issues: (i) Knowledge for defining

such rules may not be available; (ii) Knowledge may be

available but in part (partial rules); (iii) Knowledge is not

always optimal (user can specify the rules but they are not

effective, e.g., redundant rules); (iv) Knowledge may be precise

for some rules but may be less precise for some other rules.

(v) Knowledge may need to change at runtime (rules may be

precise at design-time but may drift at runtime). As a result,

user defined rules may lead to sub-optimal scaling decisions

and loss of money for cloud application providers.

B. Research Contributions

Here, we develop an online learning mechanism, FQL4KE,

to adjust and improve auto-scaling policies at runtime. We

combine fuzzy control and Fuzzy Q-Learning (FQL) [15] to

connect human expertise to a continuous evolution machinery.

The combination of fuzzy control and the Fuzzy Q-Learning

proposes a powerful self-adaptive mechanism where the fuzzy



control facilitates the reasoning at a higher level of abstraction

and the Q-learning allows to adjust the controller.

The main contributions of this work are as follows: (i) a

self-learning fuzzy controller, FQL4KE, for dynamic resource

allocations. (ii) a tool, ElasticBench, as a realization and a

means for experimental evaluations. The main implication of

this contribution is that we do not need to rely on the knowledge

provided by the users anymore, FQL4KE can start adjusting

application resources with no a priori knowledge.

The paper is organized as follows. Section II motivates and

introduces core concepts. Section III describes the mechanisms

solution, followed by a realization in Section IV. Section V

discusses experimental results, followed by implications and

limitations in VI. Finally, Section VII discusses the related

work and Section VIII concludes the paper.

II. MOTIVATION AND BACKGROUND

A. Motivation

Dynamic resource provisioning (auto-scaling) is an online

decision making problem. Cloud controllers that realize auto-

scaling observe the resource consumption of applications and

manipulate the provisioning plans to manage architecture

quality. Computing resources are allocated to applications by

monitoring workload, w, user requests over time and current

performance, rt, as average response time of the application.

The cloud controller decides to allocate or remove resources in

order to keep the performance rt at a desired level rtdesired
while minimizing costs.

There are characteristics that often challenge existing auto-

scaling techniques: (i) the environment is non-episodic, i.e.,

current choices will affect future actions; (ii) cloud infrastruc-

tures are complex and difficult to model; (iii) workloads are

irregular and dynamic. These characteristics of the environment

in which cloud controller operates require to solve sequential

decision problems, where previous actions in specific states

affect future ones. The common solution for this problem is

to create a plan, policy or strategy to act upon. We use the

term policy as the knowledge inside cloud controllers that we

aim to learn at runtime. As a result, policies determine the

decisions that controllers produce for different situations (i.e.,

the state in which the cloud application operates).

B. Reinforcement Learning for Elasticity Decision Making

In the reinforcement learning context, an agent takes action

ai when the system is in state st and leaves the system to evolve

to the next state st+1 and observes the reinforcement signal

rt+1. Decision making in elastic systems can be represented

as an interaction between cloud controllers and environment.

The cloud controller monitors the current state of the system

through its sensors. Based on some knowledge, it chooses an

action and evaluates feedback reward in the form of utility

functions [27]. Situation allows the system to know when it

must monitor the state, and also when it must take the action

(i.e, triggers the scaling action). An elastic system may stay

in the same state, but should take different actions in different

situations and workload intensity.

S1

S2

S3

S4

S5

a1

a2

a3

a4

a5

a6

Environment

RL

Agent

!"0
state

#"$%0

reward/

punishment&"$%0 PolicyPolicyPolicy

Calibrate

Establish

D
e
te
rm

in
e

Environment

RL

Agent

!"0
state
#"$%0

reward/

punishment&"$%0 PolicyPolicyPolicy

Derive

Establish

D
e
te
rm

in
e

Value0

Function

(!) ())

Fig. 1: Model-based vs. model free RL.

To derive an action, the agent uses a policy that aims to

increase the future rewards. A model of the environment assists

decision making (Figure 1(a)); however, it is not always feasible

to have such a model available. Model-free reinforcement

learning (hereafter RL) techniques have been developed to

address this issue, which are relevant for cloud computing

problems due to the lack of environmental models. We use the

Q-Learning algorithm as a model-free approach that computes

the optimal policy with regard to both immediate and delayed

rewards. A cloud controller learns a value function (Figure

1(b)) that gives the consequent of applying different policies.

III. FUZZY Q-LEARNING FOR KNOWLEDGE EVOLUTION

This section presents our solution FQL4KE. By combining

fuzzy logic and Q-Learning, FQL4KE deals with uncertainty

caused by the incomplete knowledge. Expert knowledge, if

available, is encoded in terms of rules. The fuzzy rules are

continually tuned through learning from the data collected at

runtime. In case there is no (or limited) knowledge available

at design-time, FQL4KE is still able to operate.

A. FQL4KE Building Blocks

Figure 2 illustrates the main building blocks of FQL4KE.

While the application runs on a cloud platform, FQL4KE guides

resource provisioning. More precisely, FQL4KE follows the

autonomic MAPE-K loop [19], where different characteristics

of the application (e.g. workload and response time) are

continuously monitored, the satisfaction of system goals are

checked and accordingly the resource allocation is adapted

in case of deviation from goals. The goals (i.e., SLA, cost,

response time) are reflected in the reward function as we will

define this in Section III-D.

The monitoring component collects low-level performance

metrics and feed both cloud controller as well as the knowledge

learning component. The actuator issues adaptation commands

from the controller at each control interval to the underlying

cloud platform. The cloud controller is a fuzzy controller

that takes the observed data, and generates scaling actions.

The learning component continuously updates the knowledge

base of the controller by learning appropriate rules. These

two components are described in Sections III-B and III-C

respectively. Finally, the integration of these two components

is discussed in Section III-D.



