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Fuzzy Support Vector Machines for Pattern Classification

Takuya Inoue and Shigeo Abe
Graduate School of Science and Technology, Kobe University, Kobe, Japan

E-mail: abe@eedept.kobe-u.ac.jp

Abstract

In conventional support vector machines (SVMs), an
n-class problem is converted into n two-class problems.
For the ith two-class problem we determine the opti-
mal decision function which separates class i from the
remaining classes. In classification, a datum is classi-
fied into class i only when the value of the ith decision
function is positive. In this architecture, the datum is
unclassifiable if the values of more than one decision
function are positive or all the values are negative. In
this paper, to overcome this problem, we propose fuzzy
support vector machines (FSVMs). Using the decision
functions obtained by training the SVM, for each class,
we define a truncated polyhedral pyramidal membership
function. Since, for the data in the classifiable regions,
the classification results are the same for the two meth-
ods, the generalization ability of the FSVM is the same
with or better than that of the SVM. We evaluate our
method for three benchmark data sets and demonstrate
the superiority of the FSVM over the SVM.

1 Introduction

Support vector machines (SVMs) are based on the the-
oretical learning theory developed by Vapnik. SVMs
have been gained wide acceptance because of the high
generalization ability for a wide range of applications
[1, 2]. In the SVMs, original input space is mapped
into a high-dimensional dot product space called fea-
ture space, and in the feature space the optimal hy-
perplane is determined to maximize the generalization
ability.

However, there is a difficulty in extending binary two-
class problems to n-class problems. In conventional
SVMs for pattern classification, an n-class problem is
converted into n two-class problems. For the ith two-
class problem we determine the optimal decision func-
tion Di(x) so that class i is separated from the remain-
ing classes. In classification, a datum x is classified
into class i only when Di(x) > 0. In this architecture,
the datum is unclassifiable if the values of more than

two decision functions are positive or all the values are
negative. To avoid this, in [3], a pairwise classifica-
tion method, in which n(n − 1)/2 decision functions
are determined, is proposed. By this method, however
unclassifiable regions remain.

In this paper, to overcome this problem, we propose
fuzzy support vector machines (FSVMs). Using the de-
cision functions obtained by training the SVM, we de-
fine truncated polyhedral pyramidal membership func-
tions [4] and resolve unclassifiable regions.

In Section 2, we summarize support vector machines for
pattern classification. And in Section 3 we discuss the
problem of the multiclass support vector machines. In
Section 4, we discuss the method of defining the mem-
bership functions using the SVM decision functions.
Finally, in Section 5, we evaluate our method for three
benchmark data sets and demonstrate the superiority
of the FSVM over the SVM.

2 Two-Class Support Vector Machines

In training the support vector machines, an n-class
problem is converted into n two-class problems. For
each two-class problem, the decision function that max-
imizes the generalization ability is determined. For
a two-class problem, the m-dimensional input x is
mapped into the l-dimensional (l ≥ m) feature space z.
Then in the feature space z the quadratic optimization
problem is solved to separate two classes by the opti-
mal separating hyperplane. In this section we discuss
the support vector machine for a two-class problem.

2.1 The Optimal Hyperplane
Let m-dimensional input xi (i = 1, . . . , M) belong to
class I or class II and the associated labels be yi = 1
for class I and −1 for class II. If these data are linearly
separable, we can determine the decision function:

D(x) = wtx+ b, (1)



where w is an m-dimensional vector and b is a scalar.
The separating hyperplane satisfies:

yi(wtxi + b) ≥ 1 for i = 1, . . . , M. (2)

The separating hyperplane that has the maximum dis-
tance between the hyperplane and the nearest data, i.e.,
the maximum margin, is called optimal hyperplane (see
Fig. 1). The generalization ability is maximized by the
optimal hyperplane [1].
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Figure 1: Optimal hyperplane

The optimal hyperplane can be obtained by solving the
following convex quadratic optimization problem:

minimize 1
2 ||w||2

subject to yi(wtxi + b) ≥ 1. (3)

When the number of features is small, we can solve
this by the quadratic programming technique. When
the number of features is large, we can convert (3) into
the following equivalent dual problem whose number of
variables is the number of training data:

maximize Q(α) =
M∑
i=1

αi − 1
2

M∑
i,j=0

αiαjyiyjxt
ixj

subject to
M∑
i=1

yiαi = 0,

αi ≥ 0 for i = 1, ..,M, (4)

where α = (α1, . . . , αM ) is the Lagrange multiplier.

