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Fuzzy Support Vector Machines
Chun-Fu Lin and Sheng-De Wang

Abstract—A support vector machine (SVM) learns the decision
surface from two distinct classes of the input points. In many appli-
cations, each input point may not be fully assigned to one of these
two classes. In this paper, we apply a fuzzy membership to each
input point and reformulate the SVMs such that different input
points can make different constributions to the learning of deci-
sion surface. We call the proposed method fuzzy SVMs (FSVMs).

Index Terms—Classification, fuzzy membership, quadratic pro-
gramming, support vector machines (SVMs).

I. INTRODUCTION

T HE theory of support vector machines (SVMs) is a new
classification technique and has drawn much attention on

this topic in recent years [1]–[5]. The theory of SVM is based on
the idea of structural risk minimization (SRM) [3]. In many ap-
plications, SVM has been shown to provide higher performance
than traditional learning machines [1] and has been introduced
as powerful tools for solving classification problems.

An SVM first maps the input points into a high-dimensional
feature space and finds a separating hyperplane that maximizes
the margin between two classes in this space. Maximizing the
margin is a quadratic programming (QP) problem and can be
solved from its dual problem by introducing Lagrangian multi-
pliers. Without any knowledge of the mapping, the SVM finds
the optimal hyperplane by using the dot product functions in
feature space that are calledkernels. The solution of the optimal
hyperplane can be written as a combination of a few input points
that are calledsupport vectors.

There are more and more applications using the SVM tech-
niques. However, in many applications, some input points may
not be exactly assigned to one of these two classes. Some are
more important to be fully assinged to one class so that SVM
can seperate these points more correctly. Some data points cor-
rupted by noises are less meaningful and the machine should
better to discard them. SVM lacks this kind of ability.

In this paper, we apply a fuzzy membership to each input
point of SVM and reformulate SVM into fuzzy SVM (FSVM)
such that different input points can make different constribu-
tions to the learning of decision surface. The proposed method
enhances the SVM in reducing the effect of outliers and noises
in data points. FSVM is suitable for applications in which data
points have unmodeled characteristics.

The rest of this paper is organized as follows. A brief review
of the theory of SVM will be described in Section II. The FSVM
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will be derived in Section III. Three experiments are presented
in Section IV. Some concluding remarks are given in Section V.

II. SVMs

In this section we briefly review the basis of the theory of
SVM in classification problems [2]–[4].

Suppose we are given a setof labeled training points

(1)

Each training point belongs to either of two classes
and is given a label for . In most cases,
the searching of a suitable hyperplane in an input space is too
restrictive to be of practical use. A solution to this situation is
mapping the input space into a higher dimension feature space
and searching the optimal hyperplane in this feature space. Let

denote the corresponding feature space vector with a
mapping from to a feature space. We wish to find the
hyperplane

(2)

defined by the pair , such that we can separate the point
according to the function

if
if

(3)

where and .
More precisely, the set is said to belinearly separableif

there exist such that the inequalities

if
if

(4)

are valid for all elements of the set. For the linearly sepa-
rable set , we can find a unique optimal hyperplane for which
the margin between the projections of the training points of two
different classes is maximized. If the setis not linearly sepa-
rable, classification violations must be allowed in the SVM for-
mulation. To deal with data that are not linearly separable, the
previous analysis can be generalized by introducing some non-
negative variables such that (4) is modified to

(5)

The nonzero in (5) are those for which the point does not
satisfy (4). Thus the term can be thought of as some
measure of the amount of misclassifications.
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The optimal hyperplane problem is then regraded as the so-
lution to the problem

(6)

where is a constant. The parametercan be regarded as a
regularization parameter. This is the only free parameter in the
SVM formulation. Tuning this parameter can make balance be-
tween margin maximization and classification violation. Detail
discussions can be found in [4], [6].

Searching the optimal hyperplane in (6) is a QP problem,
which can be solved by constructing a Lagrangian and trans-
formed into the dual

(7)

where is the vector of nonnegative Lagrange
multipliers associated with the constraints (5).

The Kuhn–Tucker theorem plays an important role in the
theory of SVM. According to this theorem, the solution of
problem (7) satisfies

(8)

(9)

From this equality it comes that the only nonzero valuesin
(8) are those for which the constraints (5) are satisfied with the
equality sign. The point corresponding with is called
support vector. But there are two types of support vectors in a
nonseparable case. In the case , the corresponding
support vector satisfies the equalities
and . In the case , the corresponding is not
null and the corresponding support vectordoes not satisfy
(4). We refer to such support vectors as errors. The point
corresponding with is classified correctly and clearly
away the decision margin.