Fuzzifier

Inference 

Engine

Defuzzifier

Rule 

base

Fuzzy

Q-learning

Cloud ApplicationMonitoring Actuator

Cloud Platform

Fuzzy Logic 

Controller

Knowledge Learning

A
u

to
n

o
m

ic
 C

o
n

tr
o

ll
e

r

𝑟𝑡𝑤𝑤,𝑟𝑡,𝑡
ℎ,𝑣𝑚

𝑠𝑎

system state system goal

Fig. 2: FQL4KE (logical) architecture.

B. Fuzzy Logic Controller

Fuzzy inference is the process of mapping a set of control

inputs to a set of control outputs through fuzzy rules. The inputs

to the controller are the workload (w) and response time (rt)

and the output is the scaling action (sa) in terms of increment

(or decrement) in the number of virtual machines (VMs). The

design of a fuzzy controller, in general, involves the following

tasks: 1) defining the fuzzy sets and membership functions of

the input signals. 2) defining the rule base which determines

the behavior of the controller in terms of control actions using

the linguistic variables defined in the previous task. The very

first step in the design process is to partition the state space of

each input variable into various fuzzy sets through membership

functions. Each fuzzy set associated with a linguistic term

such as ”low” or ”high”. The membership function, denoted

by µy(x), quantifies the degree of membership of an input

signal x to the fuzzy set y (cf. Figure 3). In this work, the

membership functions, depicted in Figure 3., are considered to

be both triangular and trapezoidal based on our previous results

in [18]. As shown, three fuzzy sets have been defined for each

input (i.e., workload and response time) to achieve a reasonable

granularity in the input space while keeping the number of

states small to reduce the set of rules in the knowledge base.

The next step consists of defining the inference machinery

for the controller. Here we need to define elasticity policies

in terms of rules: ”IF (w is high) AND (rt is bad) THEN

(sa = +2)”, where the output function is a constant value that

can be an integer in {−2,−1, 0,+1,+2}, which is associated

to the change in the number of deployed nodes. Note that this

set can be any finite set but here for simplicity we constraint

it to only 5 possible actions, but depending on the problem

at hand can be any finite discrete set of actions. In this work,

no a priori knowledge for defining such rules is assumed. In

particular, FQL4KE attempts to find the consequent Y for the

rules, see Section III-C.

Once the fuzzy controller is designed, the execution of the

controller is comprised of three steps (cf. middle part of Figure

Low Medium High

Workload

1

0
α β γ δ

Bad OK Good

Response Time

1

0
λ μ ν

Fig. 3: Fuzzy membership functions for auto-scaling variables.

2): (i) fuzzification of the inputs, (ii) fuzzy reasoning, and (iii)

defuzzification of the output. Fuzzifier projects the crisp data

onto fuzzy information using membership functions. Fuzzy

engine reasons on information based on a set of fuzzy rules

and derives fuzzy actions. Defuzzifier reverts the results back

to crisp mode and activates an adaptation action. The output

is calculated as a weighted average:

y(x) =
N
∑

i=1

µi(x)× ai, (1)

where N is the number of rules, µi(x) is the firing degree

of the rule i for the input signal x and ai is the consequent

function for the same rule. Then the output is rounded to the

nearest integer, due to the discrete nature of scaling actions.

Finally, this value, if endorsed by policy enforcer module (see

Section IV), will be enacted by issuing appropriate commands

to the underlying cloud platform fabric.

C. Fuzzy Q-Learning

Until this stage, we have shown how to design a fuzzy

controller for auto-scaling a cloud-based application where the

elasticity policies are provided by users at design-time, like

RobusT2Scale [18]. In this section, we introduce a mechanism

to learn the policies at runtime, enabling knowledge evolution

(i.e., KE in FQL4KE). As the controller has to take an action

in each control loop, it should try to select those actions taken

in the past which produced good rewards. Here by reward we

mean ”long-term cumulative” reward:

Rt = rt+1 + γrt+2 + · · · =

∞
∑

k=0

γkrt+k+1, (2)

where γ is the discount rate determining the relative importance

of future rewards. There exists a trade-off (cf. step 2 in

Algorithm 1) between the actions that have already tried (known

as exploitation) and new actions that may lead to better rewards

in the future (known as exploration).

In each control loop, the controller needs to take an action

based on Q(s, a), which is the expected cumulative reward

that can be received by taking action a in state s. This value

directly depends on the policy followed by the controller, thus

determining the behavior of the controller. This policy π(s, a)
is the probability of taking action a from state s. As a result,

the value of taking action a in state s following the policy π



Algorithm 1 : Fuzzy Q-Learning

Require: γ, η, ǫ

1: Initialize q-values:

q[i, j] = 0, 1 < i < N , 1 < j < J

2: Select an action for each fired rule:

ai = argmaxkq[i, k] with probability 1− ǫ ⊲ Eq. 5

ai = random{ak, k = 1, 2, · · · , J} with probability ǫ

3: Calculate the control action by the fuzzy controller:

a =
∑N

i=1 µi(x)× ai, ⊲ Eq. 1

where αi(s) is the firing level of the rule i

4: Approximate the Q function from the current

q-values and the firing level of the rules:

Q(s(t), a) =
∑N

i=1 αi(s) × q[i, ai],
where Q(s(t), a) is the value of the Q function for

the state current state s(t) in iteration t and the action a

5: Take action a and let system goes to the next state s(t+1).
6: Observe the reinforcement signal, r(t + 1)

and compute the value for the new state:

V (s(t+ 1)) =
∑N

i=1 αi(s(t+ 1)).maxk(q[i, qk]).
7: Calculate the error signal:

∆Q = r(t+ 1) + γ × Vt(s(t+ 1))−Q(s(t), a), ⊲ Eq. 4

where γ is a discount factor

8: Update q-values:

q[i, ai] = q[i, ai] + η ·∆Q · αi(s(t)), ⊲ Eq. 4

where η is a learning rate

9: Repeat the process for the new state until it converges

is formally defined as:

Qπ(s, a) = Eπ{

∞
∑

k=0

γkrt+k+1}, (3)

where Eπ{.} is the expectation function under policy π. When

an appropriate policy is found, the RL problem at hand is

solved. Q-learning is a technique that does not require any

specific policy in order to evaluate Q(s, a), therefore:

Q(st, at)← Q(st, at)+η[rt+1+γmax
a

Q(st+1, a)−Q(st, at)],

(4)

where γ is the learning rate. In this case, the policy adaptation

can be achieved by selecting a random action with probability ǫ

and an action that maximizes the Q function in the current state

with probability 1− ǫ, note that the value of ǫ is determined

by the exploitation/exploration strategy (cf. V-A):

a(s) = argmax
k

Q(s, k) (5)

The fuzzy Q-learning algorithm is summarized in Algorithm

1. In the case of our running example, the state space is finite

(i.e., 9 states as the full combination of 3 × 3 membership

functions for fuzzy variables w and rt) and our controller

has to choose a scaling action among 5 possible actions

{−2,−1, 0,+1,+2}. However, the design methodology that

we describe is general. Note that the convergence is detected

when the change in the consequent functions is negligible in

each learning loop.

D. FQL4KE for Dynamic Resource Allocation

In this work, for simplicity, only one instance of the fuzzy

controller is integrated. Note that in the case of multiple

controllers is also possible but due to the intricacies of updating

a central Q table, we consider this as a natural future extension

of this work for the problem areas that requires coordination

between several controllers, see [9].

Reward function. The controller receives the current values

of w and rt that correspond to the state of the system, s(t) (cf.

Step 4 in Algorithm 1). The control signal sa represents the

action a that the controller take at each loop. We define the

reward signal r(t) based on three criteria: (i) numbers of the

desired response time violations, (ii) the amount of resource

acquired, and (iii) throughput, as follows:

r(t) = U(t)− U(t− 1), (6)

where U(t) is the utility value of the system at time t. Hence,

if a controlling action leads to an increased utility, it means

that the action is appropriate. Otherwise, if the reward is close

to zero, it implies that the action is not effective. A negative

reward (punishment) warns that the situation becomes worse

after taking the action. The utility function is defined as:

U(t) = w1 ·
th(t)

thmax

+w2 ·(1−
vm(t)

vmmax

)+w3 ·(1−H(t)) (7)

H(t) =











(rt(t)−rtdes)
rtdes

rtdes ≤ rt(t) ≤ 2 · rtdes

1 rt(t) ≥ 2 · rtdes

0 rt(t) ≤ rtdes

where th(t), vm(t) and rt(t) are throughput, number of worker

roles and response time of the system, respectively. w1,w2 and

w3 are their corresponding weights determining their relative

importance in the utility function. In order to aggregate the

individual criteria, we normalized them depending on whether

they should be maximized or minimized.

Knowledge base update. FQL4KE starts with controlling

the allocation of resources with no a priori knowledge. After

enough explorations, the consequents of the rules can be

determined by selecting actions that correspond to the highest

q-value in each row of the Q-table. Although FQL4KE does

not rely on design-time knowledge, if even partial knowledge

is available (i.e., operator of the system is confident with

providing some of the elasticity policies) or there exists data

regarding performance of the application, FQL4KE can exploit

such knowledge by initializing q-values (cf. step 1 in Algorithm

1) This implies a quicker learning convergence.

IV. IMPLEMENTATION

We implemented prototypes of FQL4KE on Microsoft Azure

and OpenStack. As illustrated in Figure 4, the Azure prototype

comprises of 3 components integrated according to Figure 6:

i A learning component FQL implemented in Matlab. 1

1code is available at https://github.com/pooyanjamshidi/Fuzzy-Q-Learning

https://github.com/pooyanjamshidi/Fuzzy-Q-Learning


RobusT2Scale

Learned rules

FQL

Monitoring Actuator

Cloud Platform

.fis

L
W

W

ElasticBench

𝑤, 𝑟𝑡
𝑤, 𝑟𝑡,𝑡ℎ, 𝑣𝑚

𝑠𝑎
Load Generator

C

system state

WCF

REST

𝛾, 𝜂, 𝜀, 𝑟

Fig. 4: FQL4KE implementation architecture.

ii A cloud controller reasoning engine (RobusT2Scale [18])

implemented in Matlab. 2

iii A cloud-based application framework (ElasticBench)

implemented with Microsoft .NET technologies (.NET

framework 4 and Azure SDK 2.5). 3

iv The integration between these three components by soft-

ware connectors (cf. Figure 5) developed in .NET.

A. ElasticBench: implementation on Azure with .NET

ElasticBench (cf. Figure 5) includes a workload generator

that simulates different workload patterns to test and train the

controller before execution. It also provides functionalities to

perform a variety of auto-scaling experiments, therefore can

be treated as a benchmark for auto-scaling research. In order

to build a generic workload generator, we developed a service

to generate Fibonacci numbers. A delay is embedded in the

process of calculating Fibonacci numbers to simulate a process

that takes a reasonably long period. Note that calculating

Fibonacci numbers is an O(N) task, making it an appropriate

candidate for demonstrating different application types.

Two types of Azure services are used to implement Elas-

ticBench: web role and worker role. Web and worker roles

correspond to VMs at infrastructure level. The requests issued

from the load generator are received by the web role, which puts

a message on a task assignment queue. The worker instances

continuously checks this queue and a background process (to

calculate Fibonacci numbers) will be started. The worker roles

communicate with a cache to acquire the data for processing

(e.g., previously calculated Fibonacci numbers).