Let the optimal solution be α∗ and b∗. According to
the Kuhn-Tucker theorem, in (2) the equality condi-
tion holds for the training input-output pair (xi, yi)
only if the associated α∗ is not 0. In this case the
training data xi are support vectors. Solving (4) for
α = (α1, . . . , αM ), we can obtain the support vectors
for classes I and II. Then optimal hyperplane is placed

at the equal distances from the support vectors for
classes I and II, and b∗ is given by

b∗ = −1
2

M∑
k=1

ykα∗
k(s

t
1xk + st

2xk), (5)

where s1 and s2 are, respectively, arbitrary support
vectors for class 1 and class 2.

In the above discussion, we assumed that the train-
ing data are linearly separable. In the case where the
training data are not linearly separable, we introduce
nonnegative slack variables ξi to (2) and add, to the
objective function given by (4), the sum of the slack
variables multiplied by the parameter C. This corre-
sponds to adding the upper bound C to α. In both
cases, the decision functions are the same and are given
by

D(x) =
M∑
i=1

α∗
i yixt

ix + b∗. (6)

Then unknown datum x is classified as follows:

x ∈
{

Class 1 if D(x) > 0,
Class 2 otherwise. (7)

2.2 Mapping to a High-dimensional Space
In a support vector machine for a two-class problem
the optimal hyperplane is determined to maximize the
generalization ability. However, if the original input
x are not sufficient to guarantee linear separability of
the training data, the obtained classifier may not have
high generalization ability although the hyperplane is
determined optimally. To enhance linear separability,
in support vector machines, the original input space
is mapped into a high-dimensional dot product space
called feature space.

Now using the nonlinear vector function g(x) =
(g1(x), . . . , gl(x))t that maps the m-dimensional input
vector x into the l-dimensional feature space, the linear
decision function in dual form is given by

D(x) =
M∑
i=1

αiyig(xi)tg(x). (8)

According to the Hilbert-Schmidt theory the dot prod-
uct in the feature space can be expressed by a symmet-
ric kernel function H(x,x′):

H(x,x′) =
l∑

j=1

gj(x)gj(x′), (9)



if ∫ ∫
H(x,x′)h(x)h(x′)dxdx′ ≥ 0 (10)

is satisfied for all the square integrable functions h(x) in
the compact subset of the input space. This condition
is called Mercer’s condition.

Using kernel functions, without treating the high di-
mensional data explicitly, we can construct a nonlinear
classifier using the method discussed above. Then un-
known data are classified using the kernel function as
follows.

x ∈
{

Class 1 if f(x) = +1,
Class 2 if f(x) = −1, (11)

where

f(x) = sign


 ∑
support vectors

yiα
∗
i H(x,xi)


 . (12)

3 Multiclass Support Vector Machines

For the conventional support vector machines, an n-
class problem is converted into n two-class problems
and for the ith two-class problem, class i is separated
from the remaining classes. Let the ith decision func-
tion that classifies class i and the remaining classes be

Di(x) = wt
ix + bi. (13)

The hyperplane Di(x) = 0 forms the optimal separat-
ing hyperplane and the support vectors belonging to
class i satisfy Di(x) = 1 and to those belonging to the
remaining class satisfy Di(x) = −1. For conventional
support vector machine, if for the input vector x

Di(x) > 0 (14)

is satisfied for one i, x is classified into class i.

But if (14) is satisfied for plural i’s, or there is no i that
satisfies (14), x is unclassifiable (see Fig. 2). To solve
this problem, pairwise classification [3] is proposed. In
this method, we convert the n-class problem into n(n−
2)/2 two-class problems, which cover all pair of classes.
Let the decision function for class i against class j, with
the maximum margin, be

Dij(x) = wt
ijx + bij , (15)

where Dij(x) = −Dji(x). For the input vector x we
calculate

Di(x) =
n∑

i=1,...,n

sign(Dij(x)) (16)
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Figure 2: Unclassifiable region by the two-class formula-
tion

and classify x into the class

arg max
i=1,...,n

Di(x). (17)

In this formulation, however, unclassifiable regions re-
main, where some D(xi) have the same values.

In the next section to resolve unclassifiable regions, we
propose fuzzy support vector machines for conventional
one-to-(n − 1) formulation.