To construct the optimal hyperplane , it follows that

(10)

and the scalar can be determined from the Kuhn–Tucker con-
ditions (8).

The decision function is generalized from (3) and (10) such
that

(11)

Since we do not have any knowledge of, the computation
of problem (7) and (11) is impossible. There is a good property
of SVM that it is not necessary to know about. We just only
need a function calledkernelthat can compute the dot
product of the data points in feature space, that is

(12)

Functions that satisfy the Mercer’s theorem can be used as dot-
products and thus can be used as kernels. We can use the poly-
nomial kernel of degree

(13)

to consturct a SVM classifier.
Thus the nonlinear separating hyperplane can be found as the

solution of

(14)

and the decision function is

(15)

III. FSVMs

In this section, we make a detail description about the idea
and formulations of FSVMs.

A. Fuzzy Property of Input

SVM is a powerful tool for solving classification problems
[1], but there are still some limitataions of this theory. From the
training set (1) and formulations discussed above, each training
point belongs to either one class or the other. For each class, we
can easily check that all training points of this class are treated
uniformly in the theory of SVM.

In many real-world applications, the effects of the training
points are different. It is often that some training points are more
important than others in the classificaiton problem. We would
require that the meaningful training points must be classified
correctly and would not care about some training points like
noises whether or not they are misclassified.

That is, each training point no more exactly belongs to one
of the two classes. It may 90% belong to one class and 10%
be meaningless, and it may 20% belong to one class and 80%
be meaningless. In other words, there is a fuzzy membership

associated with each trainging point. This
fuzzy membership can be regarded as the attitude of the cor-
responding training point toward one class in the classification
problem and the value can be regarded as the attitude of
meaningless. We extend the concept of SVM with fuzzy mem-
bership and make it an FSVM.
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B. Reformulate SVM

Suppose we are given a setof labeled training points with
associated fuzzy membership

(16)

Each training point is given a label and a
fuzzy membership with , and sufficient
small . Let denote the corresponding feature
space vector with a mappingfrom to a feature space.

Since the fuzzy membership is the attitude of the corre-
sponding point toward one class and the parameteris a
measure of error in the SVM, the term is a measure of error
with different weighting. The optimal hyperplane problem is
then regraded as the solution to

(17)

where is a constant. It is noted that a smallerreduces the
effect of the parameter in problem (17) such that the corre-
sponding point is treated as less important.

To solve this optimization problem we construct the
Lagrangian

(18)

and find the saddle point of . The parameters
must satisfy the following conditions:

(19)

(20)

(21)

Apply these conditions into the Lagrangian (18), the problem
(17) can be transformed into

(22)

and the Kuhn–Tucker conditions are defined as

(23)

(24)

The point with the corresponding is called a sup-
port vector. There are also two types of support vectors. The
one with corresponding lies on the margin of the
hyperplane. The one with corresponding is misclassi-
fied. An important difference between SVM and FSVM is that
the points with the same value of may indicate a different
type of support vectors in FSVM due to the factor.

C. Dependence on the Fuzzy Membership

The only free parameter in SVM controls the tradeoff be-
tween the maximization of margin and the amount of misclassi-
fications. A larger makes the training of SVM less misclassi-
fications and narrower margin. The decrease ofmakes SVM
ignore more training points and get wider margin.

In FSVM, we can set to be a sufficient large value. It is
the same as SVM that the system will get narrower margin and
allow less miscalssifications if we set all . With different
value of , we can control the tradeoff of the respective training
point in the system. A smaller value of makes the corre-
sponding point less important in the training.

There is only one free parameter in SVM while the number of
free parameters in FSVM is equivalent to the number of training
points.

D. Generating the Fuzzy Memberships

To choose the appropriate fuzzy memberships in a given
problem is easy. First, the lower bound of fuzzy memberships
must be defined, and second, we need to select the main
property of data set and make connection between this property
and fuzzy memberships.

Consider that we want to conduct the sequential learning
problem. First, we choose as the lower bound of fuzzy
memberships. Second, we identify that the time is the main
property of this kind of problem and make fuzzy membership

be a function of time

(25)

where is the time the point arrived in the system.
We make the last point be the most important and choose

, and make the first point be the least important and
choose . If we want to make fuzzy membership
be a linear function of the time, we can select

(26)

By applying the boundary conditions, we can get

(27)

If we want to make fuzzy membership be a quadric function of
the time, we can select

(28)
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Fig. 1. The result of SVM learning for data with time property.