We implemented two types of worker role: P process the

messages (i.e., calculate Fibonacci numbers), whereas the other

type M implements the MAPE-K feedback control loop. The

main functionalities in M worker role is as follows: (1) It

reads performance metrics from the blackboard storage; (2) It

calculates metrics for feeding the fuzzy controller; (3) It also

implements a policy enforcer to check whether the number of

nodes to be enacted is within the predefined range and whether

2code is available at https://github.com/pooyanjamshidi/RobusT2Scale
3code is available at https://github.com/pooyanjamshidi/ElasticBench

Cloud Platform (PaaS)On-Premise

P: 

Worker 

Role

L: Web 

Role

P: 

Worker 

Role

P: 

Worker 

Role

Cache

M: 

Worker 

Role

Results: 

Storage
Blackboard: 

Storage

LG: 

Console

Auto-scaling 

Logic (controller)

1 2 3

7

8

1112

4

10
9

LB: Load 

Balancer

6

5
Queue

Actuator

Monitoring

Fig. 5: ElasticBench: the experimental platform.

Monitoring

Analysis Planning

Execution

Offline
Training

Online
Learning

Knowledge
Update

Base-Level: Elastic System

Environment 
(Cloud, Sensors, 

Actuators)

Knowledge

Knowledge

Users

S A
M

e
ta

-L
e

v
e

l:
 M

A
P

E
-K

M
e

ta
-M

e
ta

-L
e

v
e

l:
 K

E

Fig. 6: Augmenting MAPE-K with online learning.

the worker role is in a stable mode. (4) It is possible to plug-in

other cloud controllers (i.e., controllers implementing other

techniques) with few lines of code; (5) It also implements

mechanisms comprising the resiliency of this worker role.

The design decision we made for implementing the MAPE-K

functionalities inside a worker role in the cloud was strategic.

In one hand, in order to avoid network latencies for decision

enaction, we required an internal and isolated network between

the decision maker module (i.e., M) and the scaling roles (i.e.,

P). On the other hand, we needed to provide a close design to

the real world setting as it is the case for commercial solutions

in public clouds that the auto-scaling controller sits near the

scaling layer as opposed to be deployed on premise.

B. Implementation on OpenStack with Python

We also implemented FQL4KE on OpenStack. OpenStack

is an open source cloud platform which controls large pools

of compute, storage and networking resources, all managed

through a dashboard called Horizon or via the OpenStack API.

The main components of the OpenStack we use are:

• Nova: the engine to manage the resource life-cycle

• Swift: a storage system responsible for objects and files.

• Cinder: a block storage component, like Amazon EBS.

https://github.com/pooyanjamshidi/RobusT2Scale
https://github.com/pooyanjamshidi/ElasticBench


• Neutron: manages the networking.

• Keystone: the primary tools for user authentication.

• Glance: provides image services.

• Horizon: provides a web-based portal for users.

The core auto-scaling policy in OpenStack is based on

threshold-based rules by measures such CPU utilization. In

order to implement FQL4KE as a VM manager, we configured

the following resources:

• AutoScalingGroup: a resource type that is used to

encapsulate the resource that we wish to scale. Also,

the minimum and maximum number of instances should

be defined in this resource.

• ScalingPolicy: a resource type that is used to affect a

scaling process on the current VM group.

• ControllerServer: the main core that has responsibility

for the auto-scaling strategy in the platform. In this VM,

we locate our FQL4KE algorithm in order to control

and manage the VM instances. Due to unavailability of

OpenStack API inside of this VM, in order to collect

data form OpenStack environment, we need to call each

API in two steps: first to get a token from the Keystone

component as user authentication and then use this token

for sending request to the Horizon component.

To implement FQL4KE in OpenStack, we created a Con-

trollerServer. Additionally, all resources to be scaled are

encapsulated in AutoScalingGroup. The implementation is

divided between two different resource types: VMs instances

and ControllerServer. In our experiment, each VM is defined

as Web server and FQL4KE is located inside ControllerServer

VM. Each request is sent to the LoadBalancer and redirected

to the target server. At each control interval, the response

time of the system LoadBalancer is measured, then FQL4KE

decides to scale up/down based on end-to-end response time.

V. EXPERIMENTAL RESULTS

We demonstrate the efficiency and effectiveness of FQL4KE

via an experimental evaluation. More specifically, the key

purpose of the experiments is to answer the following questions:

RQ1. Is FQL4KE able to learn how to efficiently acquire

resources for dynamic systems in cloud architectures?

RQ2. Is FQL4KE flexible enough to allow the operator to

set different strategies? and how the approach is effective in

terms of key elasticity criteria (cf. criteria column in Table I)?

A. Experimental Setting

The main differentiating aspect is the delay in receiving

rewards after each scaling action has been taken. The agent (i.e.,

cloud controller) deployed in a delayed-feedback environment

(i.e., cloud) comes to know the reward after a non-negative

integer indicating the number of time-steps between an agent

taking an scaling action and actually receiving its feedback.

In each monitoring cycle, which happens every 10 seconds,

the controller knows about its state but in order to receive

the reinforcement signal, it has to wait for example for 8-

9 minutes for “scaling out” actions and 2-3 minutes for

“scaling in” actions to be enacted. Such kinds of delayed

0

0.2

0.4

0.6

0.8

1

0 8

1
5

2
3

3
3

4
2

5
3

6
1

7
5

8
7

9
5

1
0
5

1
1
8

1
2
7

1
3
5

1
4
7

1
5
9

1
6
9

1
7
9

1
9
0

1
9
9

2
1
0

2
1
7

2
2
3

2
3
6

2
4
5

2
5
5

2
6
5

2
7
1

2
7
9

2
8
9

2
9
8

3
0
5

3
1
7

S1 S2 S3 S4 S5

learning epochs

p
ro

b
a
b

ili
ty

Fig. 7: The learning (exploitation/exploration) strategies.

feedback environments introduce some challenges for learning

convergence. We tackled this by investigating different learning

strategies. As depicted in Figure 7, we considered 5 different

exploitation/exploration strategies (i.e., S1−S5). For instance,

in S1, the learning process starts by a high exploration rate,

i.e, ǫ = 1 (cf. Step 2 in Algorithm 1). We set this in order

to explore all possible actions enough times in early cycles.