4 Fuzzy Support Vector Machines

To resolve unclassifiable regions, we introduce the fuzzy
membership functions while realizing the same classi-
fication results for the data that satisfy (14). To do
this, for class i we define one-dimensional membership
functions mij(x) on the directions orthogonal to the
optimal separating hyperplanes Dj(x) = 0 as follows:

1. For i = j

mii(x) =
{

1 for Di(x) > 1,
Di(x) otherwise. (18)

2. For i �= j

mij(x) =
{

1 for Dj(x) < −1,
−Dj(x) otherwise. (19)

Since only the class i training data exist when Di ≥ 1,
we assume that the degree of class i is 1, and otherwise,
Di(x). Here we allow the negative degree of member-
ship.

For i �= j, class i is on the negative side of Dj(x) = 0.
In this case, support vectors may not include class i
data but when Di(x) ≤ −1, we assume that the degree
of membership of class i is 1, and otherwise, −Dj(x).



We define the class i membership function of x using
the minimum operator for mij(x) (j = 1, . . . , n):

mi(x) = min
j=1,...,n

mij(x). (20)

In this formulation, the shape of the membership func-
tion is a polyhedral pyramid (see Fig. 3).

Class   i
mi(x) = 1

mi(x) = 0.8

mi(x) = 0.7

Figure 3: Contour lines of the class i membership function

Now the datum x is classified into the class

arg max
i=1,...,n

mi(x). (21)

If x satisfies

Dk(x)
{

> 0 for k = i,
≤ 0 for k �= i, k = 1, . . . , n,

(22)

from (18) and (19), mi(x) > 0 and mj(x) ≤ 0 (j �=
i, j = 1, . . . , n) hold. Thus, x is classified into class i.
This is equivalent to the condition that the condition
that (14) is satisfied for only one i.

Now suppose (14) is satisfied for i1, . . . , il (l > 1).
Then, from (18) to (20), mk(x) is given as follows.

1. k ∈ i1, . . . , il

mk(x) = min
j=i1,...,il, j �=k

−Dj(x). (23)

2. k �= j(j = i1, . . . , il)

mk(x) = min
j=i1,...,il

−Dj(x). (24)

Thus the maximum degree of membership is achieved
among mk(x), k = i1, . . . , il. Namely, Dk(x) is maxi-
mized in k ∈ {i1, . . . , il}.

Let (14) be not satisfied for any class. Then,

Di(x) < 0 for j = 1, . . . , n. (25)

Then (20) is given by

mi(x) = Di(x). (26)
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Class boundary

Figure 4: Class boundary with membership functions

According to above formulation, the unclassified re-
gions shown in Fig. 2 are resolved as shown in Fig. 4
and generalization ability of FSVMs is the same with
or better than that of the conventional SVMs.

In realizing the fuzzy pattern classification, we need
not implement the membership functions mi(x) given
by (20). The procedure of classification is as follows.

1. For x, if Di(x) > 0 is satisfied for only one class,
the input is classified into the class. Otherwise,
go to Step 2.

2. If Di(x) > 0 is satisfied for more than one
class i (i = i1, . . . , il, l > 1), classify the da-
tum into the class with the maximum Di(x) (i ∈
{i1, . . . , il}). Otherwise, go to Step 3.

3. If Di(x) ≤ 0 is satisfied for all the classes, clas-
sify the datum into the class with the minimum
absolute value of Di(x).

5 Performance Evaluation

We evaluated the performance improvement of the
fuzzy support vector machine over the conventional
support vector machine using the thyroid data [5],
blood cell data [6], and hiragana data [7] listed in Table
1.

Table 1: Feature of benchmark data

Data Inputs Classes Train. Test

Thyroid 21 3 3772 3428
Blood cell 13 12 3097 3100
Hiragana 50 39 4610 4610

We assumed that the data sets were not linearly sep-
arable and solved the optimization problem, using [8],



repeatedly reading 50 data at one time. We used the
polynomial kernel functions and we set the value of the
upper bound C so that the recognition rate using the
dot product kernel was maximized.

For the hiragana data set, we normalize the kernel func-
tion by

Hnew(x,x′) =
H(x,x′)

maxH(xt,x′
t)

where xt denotes the training data. Without this, the
magnitudes of the solution became too small to con-
tinue calculations. We used a Pentium III 933 MHz
personal computer.

Thyroid data. Tables 2 and 3 show the results of the
conventional support vector machine for the training
data and test data, respectively. “Plural” denotes that
Di(x) are positive for plural classes and “Inactive” de-
notes that Di(x) are non-positive for all classes. Time
denotes the training time. From these tables, as the
degree of the polynomials increased, the numbers of
the data belonging to unclassifiable regions were de-
creased. This meant that the linear separability in the
feature space increased as the degree of the polynomials
increased.