By applying the boundary conditions, we can get

(29)

IV. EXPERIMENTS

There are many applications that can be fitted by FSVM since
FSVM is an extension of SVM. In this section, we will introduce
three examples to see the benefits of FSVM.

A. Data With Time Property

Sequential learning and inference methods are important in
many applications involving real-time signal processing [7]. For
example, we would like to have a learning machine such that the
points from recent past is given more weighting than the points
far back in the past. For this purpose, we can select the fuzzy
membership as a function of the time that the point generated
and this kind of problem can be easily implemented by FSVM.

Suppose we are given a sequence of training points

(30)

where is the time the point arrived in the system.
Let fuzzy membership be a function of time

(31)

such that .

Fig. 1 shows the result of the SVM and Fig. 2 shows the result
of FSVM by setting

(32)

The numbers with underline are grouped as one class and the
numbers without underline are grouped as the other class. The
value of the number indicates the arrival sequence in the same
interval. The smaller numbered data is the older one. We can
easily check that the FSVM classifies the last ten points with
high accuracy while the SVM does not.

B. Two Classes With Different Weighting

There may be some applications that we just want to focus
on the accuracy of classifying one class. For example, given
a point, if the machine says 1, it means that the point belongs
to this class with very high accuracy, but if the machine says

1, it may belongs to this class with lower accuracy or really
belongs to another class. For this purpose, we can select the
fuzzy membership as a function of respective class.

Suppose we are given a sequence of training points

(33)

Let fuzzy membership be a function of class

if
if

(34)

Authorized licensed use limited to: National Taiwan University. Downloaded on January 21, 2009 at 01:21 from IEEE Xplore.  Restrictions apply.



468 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 13, NO. 2, MARCH 2002

Fig. 2. The result of FSVM learning for data with time property.

Fig. 3 shows the result of the SVM and Fig. 4 shows the result
of FSVM by setting

if
if

(35)

The point with is indicated as cross, and the point
with is indicated as square. In Fig. 3, the SVM finds the
optimal hyperplane with errors appearing in each class. In Fig. 4,
we apply different fuzzy memberships to different classes, the
FSVM finds the optimal hyperplane with errors appearing only
in one class. We can easily check that the FSVM classify the
class of cross with high accuracy and the class of square with
low accuracy, while the SVM does not.

C. Use Class Center to Reduce the Effects of Outliers

Many research results have shown that the SVM is very sen-
sitive to noises and outliners [8], [9]. The FSVM can also apply
to reduce to effects of outliers. We propose a model by setting
the fuzzy membership as a function of the distance between the
point and its class center. This setting of the membership could
not be the best way to solve the problem of outliers. We just pro-
pose a way to solve this problem. It may be better to choose a dif-
ferent model of fuzzy membership function in different training
set.

Suppose we are given a sequence of training points

(36)

Denote the mean of class as and the mean of class
as . Let the radius of class 1

(37)

and the radius of class

(38)

Let fuzzy membership be a function of the mean and radius
of each class

if
if

(39)

where is used to avoid the case .
Fig. 5 shows the result of the SVM and Fig. 6 shows the result

of FSVM. The point with is indicated as cross, and
the point with is indicated as square. In Fig. 5, the
SVM finds the optimal hyperplane with the effect of outliers,
for example, a square at (3.5,6.6) and a cross at (3.6,2.2). In
Fig. 6, the distance of the above two outliers to its corresponding
mean is equal to the radius. Since the fuzzy membership is a
function of the mean and radius of each class, these two points
are regarded as less important in FSVM training such that there
is a big difference between the hyperplanes found by SVM and
FSVM.
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Fig. 3. The result of SVM learning for data sets with different weighting.

Fig. 4. The result of FSVM learning for data sets with different weighting.

Authorized licensed use limited to: National Taiwan University. Downloaded on January 21, 2009 at 01:21 from IEEE Xplore.  Restrictions apply.



470 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 13, NO. 2, MARCH 2002

Fig. 5. The result of SVM learning for data sets with outliers.

Fig. 6. The result of FSVM learning for data sets with outliers.
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V. CONCLUSION

In this paper, we proposed the FSVM that imposes a fuzzy
membership to each input point such that different input points
can make different constributions to the learning of decision sur-
face. By setting different types of fuzzy membership, we can
easily apply FSVM to solve different kinds of problems. This
extends the application horizon of the SVM.

There remains some future work to be done. One is to select a
proper fuzzy membership function to a problem. The goal is to
automatically or adaptively determine a suitable model of fuzzy
membership function that can reduce the effect of noises and
outliers for a class of problems.
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