Once the optimal fuzzy rules are learned, the controller with

updated elasticity policies will replace the current one. In

other words, FQL starts with exploration phase and after a

first learning convergence happened, it enters the balanced

exploration-exploitation phase. However, in order to compare

the performance of FQL4KE under different strategies, we

consider other learning strategies as well. For instance, in S2,

after initial learning by high exploration, we set ǫ = 0 in order

to fully exploit the learned knowledge.

The learning rate in the experiments are set to a constant

value η = 0.1 and the discount factor is set to γ = 0.8. The

minimum and maximum number of nodes is set to 1 and 7
respectively. The control interval is set to 10sec. The worker

role that our FQL4KE is deployed is small VM with 1 core and

1792MB memory while the P worker roles are extra small

VMs with 1 CPU core and 768MB memory. Initially, we set

Q table to zero, assuming no a priori knowledge. We set the

weights in the reward function all equal, i.e., w1 = w2 = w3 =
1 (cf. Eq. 7). The experiment time has been set to 24hours to

monitor the performance of the system in adequate learning

steps (on average due to the delay in reward observation, each

step takes between 2 − 9mins). We collected data points in

each control loop (more than 8600 data points). The learning

overhead is in the order of 100ms and the monitoring and

actuation delay is about 1000ms (excluding enaction time).

B. FQL4KE Efficiency (RQ1)

The temporary evolution of the q-values associated to each

state-action for S1 is shown (for partial set of pairs) in Figure

9. Note that the change in the q-values occurs when the

corresponding rule is activated, i.e., when the system is in state

S(t) and takes action ai. As the figure shows, some q-values

changed to a negative value during exploration phase and this

means that these actions are punished and are not appropriate

to be taken in the future. The optimal consequent for each rule

in the rule base is determined by the largest q-value at the

end of the learning phase. For instance, action a5 is the best

consequent for rule number 9 in learning strategy S1 (cf. 5th



100
80

workload

60
40

20
00responsetime

50

-2

-1.5

-1

-0.5

0

100

s
c
a
lin
g
a
c
ti
o
n

100
80

workload

60
40

20
00responsetime

50

-2

-1.5

-1

-0.5

0

100

s
c
a
lin
g
a
c
ti
o
n

100
80

workload

60
40

20
00responsetime

50

-1

-1.8

-2

-1.2

-1.4

-1.6

100

s
c
a
lin
g
a
c
ti
o
n

100
80

workload

60
40

20
00responsetime

50

-1

0

1

2

-2

100

s
c
a
lin
g
a
c
ti
o
n

Fig. 8: Temporal evolution of control surface.

Fig. 9: Temporal evolution of q-values.

row in Figure 9). With changing q-values, the control surface

of the fuzzy controller is also changing. Figure 8 shows the

temporal evolution of the control surface of the fuzzy controller.

The surface evolves until the learning converges.

C. FQL4KE Flexibility and Effectiveness (RQ2)

In this section, we study how the learning component of

FQL4KE improves the functionality of dynamic resource

allocation over static rule-based or native mechanisms. Table

I summarizes the criteria that we considered for compar-

ing different auto-scaling strategies with respect to different

workload patterns. Note that S5 corresponds to the fuzzy

controller with initial knowledge extracted from users at design-

time (RobusT2Scale) with no learning component and the

Monitoring Learning Actuation

104

0

2

4

6

8

10

12

Fig. 10: Runtime delay (ms) for MAPE loop activities.

last strategy corresponds to Azure native auto-scaling. We

synthetically generated 6 different workload patterns (see Figure

11) in order to provide enough environmental conditions for

this comparison. The x axis shows the experimental time

and the y axis shows the number (in [0, 100]) for which the

Fibonacci series needs to be calculated, demonstrating the

workload intensity similar to the number of concurrent users

for a web-based application. A key parameter in learning-based

approaches is the convergence delay to reach the optimal policy.

The response time of the system under different workloads is

also considered as another comparison criterion. The average

number of VMs acquired throughout the experiment interval

as well as the number of changes in the underlying resources

(i.e., sum of issued scaling actions) is also considered as a

comparison criterion. Figure 12 shows the changes in the

number of VM instances in a trial run. The main findings

described in Table I can be summarized as follows:

• Sequential decreasing of exploration factor (cf. S1) is

effective in accelerating learning convergence. However,

it is also effective for highly dynamic workloads such

as “quickly varying” as in Figure 11 because it keeps a

minimum of ǫ = 0.2 when initial knowledge has been

learned and it keeps learning more suitable rules when

new situations arise.

• Initial high exploration (cf. S2) is effective for quick

convergence, but in non-predictable workloads such as

“quickly varying”, the decisions become sub-optimal. This

is evident by comparing the average number of VMs and

the number of learning iterations until convergence for

“large variation” and “quickly varying” patterns.

• Although high constant exploration (cf. S3) is effective

in unpredictable environments (see response time and

compare it with other strategies), it is not optimal in

terms of convergence, number of changes and acquired

resources. Note that the higher number of changes in

the resources means that for quite considerable period

in time, instability in the deployment environment of the

application has been experienced.

• Maximum exploration rate (cf. S4) is not a good learning

strategy by no means as it only produces random actions



0 50 100
0

500

1000

1500

0 50 100
100

200

300

400

500

0 50 100
0

1000

2000

0 50 100
0

200

400

600

0 50 100
0

500

1000

0 50 100
0

500

1000

Big spike Dual phase Large variations

Quickly varying Slowly varying Steep tri phase

10
u

se
r 

re
q

u
e

st
s

Fig. 11: Synthetic workload patterns.

and it never converges to an optimal policy.

• The strategy S5 is equal to RobusT2Scale, representing

a policy-based adaptation without any policy learning.

By comparing response time, number of changes and

average number of resources (almost in all aspects and

for all patterns it is relatively lower), we can observe that

FQL4KE is more effective in terms of learning optimal

policies and updating them at runtime.