Table 4 lists the recognition rates of the conventional
SVM and FSVM. The numerals in the brackets show
the recognition rates of the training data. By the intro-
duction of the membership functions, the recognition
rates of the test and training data were improved for
all the kernels.

Table 2: Performance for thyroid training data by SVM
(C = 5000)

Kernel Rate [%] Plural Inactive Time [sec]

dot 94.06 7 153 20
Poly d =2 96.05 6 110 124

d =3 97.67 10 55 86
d =4 98.33 10 31 58
d =5 98.57 9 31 49

Table 3: Performance for thyroid test data by SVM

Kernel Rate [%] Plural Inactive

dot 93.03 25 137
Poly d =2 93.61 40 121

d =3 94.60 50 80
d =4 95.01 54 60
d =5 95.19 49 64

Blood cell data. Tables 5 to 7 show the results for

Table 4: Performance comparison for thyroid data

Kernel SVM [%] FSVM [%]

Dot 93.03 (94.06) 95.27 (96.00)
Poly d =2 93.61 (96.05) 96.30 (98.20)

d =3 94.60 (97.67) 97.08 (98.80)
d =4 95.01 (98.33) 97.32 (99.18)
d =5 95.19 (98.57) 97.26 (99.23)

the blood cell data. From Tables 5 and 6 the recog-
nition rates for the training and test data for the dot
product kernel were very low due to a large number of
unclassifiable data and training took more time than
using other kernels. Though the number of unclassi-
fiable data decreased as the degree of the polynomials
increased, the recognition rates of the conventional sup-
port vector machine for the test data did not improved
very much. As seen from Table 7, by introducing the
membership function, the recognition rates of the test
data were improved greatly. For d = 4 and d = 5,
overfitting occurred.

Table 5: Performance for blood cell training data by SVM
(C = 2000)

Kernel Rate [%] Plural Inactive Time [sec]

dot 71.23 78 738 578
Poly d =2 93.67 56 94 60

d =3 96.09 40 53 53
d =4 97.71 26 25 53
d =5 98.71 14 11 51

Table 6: Performance for blood cell test data by SVM

Kernel Rate [%] Plural Inactive

dot 67.58 122 779
Poly d =2 88.77 96 128

d =3 89.06 122 108
d =4 86.97 188 105
d =5 86.13 214 103

Hiragana data. Tables 8 to 10 show the results for
the hiragana data. From Tables 8 and 9, the recog-
nition rates of the training data reached 100% for
the polynomial kernels and unclassifiable test data de-
creased monotonically as the degree increased. From
Table 10 by introducing the membership function the
recognition rates for the test data were improved.



Table 7: Performance comparison for blood cell data

Kernel SVM [%] FSVM [%]

dot 67.58 (71.23) 85.38 (88.54)
Poly d =2 88.77 (93.67) 93.00 (96.67)

d =3 89.06 (96.09) 93.39 (98.19)
d =4 86.97 (97.71) 92.65 (98.87)
d =5 86.13 (98.71) 92.74 (99.32)

Table 8: Performance for hiragana training data by SVM
(C = 2000)

Kernel Rate [%] Plural Inactive Time [sec]

dot 94.49 55 191 240
Poly d =2 100 0 0 152

d =3 100 0 0 151
d =4 100 0 0 148
d =5 100 0 0 155

Table 9: Performance for hiragana test data by SVM

Kernel Rate [%] Plural Inactive

dot 82.86 367 355
Poly d =2 95.73 73 110

d =3 96.20 66 103
d =4 96.33 66 97
d =5 96.53 65 90

Table 10: Performance comparison for hiragana data

Kernel SVM [%] FSVM [%]

dot 82.86 (94.49) 93.32 (97.87)
Poly d =2 95.73 (100) 99.07 (100)

d =3 96.20 (100) 99.35 (100)
d =4 96.33 (100) 99.37 (100)
d =5 96.53 (100) 99.32 (100)

6 Conclusions

In this paper we proposed fuzzy support vector ma-
chines for classification that resolve unclassifiable re-
gions caused by conventional support vector machines.
In theory, the generalization ability of the fuzzy sup-
port vector machine is superior to that of the conven-
tional support vector machine. By computer simu-
lations using three benchmark data sets, we demon-
strated the superiority of our method over the conven-
tional support vector machine.
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