• Both the cloud controller without learning mechanism

and with learning are more effective than the native cloud

platform reactive auto-scalers. Note that for the controller

without learning, we consider a reasonably logical set of

rules to govern the elasticity decision making. But if we

consider a non sensible set of rules, the native auto-scaling

of Azure performs better than RobusT2Scale.

TABLE I: FQL4KE performance under different strategies.

Strategy Criteria Big spike Dual phase Large variations

S1
rt95%, vm 1212ms, 2.2 548ms, 3.6 991ms, 4.3

node change 390 360 420

convergence 32 34 40

S2
rt95%, vm 1298ms, 2.3 609ms, 3.8 1191ms, 4.4

node change 412 376 429

convergence 38 36 87

S3
rt95%, vm 1262ms, 2.4 701ms, 3.8 1203ms, 4.3

node change 420 387 432

convergence 30 29 68

S4
rt95%, vm 1193ms, 3.2 723ms, 4.1 1594ms, 4.8

node change 487 421 453

convergence 328 328 328

S5
rt95%, vm 1339ms, 3.2 729ms, 3.8 1233ms, 5.1

node change 410 377 420

convergence N/A N/A N/A

Azure
rt95%, vm 1409ms, 3.3 712ms, 4.0 1341ms, 5.5

node change 330 299 367

convergence N/A N/A N/A

Quickly varying Slowly varying Steep tri phase

S1
rt95%, vm 1319ms, 4.4 512ms, 3.6 561ms, 3.4

node change 432 355 375

convergence 65 24 27

S2
rt95%, vm 1350ms, 4.8 533ms, 3.6 603ms, 3.4

node change 486 370 393

convergence 98 45 28

S3
rt95%, vm 1287ms, 4.9 507ms, 3.7 569ms, 3.4

node change 512 372 412

convergence 86 40 23

S4
rt95%, vm 2098ms, 5.9 572ms, 5.0 722ms, 4.8

node change 542 411 444

convergence 328 328 328

S5
rt95%, vm 1341ms, 5.3 567ms, 3.7 512ms, 3.9

node change 479 366 390

convergence N/A N/A N/A

Azure
rt95%, vm 1431ms, 5.4 1101ms, 3.7 1412ms, 4.0

node change 398 287 231

convergence N/A N/A N/A

0

1

2

3

4

5

6

7

8

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

high exploration

less frequent exploration

mostly exploitation

experiment epochs

n
u
m

b
e
r 

o
f 

V
M

s

Fig. 12: Auto-scaling behavior during exploration/exploitation.

VI. DISCUSSION

A. Computational Complexity and Memory Consumption

The runtime overhead of the feedback control loop activities

(cf. Figure 4) is depicted in Figure 10. Step 2 to Step 8 in

Algorithm 1 are computationally intensive and based on our

experiments are in the order of few minutes for 9 states and

for 10,000 learning epochs. However, runtime overhead of the

learning is not an issue in our setting because of the actuation

delays that are in the order of magnitude of several minutes, 8-9

minutes for scaling out an extra small VM on Azure platform

and 2-3 minutes for removing an existing VM. Note the few

outliers as the result of failures of the PaaS level actions (cf.

actuation) and network communication delays (cf. monitoring)

on Azure platform during the course of our experiments.

In addition, the memory consumption of our approach is

given by the dimensions of the look up table that saves and

updates the q-values. In other words, the space complexity of

our approach is always O(N ×A), where N is the number of

states and A is the number of actions. In the setting that we

described in this paper, the table is composed by 9 states ×5
actions = 45 q-values, thus memory consumption is negligible.

B. FQL4KE for Policy-based Adaptations

Although in this paper we integrated FQL4KE with Ro-

busT2Scale, this approach is general and can be integrated

with any knowledge-based controllers. By knowledge-based

controller, we mean any controller that have explicit notion of

knowledge that can be specified in terms of rules and used for

reasoning and producing the control signal. Basically FQL4KE

can be integrated with such controllers to learn rules and

populate the knowledge base at runtime. Such policy-based

controllers are not only applied for resource scaling but have

also been previously applied to the rule-based adaptations of

software architecture at runtime [14].

C. Limitations

Besides the provided features of FQL4KE, it comes with

some limitations. Firstly, performance of scaling actions

produced by FQL4KE during initial learning epochs at runtime

may be poor. The key reason is that in environments such

as cloud, in which every interaction with the environment

(i.e., adding/removing cloud resources) takes several minutes,

the learning typically converges slowly. This imposes some



difficulties. First, at early stages when the learning process has

not been converged there might be some over-provisioning or

under-provisioning due to such decisions. However, some other

strategies (e.g., temporary over-provisioning) can be adopted in

parallel in order to let the approach learns policies and when

the optimal policies have been learned, it becomes the sole

decision maker for resource allocation. Secondly, the learning

process may be sensitive to the selection of the reinforcement

signal (cf. Equation 7). It is also dependent on the fact that

the system states must have been visited sufficiently [24].

D. Threats to Validity

There are a number of sources of threats to validity of

the results presented in Section V. First, the results presented

in Table I may be slightly different depending on the utility

function defined in Eq. 7. We defined a reasonable function

to measure the reward, while this can be defined differently

leading to a different effectiveness of learning strategies. We

expect the results would be consistent with the effectiveness (cf.

Table I) of our solution as long as the function is appropriate,

i.e., only consider both reward or punishment even with

different metrics that we used, but not only one aspect.

The other threat to the validity of the result is the application

framework that we built for our experiment, i.e., ElasticBench.

Although we embed different characteristics of a cloud-based

application by using Fibonacci based calculation and using

cloud based technologies such as caching, but the results

presented in Table I may be slightly different for other types

of application. However, since we can simulate different

functionalities with this framework, we expect that results on

a different application is consistent with the ones presented in

Section V. This requires further investigations with real-world

software applications. Also note that we have implemented

the solution in both Azure and OpenStack to demonstrate

cross-platform applicability, though more experimentations are

necessary to fully validate FQL4KE in particular in OpenStack.

Although FQL4KE does not impose any constraints on the

possible number of scaling actions, for simplicity, we only con-

sidered five possible scaling actions (i.e., −2,−1, 0,+2,+2).

This limited set of actions has some implications on the

performance (cf. Section V-B) and effectiveness of learning

(cf. Section V-C).

Finally, limited number of workload patterns (6 patterns

is used in this work for evaluation, cf. Figure 11) is another

threats to the validity. As it is also used in other research [12],

this set of patterns, although not comprehensive, but provides

a reasonably enough environmental conditions for evaluation.

VII. RELATED WORK

In autonomic computing, policy-based adaptation techniques

have been used to build self-adaptive software. We here focus

on policy-based adaptation, related to software adaptation and

dynamic resource allocation.

Policy-based adaptation. In self-adaptive software literature,

policy-based adaptation has gained momentum due to its

efficiency and flexibility for planning [16]. A policy-based

approach can potentially decouple adaptation logic with how

to react when necessary. Rainbow [13] exploits architecture-

based adaptation, in which system chooses new architectural

reconfigurations, at runtime, based on rules defined at design-

time. In a similar line, Sykes et al. [25] propose an online

planning approach to architecture-based self-managed systems.

Their work describes a plan as a set of condition-action

rules, which has been generated by observing a change in

the operational environment. Georgas and Taylor [14] present

an architecture-centric approach in which adaptation polices

are specified as reaction rules. Not all of the policy-based

approaches exploit if-then rules, other resemblances of

policy have been also utilized. For instance, model-based

approaches in terms of variability models has been adopted in

[6]. While policy-based approaches have been shown useful

in some settings (e.g., enforcing certain characteristics in the

system), they cannot deal with unseen situations or uncertainties.

System hence produces suboptimal decisions. The solution

proposed here, FQL4KE, is in the same line of research, but

applied fuzzy Q-learning, for the first time, to the problem of

dynamic resource allocation through online policy evolution.

Dynamic adaptation planning. In [3], dynamic decision

networks are proposed to deal with the uncertainty in decision-

making of self-adaptive systems. The initial models are

provided by experts; however, the models are updated at

runtime as more evidences are observed through monitoring.

Esfahani et al. [7] discuss the application of black-box learning

models to understand the impact of different features in a self-

adaptive system. Given a system goal, a function is learned

to formulate the impact of different features. Amoui et al.

[1] present an approach based on reinforcement learning to

select adaptation actions at runtime. Through an adaptive

web-based case study, it is shown that the approach provides

similar results comparing to a voting-based approach that uses

expert knowledge. Kim et al. [5] discuss the application of Q-

learning to plan architecture-based adaptations, a similar policy-

based architecture adaptation is also proposed in [14], applied

in robotics domain. FQL4KE addresses decision making in

autonomic systems, particularly focusing on resource allocation

in cloud-based applications.

Dynamic resource allocation. Xu et al. [4] present an

approach to learning appropriate auto-configuration in vir-

tualized resources. It uses multiple agents, each of which

apply reinforcement learning to optimize auto-configuration

of its dedicated environment. Barrett et al. [2] investigate

the impact of varying performance of cloud resources on

application performance. They show that a resource allocation

approach, considering this aspect, achieves benefits in terms

of performance and cost. To reduce the learning time, a

parallelized reinforcement learning algorithm is proposed

through which multiple agents are employed to deal with the

same tasks to speed up the procedure to explore the state

space. Huber et al. [17] propose DML, a domain-specific

language, that enables parametric performance modeling and

adaptation process for self-adaptive resource management in

heterogeneous environments. The internal knowledge is based



on linear regression model that is kept up to date based on

runtime observations and the prediction based on the internal

model triggers resource adaptations. Lama et al. [20] integrate

NN with fuzzy logic to build adaptive controllers for autonomic

server provisioning. Similar to our approach, NNs define a set of

fuzzy rules, and the self-adaptive controller adapts the structure

of the NN at runtime, therefore automatically updating rules.

The above mentioned approaches enable horizontal elasticity,

however some approaches like [9] enable vertical elasticity.

Unlike the above approaches, FQL4KE offers a seamless

knowledge evolution through fuzzy control and RL, putting the

burden of defining adaptation rules off the users, while keeping

the internal model relevant throughout the system operation.

VIII. CONCLUSIONS AND FUTURE WORK

We have investigated dynamic quality management for

deployed cloud-based application architectures. The scenario

under investigation assumes no a priori knowledge is available

regarding the policies that cloud controllers can exploit for

quality management. Instead of specifying elasticity policies in

auto-scaling solutions, for system operations it is only required

to provide the importance weights in the reward function for

designing such elasticity controller. In order to realize this, a

fuzzy rule-based controller (lower feedback control loop) linked

with a reinforcement learning algorithm (upper knowledge

evolution loop) for learning optimal elasticity policies, has

been proposed. The advantages are:

1) FQL4KE is robust to highly dynamic workload intensity

due to its self-adaptive and self-learning capabilities.

2) FQL4KE is model-independent. The variations in the

performance of the deployed applications and the un-

predictability of dynamic workloads do not affect the

effectiveness of the proposed approach.

3) FQL4KE is capable of automatically updating the control

rules through a fast online learning. FQL4KE auto-scales

and learns to improve its performance simultaneously.

4) Unlike supervised techniques that learn from the training

data, FQL4KE does not require off-line training that saves

significant amount of time and efforts.

We plan to extend our approach in a number of ways: (i)

extending FQL4KE to perform in environments which are

partially observable, (ii) exploiting clustering approaches to

learn the membership functions of the antecedents (in this work

we assume they do not change once they specified, for enabling

the dynamic change we will consider incremental clustering

approaches) in fuzzy rules. Also (iii) we aim to extend the

IBM MAPE-K adaptation loop to MAPE-KE that is able to

update different knowledge sources (cf. Figure 6).

ACKNOWLEDGMENT

This work has received funding from IC4 (an Irish national

technology centre funded by EI) and the EU’s Programme

FP7/2007-2013 under grant agreement 610802 (CloudWave).

REFERENCES

[1] M. Amoui and et al. Adaptive action selection in autonomic software
using reinforcement learning. In ICAC’08, 2008.

[2] E. Barrett, E. Howley, and et al. Applying reinforcement learning towards
automating resource allocation and application scalability in the cloud.
Concurrency and Computation: Practice and Experience, 25(12), 2013.

[3] N. Bencomo and et al. Dynamic decision networks for decision-making
in self-adaptive systems: A case study. In SEAMS’13, 2013.

[4] X. Bu, J. Rao, and C.Z. Xu. Coordinated self-configuration of virtual
machines and appliances using a model-free learning approach. IEEE

Trans. Parallel Distrib. Syst., 24(4), 2013.
[5] K. Dongsun and P. Sooyong. Reinforcement learning-based dynamic

adaptation planning method for architecture-based self-managed software.
In SEAMS’09, May 2009.

[6] A. Elkhodary, N. Esfahani, and S. Malek. FUSION: a framework for
engineering self-tuning self-adaptive software systems. In FSE ’10, New
York, New York, USA, 2010. ACM Press.

[7] N. Esfahani, A. Elkhodary, and S. Malek. A learning-based framework
for engineering feature-oriented self-adaptive software systems. IEEE

Transactions on Software Engineering, 39(11), Nov 2013.
[8] S. Farokhi, P. Jamshidi, I. Brandic, and E. Elmroth. Self-adaptation

challenges for cloud-based applications: A control theoretic perspective.
In Feedback Computing, 2015.

[9] S. Farokhi, P. Jamshidi, E.B. Lakew, I. Brandic, and E. Elmroth. A
hybrid cloud controller for vertical memory elasticity: A control-theoretic
approach. Future Generation Computer Systems, under evaluation, 2016.

[10] A. Filieri, M. Maggio, and et al. Software engineering meets control
theory. In SEAMS’15, 2015.

[11] A. Gambi, M. Pezze, and G. Toffetti. Kriging-based self-adaptive cloud
controllers. IEEE Transactions on Services Computing, 2014.

[12] A. Gandhi, P. Dube, A. Karve, A. Kochut, and L. Zhang. Adaptive,
model-driven autoscaling for cloud applications. In ICAC’14, pages
57–64. USENIX, 2014.

[13] D. Garlan, S.W. Cheng, A.C. Huang, B. Schmerl, and P. Steenkiste.
Rainbow: architecture-based self-adaptation with reusable infrastructure.
Computer, 37(10), October 2004.

[14] J.C. Georgas and R.N. Taylor. Policy-based self-adaptive architectures:
Policy-based self-adaptive architectures: a feasibility study in the robotics
domain. In SEAMS ’08. ACM Press, 2008.

[15] P.Y. Glorennec and L. Jouffe. Fuzzy Q-learning. In Proceedings of 6th

International Fuzzy Systems Conference, volume 2. IEEE, 1997.
[16] H.N. Ho and E. Lee. Model-based reinforcement learning approach for

planning in self-adaptive software system. In Conference on Ubiquitous

Information Management and Communication, 2015.
[17] N. Huber, J. Walter, M. Bahr, and S. Kounev. Model-based autonomic

and performance-aware system adaptation in heterogeneous resource
environments: A case study. In ICCAC, pages 181–191. IEEE, 2015.

[18] P. Jamshidi, A. Ahmad, and C. Pahl. Autonomic resource provisioning
for cloud-based software. In SEAMS, pages 95–104, 2014.

[19] J.O. Kephart and D.M. Chess. The vision of autonomic computing.
Computer, 36(1), January 2003.

[20] P. Lama and X. Zhou. Autonomic provisioning with self-adaptive neural
fuzzy control for percentile-based delay guarantee. ACM Transactions

on Autonomous and Adaptive Systems, 2013.
[21] T. Lorido-Botran, J. Miguel-Alonso, and J.A. Lozano. A review of

auto-scaling techniques for elastic applications in cloud environments.
Journal of Grid Computing, 2014.

[22] M. Netto and et al. Evaluating auto-scaling strategies for cloud computing
environments. MASCOTS’14, 2014.

[23] C. Pahl and P. Jamshidi. Software architecture for the clouda roadmap
towards control-theoretic, model-based cloud architecture. In Software

Architecture, pages 212–220. Springer, 2015.
[24] R.S. Sutton and A.G. Barto. Introduction to reinforcement learning. MIT

Press, 1998.
[25] D. Sykes, W. Heaven, J. Magee, and J. Kramer. From goals to components:

a combined approach to self-management. In SEAMS ’08, New York,
New York, USA, 2008. ACM Press.

[26] B. Urgaonkar, G. Pacifici, P. Shenoy, M. Spreitzer, and A. Tantawi.
An analytical model for multi-tier internet services and its applications.
33(1):291–302, 2005.

[27] W.E. Walsh, G Tesauro, J.O. Kephart, and R. Das. Utility functions in
autonomic systems. International Conference on Autonomic Computing,

2004. Proceedings., 2004.


	Introduction
	Research Challenges
	Research Contributions

	Motivation and Background
	Motivation
	Reinforcement Learning for Elasticity Decision Making

	Fuzzy Q-Learning for Knowledge Evolution
	FQL4KE Building Blocks
	Fuzzy Logic Controller
	Fuzzy Q-Learning
	FQL4KE for Dynamic Resource Allocation

	Implementation
	ElasticBench: implementation on Azure with .NET
	Implementation on OpenStack with Python

	Experimental Results
	Experimental Setting
	FQL4KE Efficiency (RQ1)
	FQL4KE Flexibility and Effectiveness (RQ2)

	discussion
	Computational Complexity and Memory Consumption
	FQL4KE for Policy-based Adaptations
	Limitations
	Threats to Validity

	Related Work
	Conclusions and Future Work
	References

